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ABSTRACT 

Software reliability is defined as the probability of failure free operation of a software in a 

specified environment during a specified period. Software reliability has been the focus of 

several researches over the last four decades. One of the earliest software reliability models is the 

exponential nonhomogeneous Poisson process developed by Goel and Okumoto in 1979. Most 

research works have considered fitting different software reliability models to different software 

reliability data where the estimates of the parameters of the models are obtained by maximum 

likelihood method. However, the problem of predictive analysis on the Goel – Okumoto software 

reliability model has not so far been explored despite the fact that predictive analysis is very 

useful for modifying, debugging and determining when to terminate software development 

testing process. This would lead to improved software reliability and efficient use of resources 

during software development testing. To assess and improve software reliability, software 

developers have to perform operational profile testing where they emulate the end-user 

environment during software testing. Operation profile testing is difficult and time consuming 

especially when there are multiple types of end-users and hence there is the need for software 

predictive analysis. The main objective of this study was to perform Bayesian predictive analyses 

on the Goel – Okumoto software reliability model. Informative and non-informative priors for 

one-sample case and non-informative prior for two-sample case has been used in the study. Brief 

literature on NHPP is given in chapter four. The various issues that are associated closely to 

software development testing process have been outlined in Chapter three as issues A1, B1, C1 

and D1 for one-sample case and issues A2, B2 and C2 for the two-sample case. These issues 

have been addressed by various propositions given in chapter four as follows: Issues A1, B1, C1 

and D1 have been addressed by propositions A1, B1, C1 and D1 respectively. The same issues 

A1, B1, C1 and D1 have been addressed by propositions A1.1, B1.1, C1.1 and D1.1. which have 

been developed using informative prior. Issues A2, B2 and C2 have been addressed by 

propositions A2, B2 and C2 respectively. The propositions for the single sample case have been 

illustrated by secondary software failure data while the propositions for the two-sample case 

have been illustrated by simulated software failure data. The summary, conclusions and 

recommendations for further research is given in chapter five. The R-language programs that 

were used in the analysis are provide in the appendix.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background Information 

Over the last decade of the 20th century and the first few years of the 21st century, the demand for 

complex software systems has gone up as it is seen that currently, computer systems have 

become an indispensable component of our modern society. Today, computers are embedded in 

automotive mechanical and safety control systems, industrial and quality control processes, real-

time sensor networks, aircrafts, nuclear reactors, hospital healthcare and air traffic control 

systems among others. Consequently, the reliability of software used in these systems has been a 

major concern and a requirement in the modern generation. Software reliability is defined as the 

probability of failure free software operations for a specified period of time in a specified 

environment (Nuria, 2011).  

A single software defect can cause system failure and to avoid these failures, reliable software is 

required (Satya et al. 2011). Software reliability is achieved through testing during the software 

development stage (Daniel and Hoang, 2001). Running test cases in a manner that exercises the 

software similar to the way users will operate the software in their particular environment is the 

usual criteria for removing bugs in the software that may cause its failure (Daniel and Hoang, 

2001). However, emulating end-user environment during the test interval is difficult and time 

consuming especially when there are multiple types of end-users. Besides, business pressure to 

release a software system within a tight market window puts a constraint on the amount of time 

that can be spent testing the software (Daniel and Hoang, 2001). Software reliability modeling 

comes in handy to address this dilemma.  

Software reliability modeling can provide the basis for planning reliability growth tests, 

monitoring progress, estimating current reliability, forecasting and predicting future reliability 

improvements (Meth, 1992). This implies that a software reliability growth model is a powerful 

tool for forecasting and predicting the next failure time of software given initial failures and the 

software user-environment. Forecasting and prediction is achieved through predictive analyses. 

In particular, predictive analyses are useful in determining when to terminate the development 

process of software or hardware (Jun-Wu et al. 2007). Often, a prediction interval is constructed 



 

2 
 

to provide the time frame when the  future failure observation will occur with a pre-

determined confidence level. 

Many software reliability growth models that can be used for predictive analyses have been 

developed by various authors in the past three decades. The Goel – Okumoto software reliability 

model is among the pioneer exponential non-homogeneous Poisson process software model 

having been proposed by Goel and Okumoto in 1979. The model is based on the assumptions 

that failures are observed during execution caused by remaining faults in the software; whenever 

a failure is observed, an instantaneous effort is made to find what caused the failure and the 

faults are removed prior to future tests; all faults in the software are mutually independent and 

that there is a perfect debugging process, i.e. there is no new fault that is introduced into the 

software during the debugging process (Kapur et al. 2011). These assumptions lead to a mean 

value function that depicts a decreasing failure rate. Meaning that the number of failures per 

given time is decreasing as test time grows large. When predictive analysis is done based on this 

model, the predicted future failures should portray this phenomenon of decreasing failure rate.  

There are two main aspects of a good reliability model. First, the model must remain stable 

during the entire testing period for any particular testing environment. Secondly, a reasonably 

accurate prediction of reliability must be provided by the model (Kapur et al. 2011). The Goel – 

Okumoto (1979) model has been used in various testing environment and in many instances, it 

provides good estimation and prediction of software reliability. 

Bayesian reliability modeling is anchored on the development of reliability posterior distribution 

from which predictive inference is made. The reliability posterior distribution is often 

constructed using prior distribution which encapsulates prior information about the parameters of 

the software reliability model. The advantage of using Bayesian statistics is that it allows prior 

information such as engineering judgments and test results to be combined with more recent 

information like test or field data. This is important since it helps software developers to arrive at 

a prediction of reliability based upon a combination of all available information (Allan, 2012). 

Furthermore, it is important to note that in software reliability modeling, early test results do not 

tell the whole results. A reliability assessment comes not only from testing the product itself but 

also from the information which is available prior to the start of the test. This information may 

include; the environment under which the software will work, previous tests on the software and 
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even intuition based upon experience (Allan, 2012). The fundamental question therefore is ‘why 

should this useful prior information not be used to supplement and achieve more robust final 

reliability results?’ 

1.2 Statement of the problem 

The use of computer systems and modern communication technologies has become an integrated 

part of human activities in the world. Computer systems are enormously utilized in several areas 

including but not limited to those with safety – critical functions and thus production of reliable 

software through statistical predictive analyses is of great interest. The Goel – Okumoto software 

reliability model, an exponential non-homogeneous Poisson process, has been used in various 

software testing environment. In many instances the model has provided good fit to software 

reliability data and hence, can be considered as a useful reliability model. Most research works 

have considered fitting the model to different software reliability data where the parameters of 

the model are obtained by maximum likelihood method. However, both frequentist and Bayesian 

predictive analyses on the model has not so far been explored. Predictive analysis is very useful 

for modifying, debugging and determining when to terminate software development testing 

process, leading to improved software reliability. Bayesian predictive procedure is advantageous 

over frequentist approach in that it allows the input of prior information about the reliability 

growth process. This research has therefore performed one-sample and two-sample Bayesian 

predictive analyses on the Goel – Okumoto software reliability model using informative and 

non-informative priors. 

1.3 Objectives 

1.3.1 General objective 

To conduct Bayesian predictive analyses on the Goel – Okumoto software reliability model. 

1.3.2 Specific objectives 

1. To perform one-sample Bayesian predictive analysis on the model using non-informative 

and informative priors. 

2. To perform two-sample Bayesian predictive analyses on the model using non-informative 

priors.  
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3. To generate synthetic software failure data from the Goel – Okumto software reliability 

model. 

1.4 Assumptions 

1. There must have been initial operational profile tests of the software. 

2. If the software failure times are  where  is time truncated, 

we assume that  

1.5 Justification 

The reliability of any software is of great interest to the software developers before a decision is 

made to release the software into the market. Software developers need correct and concise 

information about how reliable software is before they decide to release the software into the 

market. It has been widely observed that software warranties, even of a primitive kind are hard to 

come by. It has also been observed that software producers often attempt to avoid any 

responsibility of software failure once it has been released into the market. Therefore, the 

producers will prefer any information that will lead to low cost but high quality software. 

Software reliability is achieved through testing during the software development stage. However, 

there exists a conspicuous trade-off between spending too much time testing software, which 

obviously delays the release, and too little time testing software and eventually exposing the 

users to poor quality software. In order to improve software reliability, most software developers 

will go for that procedure that minimizes the cost of software development and at the same time, 

guarantees the reliability of the software. This can be achieved through software predictive 

analysis. This study has therefore developed Bayesian predictive analyses procedures on the 

Goel – Okumoto software reliability model, an exponential non-homogeneous Poisson process. 

The procedures will enable software developers to achieve the desire of early release of high 

quality and reliable software into the market.   
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Counting processes 

A counting process is simply the count of the number of events that occur in any time interval. 

An indexed collection of random variables is called a stochastic process and when the focus is on 

counts, the process is called a counting process and is denoted by ( ),  t 0N t  . Models employing 

a counting process have played a major role in the analysis of systems composed of randomly 

occurring events. For instance, suppose the interest is in observing repeatable events occurring 

over a period of time. A simple example is the arrival of customers at a station e.g. a bank for 

service. Other examples include the occurrence of earthquakes of a certain magnitude at a 

particular location over time and the times of software failures. What is of importance in this 

study is the point in time when software failure is experienced.  

 

A software system receives different types of input each with its own different path through the 

software thus the creation of a capability of bringing different errors into light                                 

(Jelinski and Moranda, 1972). The different input types are viewed as arriving randomly to the 

software leading to detection of errors in a random way. The end result is that there is an 

underlying random process that governs the software failures. This justifies the use of stochastic 

methods to model software failures (Singpurwala and Simon, 1994). There are some 

probabilistic models describing the counting process. These are homogeneous and non-

homogeneous Poisson processes. The following definitions are given in terms of software failure 

as that is the focus of the study. 

2.1.1 Poisson processes 

A counting process  ( ),  0N t t   is said to be a Poisson process if  

i. (0) 0N   

ii. For any time points 
0 1 2

0 ...
n

t t t t      the random 

variables 0 1 1 2 1
( , ],  ( , ] , ...,  ( , ]

n n
N t t N t t N t t

 are independent random variables. This is called 

the independent increment property. 
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iii. There is a function  such that  
0

Pr[ ( ) ( ) 1]
( ) lim t

N t t N t
t

t
  

   



 

 

iv. 
0

Pr[ ( ) ( ) 2]
( ) 0.lim t

N t t N t
t

t
  

   
 


 This property precludes the possibility of 

simultaneous failures. 

The above properties (i) to (iv) of the Poisson process imply that  

      0 0

1
Pr[ ( ) ] ( ) exp ( )

!

n
t t

N t n x dx x dx
n

 
   

     
   
            (1) 

2.1.2 Homogeneous Poisson Processes 

A counting process  ( ),  0N t t   is said to be a homogeneous Poisson process (HPP) if the 

intensity function  is constant (Zhao, 2004), i.e.   ,  0t     and 

i. The failure at time zero,  0 0N  . 

ii. The process has independent increment and stationary increment. A point process has 

stationary increments if for all  ,  Pr ,k n n s k     is independent of  

iii. The number of events occurring in any interval of length 
2 1

t t t   has a Poisson 

distribution with mean t , that is 

2 1 1 2

( )
Pr[ ( ) ( ) ] ,      0 , 0,1, ...

!

t n
e t

N t N t n t t n
n






               (2) 

A homogeneous Poisson process has the following properties (Rigdon and Basu, 2000) 

i. A process is a Homogeneous Poisson process with constant intensity function  if and 

only if the times between events are independent and identically distributed exponential 

random variables with mean 1 /   

ii. If 
1 2

0 ...
n

T T T     are the failure times from a HPP, then the joint probability 

distribution function of 
1 2
, , ...

n
T T T  is 
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1 2 1 2
( , , ..., ) , 0 ...ntn

n n
f t t t e t t t





               (3) 

iii. The time to the  failure from a system modeled by a HPP has a gamma distribution 

with parameter ,  1 /n    . 

iv. For a HPP, conditional on  N t n  the failure times 
1 2

0 ...
n

T T T     are distributed 

as order statistics from uniform distribution in the interval  0, t . 

v. The probability of a system failure after time t  is      Pr Pr 0  
t

R t T t N t e


        

2.1.3 Nonhomogeneous Poisson Processes 

A Nonhomogeneous Poisson Process (NHPP) is a Poisson process whose intensity function is 

not a constant (Zhao, 2004). A counting process  ( ) 0,  0N t t   has a nonhomogeneous 

Poisson process if          

i.  0 0N   

ii. The process has independent increment 

iii. The number of failures in any interval 
1 2

( , ]t t  has a Poisson distribution with mean 

 
2

1

t

t

t dt , that is 

    

2 2

1 1

2 1

1
Pr[( ( ) ( )) ] exp ( ) ( )

!

k
t t

t t

N t N t k t dt t dt
k

 

    
        

    
    

          (4) 

The following are the properties of non-homogeneous Poisson process (Rigdon and Basu, 2000). 

i. The joint pdf of the failure times 
1 2
, , ...

n
T T T  from a nonhomogeneous Poisson process 

with intensity function  t  is given by 

1 2

1 0

( , , ..., ) ( ) exp ( )

Tn

n i

i

f t t t t t dt 


  
   
   
            (5) 
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where T is the stopping time: 
n

T t  for the failure truncated case, T n  for the time 

truncated case. This is also known as the likelihood function. 

ii. If 
1 2

0 ...t t    are the epochs at which the failure times occur, then the between 

occurrence intervals  
1

     ( 1, 2,  )
k k k

T t t k


     are independent random variables and with 

densities 

1

( ) ( ) exp ( )

k

k

k

t

t k k

t

f t t t dt 



 
  

 
 
            (6) 

Again, 
1 2

( , , ...)t t  is a Markov sequence with transition density given as 

1

1
Pr( | ) ( ) exp ( )

k

k

t

k k k

t

t t t t dt 





 
  

 
 
            (7) 

iii.  Conditional on  N t n , the n  failure times 
1 2

0 ...
n

T T T     have the same 

distribution as order statistics corresponding to a random sample of  observation from 

the density 

  

0

0

0

( ) ( ) / ( ) ,  0 ,

T

f t t t dt t T               (8) 

which reduces to the uniform distribution over  0
0, T  when ( )t  . 

Since the 1970s, software reliability has been an important research topic. Models based on non-

homogeneous Poisson processes (NHPP) have played an important role in such studies since 

NHPPs are key in describing the fault detection process of software (Zhao and Xie, 1996). The 

NHPP models are also used when modeling and analyzing the failure process of repairable 

systems. A good example of a NHPP is the Weibull process with intensity 

function

1

( )
t

t






 



   
    
   

. The Weibull process can in some cases be used to model software 

failures but it is mostly used to model and analyze the failure process of repairable systems. For 

instance, Jun-Wu et al. (2007) performed a predictive analysis for nonhomogeneous Poisson 
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processes with power law using Bayesian approach. The analysis was done to predict failure 

times of radar system development and an electronic system development. In the literature, this 

NHPP possess different names such as power law process (Preeti and Nidhi, 2011; Jun-Wu et al., 

2007; Muralidharan et al., 2008; Zhao, 2004) and the Duane (1964) model. 

The power law process has been widely used in modeling failure times of repairable systems and 

detecting software failures. For instance, frequentist estimation of unknown parameters of this 

model has been studied (Crow, 1982; Bain, 1978; Bain and Engelhardt, 1980). Classical 

estimation of the future reliability based on a predictive distribution has also been done 

(Muralidharan et al., 2008). They also obtained point and interval estimates of the parameters as 

well as reliability analysis based on full likelihood and predictive likelihood. Empirical Bayes 

Analysis on the Power Law Process with Natural Conjugate Priors was done by Zhao (2010). 

Bayesian predictive analysis on the power law process using non – informative priors has been 

done by (Zhao, 2004; Guida et al., 1989; Shaul et al., 1992; Jun – Wu et al., 2007). The power 

law process is widely applied in monitoring reliability growth during the development test phase.  

However, the Power Law Process has some drawbacks in the reliability growth context. This is 

because the intensity function of the PLP model brings along with it two unrealistic situations; it 

tends to infinity as t  tends to zero and tends to zero as t  tends to infinity (Preeti and Nidhi, 

2011). Modified PLP model has been proposed to overcome the latter drawback and Doubly 

Bounded PLP model to overcome both the drawbacks (Preeti and Nidhi, 2011). System 

reliability measures of intensity function and Mean Time Between Failures (MTBF) has also 

been used for reliability prediction of the PLP model. 

Other non-homogeneous Poisson processes include Goel – Okumoto (1979) software reliability 

model with intensity function  
t

t e


 


 , Musa – Okumoto (1984) model with 

( ) / ( ),t t    the delayed S – shaped model, and Yamada et al., (1983) model with 

2
( )

t
t te


 


 . 

2.2 Bayesian Methods 

The Bayes rule in statistical inference was first introduced by the 18th century clergyman and 

mathematician Thomas Bayes. Andrew et al. (1995) outlines the Bayes procedure. Bayesian 
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procedures are widely known and may be found in many Bayesian books and statistical journals 

that apply Bayes methods in their study. 

2.2.1 Prior distributions 

The main goal of a typical Bayesian statistical analysis is to obtain the posterior distribution of 

model parameters. The posterior distribution is best understood as a weighted average between 

the knowledge about the parameters before data is observed, which is represented by the prior 

distribution and the information contained in the data about the unknown parameters which is 

represented by the likelihood function (Glickman and Van, 2007).  

 

Before a Bayesian analysis is conducted, the statistician needs to observe the data at hand and 

formulate or choose a probability model for the data. Once the data model is formulated, a 

Bayesian analysis requires the assertion of a prior distribution for the unknown parameters of the 

model. The prior distribution can be viewed as representing the current state of knowledge or 

current description of uncertainty, about the model parameters prior to data being observed 

(Glickman and Van, 2007). Prior distributions are divided into two categories namely, 

informative and non-informative priors.  

 

For the case of informative priors, the statistician uses his intuitive knowledge about the 

substantive problem at hand, perhaps based on past data along with expert opinion to formulate a 

prior distribution that properly reflects his (and experts’) beliefs about the unknown parameters 

of the model. This approach has always been criticized as it seems at first to be overly subjective 

and unscientific. However, it can be argued that if prior knowledge or information about the 

model parameters exists prior to observing data, then it would be unscientific not to include such 

knowledge or information into data analysis.  

 

The second main approach to choosing a prior distribution is by using non-informative prior. 

This approach represents ignorance about the model parameters. This approach is also called 

objective, vague, diffuse and sometimes, reference prior distribution. Choosing a non-

informative prior distribution is an attempt towards objectivity as it involves acting as though no 

prior knowledge about the parameters exists before data is observed. This is achieved through 
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assigning equal probabilities to all values of the parameters. The beauty of this approach is that it 

directly addresses the criticism of informative prior distributions as being subjectively chosen.  

2.2.2 Bayes rule 

If   is a parameter and y  is a random variable, the probability statement about  given  can be 

made when we first consider a model providing a joint probability distribution for  and  

(Andrew et al., 1995). The joint probability mass or density function are written as a product of 

two densities that are often referred to as the prior distribution Pr( )  and the sampling 

distribution Pr( | )y   respectively, that is 

Pr( , ) Pr( ) Pr( | )y y    

Conditioning on the known value of y and using the basic conditioning property known as the 

Bayes’ rule, we obtain the posterior density as 

Pr( , )
Pr( | )

Pr( )

y
y

y


   

      
Pr( ) Pr( | )

Pr( )

y

y

 
            (9) 

where Pr( ) Pr( ) Pr( | )y y


    and the sum is over all possible values of  and for the case of 

continuous  Pr( ) Pr( ) Pr( | )y y d    . An equivalent form of the posterior distribution above 

omits the factor Pr( )y  that is independent of  and with fixed y which is considered as a 

constant of proportionality yielding the unnormalized posterior density which is the right side of 

the equation Pr( | ) Pr( ) Pr( | )y y   . 

 

This expression encloses the technical core of Bayesian inference. The primary task of any 

specific application is to develop the model Pr( , )y  and perform the necessary computation to 

summarize Pr( | )y  in appropriate ways (Andrew et al., 1995). 

 

2.2.3 Bayesian Predictive inference 

The posterior distribution,  is used as a means of making inference about the parameter  

In order to make inference about an unknown independent future observation, Andrew et al. 
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(1995) indicate that before the data y are considered, the distribution of the unknown but 

observable  is 

Pr( ) Pr( , )y y d    

                    Pr( ) Pr( | )y d     

This is often called the prior predictive distribution. The predictive distribution Pr( ),y  is called 

prior because it is not conditional on a previous observation of the process and predictive 

because it is the distribution of a quantity that is observable. After the data  has been observed, 

the future but unknown observation  from the same process can be predicted. The distribution 

of is called the posterior predictive distribution since it is conditional on the observed . The 

posterior predictive distribution of   is given as 

Pr( | ) Pr( , | )y y y y d 
 

   

   Pr( | , ) Pr( | )y y y d  


   

 

     Pr( | ) Pr( | )y y d  


           (10) 

Bayesian methods have been widely used in the study of non-homogeneous Poisson processes, 

specifically, in software reliability models. Gibbs sampling technique with data augmentation 

and with the metropolis algorithm has been used to compute the Bayes credible sets estimates, 

mean time between failures and present system reliability (Lynn and Tae, 1996). This was a 

unified framework that incorporated four software reliability growth models namely; Duane 

(1964), Jelinski and Moranda (1972), Goel – Okumoto (1979) and Musa – Okumoto (1984) 

software reliability models.  

 

Bayesian methods has been used as a basis for computation for the superposition of non-

homogeneous Poisson processes (Tae and Lynn, 1999). Bayesian and empirical Bayes 

approaches have also been applied on reliability growth models based on the power law process 

and also in the study of microarrays (Zhao, 2004). Bayesian predictive analysis on the power law 

process using non – informative priors have also been conducted (Jun – Wu et al., 2007). 
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2.3 Prediction interval 

A prediction interval is a confidence interval for a future observation or a function of some future 

observations (Jun – Wu et al., 2007). Specifically, a double-sided (bilateral) prediction interval 

for a future failure time n k
t

  with confidence level   is defined by 
, ( ) , ( )

,
n k L n k U

T T
  

 
 

 such 

that
, ( ) , ( )

Pr
n k L n k n k U

T t T
 


  

   
 

. Similarly, a single-sided (unilateral) lower or upper 

prediction limit for n k
t

  with level   is defined by , ( )n k L
T

  (or , ( )n k U
T

 ) which satisfies 

, ( )
Pr

n k L n k
T t




 
  
 

 (or 
, ( )

Pr
n k n k U

t T



 

  
 

). Both , ( )n k L
T

  and , ( )n k U
T

  depend only on a 

single sample (or a single software) and are called single-sample prediction limits. Prediction 

limits involving two samples (or two softwares) can be defined similarly and are called two-

sample prediction limits. 

 

2.4 The Goel – Okumoto (1979) software reliability Model 

Many software reliability models have been developed by various authors in the past three 

decades. These include the Goel – Okumoto (1979), Duane (1964), Jelinsiki and Moranda 

(1972), and the Musa – Okumoto (1984). The models are mainly based on the history of failure 

of software and they can be categorized depending on the nature of the failure process studied. 

For instance, the Goel – Okumoto (1979), Duane (1964), and the Musa – Okumoto (1984) 

software reliability growth models are categorized as NHPP (Razeef and Mohsin, 2012; Amrit, 

1985; Jun-Wu et al., 2007; Kapur et al., 2011; Lynn and Tae, 1996).  

 

The Goel – Okumoto (1979) model is among the earliest exponential NHPP software reliability 

model to be developed. The model was proposed by Goel and Okumoto in 1979. The model has 

been applied to a variety of software testing environments and therefore, it can be considered as 

a useful reliability model (Kapur et al., 2011). The model is based on the following assumptions: 

i. The number of failures experienced by time t follows a Poisson distribution with mean 

value function  

ii. The number of software failures that occur in  with  is proportional to 

the number of undetected faults,  with constant of proportionality being  
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iii.  For any finite collection of times 
1 2

...
n

t t t   , the number of failures occurring in each 

of the disjoint intervals      1 1 2 1
0, , , , ..., ,

n n
t t t t t


 are independent 

iv. Whenever a failure has occurred, the fault that caused it is removed instantaneously and 

without introducing any new fault in the software. 

In this model, it is assumed that a software system is subject to failures at random time caused by 

faults present in the system (Goel and Okumoto, 1979). If ( )N t , from the model, is the 

cumulative number of failures observed by time t , then ( )N t  can be modeled as a non-

homogeneous Poisson process. The above assumptions are best summarized by the following 

equations 

( )
[ ( )]

Pr[ ( ) ] ,   1, 2, ...
!

y m t
m t e

N t y y
y



          (11) 

( ) (1 )
t

m t e





            (12) 

'
( ) ( )

t
t m t e


 


             (13) 

where ( )m t  is the expected number of failures observed by time t and ( )t  is the failure rate, also 

known as the intensity function. In this model,   is the expected number of failures to be 

observed eventually and   is the fault detection rate per fault. In this model, the number of 

faults to be detected is a random variable whose observed value is dependent on the test and 

other environmental factor. 

The Goel – Okumoto (1979) model has been applied to a number of software testing 

environment (Kapur et al., 2011). For instance the Goel – Okumoto (1979) model has been used 

to develop a statistical control mechanism that could be used to detect whether a software 

process is statistically under control or not (Satya et al., 2011). This has been done using the ML 

estimates of the parameters of the model to calculate ( )m t  of the model and getting the respective 

control limits. Maximum Likelihood estimation of the parameters of the Goel – Okumoto (1979) 

model has been performed. In particular, it has been shown that the ML estimates of the 

parameters of the model are not consistent as the testing period extends to infinity (Daniel and 

Hoang, 2001). However, the ML estimate of the failure rate, a function of the ML estimates of 
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the Goel – Okumoto (1979) model parameters is consistent as the testing period grows large 

(Daniel and Hoang, 2001). An empirical method for selecting software reliability growth models 

for release-decision making has been given (Stringfellow and Amschler, 2002). This was 

achieved through applying iteratively various software reliability models namely Goel – 

Okumoto (1979), Delayed S-shaped, Gompertz and Yamada exponential software reliability 

growth models to weekly cumulative software failure data. The iterative application of the 

mentioned models to weekly cumulative software failure data aided in determining the number 

of remaining failures expected in software after release.  

Parameter estimation of the Goel – Okumoto (1979), Yamada S-shaped and Inflection S-shaped 

software reliability growth models has also been considered (Meyfroyt, 2012), where a necessary 

and sufficient condition with respect to the software failure data was established. The condition 

established ensures that the MLE method returns a unique positive and finite estimates of the 

unknown parameters of the models. Razeef and Mohsin (2012) presented software failure data 

which, after study, depicted that the failure rate, i.e. the number of failures per hour, seemed to 

be decreasing with time. This indicated that a non-homogeneous Poisson process with mean 

value function, ( ) (1 ),
t

m t e





  corresponding to that of the Goel – Okumoto (1979) software 

reliability model, was a reasonable model to describe the failure process.  

It is necessary to check if the data to be analyzed obey the Goel – Okumoto (1979) model. This 

can be done using, among other tests, the Kolmorgorov-Sminorv goodness- of-fit test for 

checking the adequacy of the model (Razeef and Mohsin, 2012). 

2.5 Summary  

From the literature, it is evident that most of the study that has been done on the Goel – Okumoto 

software reliability model is parameter estimation using, especially, the MLE method and model 

fit. There is a conspicuous absence of literature on both the classical and Bayesian predictive 

analyses on the model. This means that predictive analyses on the model have not so far been 

explored. This study therefore intends to perform Bayesian predictive analyses on the Goel – 

Okumoto (1979) software reliability model. 
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Research Design 

The study has been confined within the limits of developing procedures that has been used to 

address four issues in single sample and three issues in two-sample prediction associated closely 

with software development testing program.  

The issues addressed in one-sample software development program are:  

A1: Suppose that the pre-determined target value 
tv

  for the failure rate of the software 

undergoing development testing is not achieved at time T , what is the probability that 

the target value 
tv

   will be achieved at time ,  >T  ?  

B1: Suppose that the target value  for the software failure rate is not achieved at timeT ,  

how long will it take so that the software failure rate will be attained at 
tv

 ?  

C1: What is the upper prediction limit (UPL) of e



 


  with level  ,   being a 

 predetermined value greater than T ?  

D1: What is the probability that at most k software failures will occur in the future time 

 period ( , ],  >TT   ?  

For the two-sample case, the issues addressed are: 

A2: How to predict the r th   1r  failure time r
y  of the second software; 

B2: How to predict the number of failures that will occur in the time interval 
2

(0, ]t  for the 

 Second software system.  

B3: How to predict the ,  (1 r m )rth   failure time 
r

y  of the second system supposing that 

the number of failures in the interval 2
(0, ]t  for the second system is m  but the exact 

occurrence times are unavailable. 

Bayesian approaches based on informative and non-informative priors for the single sample case 

and non-informative priors for the two-sample case have been adopted to develop predictive 

distributions and derive explicit solutions to the above mentioned issues.  
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The study has used uniform non-informative prior distributions for both the parameters   and 

  For the informative prior distribution, the study has assumed that the parameters   and   

both follow a gamma distribution with parameters ,  a b  and ,  c d  respectively where 

,  ,   and a b c d are known, i.e. ~  ( , )Gamma a b and ~  ( , )Gamma c d .    

3.2 Source of data 

The developed methodologies for both the single and two-sample cases have been illustrated by 

secondary software failure data. Data simulated from the Goel – Okumoto (1979) model has also 

been used to illustrate the derived methodologies. For the single sample case, the study has used 

secondary software failure data in the form of execution times between successive failures from 

one software system (Xie et al., 2002). The study has assumed that the failure times follow the 

NHPP with intensity function given in Equation (13). For the two-sample case, the study has 

used two data sets simulated from the Goel – Okumoto (1979) software reliability model. The 

study has also assumed that the simulated failure times follow the same NHPP with intensity 

function given in Equation (13). Further, for the two-sample case, the study has assumed that the 

failure times for the first software have been observed. 

3.3 Data analysis 

The study has used simulated and secondary software failure data. In some cases, the closed 

form for the posterior distributions and predictive inferences for the one-sample and two-sample 

cases using both informative and non-informative priors are not available. Hence, the study has 

employed the MCMC technique to obtain the predictive estimates. Programs for obtaining the 

predictive estimates using the MCMC technique for the secondary software failure data and 

simulated data have been developed. Analysis for both real and simulated data has been carried 

out using a statistical package called R-language version 3.0.1. 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1 Introduction 

In this chapter, deviation of the methodologies that addresses the issues outlined in chapter three 

are given. The methodologies are given in terms of propositions. Proofs to these propositions are 

also given. An illustration of the derived methodologies using real data for the one-sample 

prediction and simulated data for the two-sample prediction is also performed. 

4.2 Some results used in the derivation of the methodologies 

In this section, formulas that will help to develop methodologies that will address the four issues 

A1, B1, C1 and D1 in single-sample prediction and three issues A2, B2 and C2 in two-sample 

prediction associated closely with software development testing program are formulated. The 

issues addressed in this chapter are as outlined in Chapter Three of this thesis. Propositions that 

address the issues and proof of the propositions are given. For these purposes, it is assumed that 

reliability growth testing is performed on a software and the number of failures of the software in 

the time interval (0, ]t , denoted by ( )N t is observed. Furthermore, it is assumed that  ( ),  0N t t   

follows the NHPP with intensity function given in Equation (13). Let 1 2
0 ...t t    be the 

successive failure times. Failure data is said to be failure-truncated when testing stops after a 

predetermined n  number of failures. We denote the n  failure times by 1
[ ]

f n

obs i i
Y t


  

where 1 2
0 ...

n
t t t    . Failure data is said to be time truncated if testing stops at a 

predetermined time t . We denote the corresponding observed failure data by  1
, , ..., ;

t

obs n
Y n t t t , 

where 1 2
0 ...

n
t t t t     . 

Let obs
Y represent 

f

obs
Y  or

t

obs
Y . The joint density of  obs

Y  is obtained from (5) as 

          1 (1 )
( | , )

n

i T

i

t
n n e

obs
f Y e e





   






 


          (14) 

Case 1: when the shape parameter   is known, we adopt the following non informative prior 

distribution for  :  
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1

( ) , 0  


  .          (15) 

The posterior distribution of   is thus obtained from Equation (9) as 

   0

( | , ) ( )
( | )

( | , ) ( )

obs

obs

obs

f Y
h Y

f Y d

   


    






. 

Using Equation (14) and Equation (15), we obtain 

   
1

1

1 (1 )

1 (1 )

0

( | )

n

i T

i

n

i T

i

t
n n e

obs

t
n n e

e e
h Y

e e d











 


  










  

 
  









.                                     (16) 

 Simplifying the denominator, we have 

   1 11 (1 ) 1 (1 )

0 0

n n

i iT T

i i

t t
n n e n n e

e e d e e d
 

 
 

     
 

 

  
     

 
   

          

 

 
1 1 (1 )

0

1( )

( )1

n

i T

i

n
T

t
n n e

n
T

en
e e d

ne










  





  



 



             (17) 

           

 

1( )

1

n

i

i

t
n

n
T

n e

e





 












                           (18) 

The integral part of Equation (17) integrates to 1 since it is a gamma distribution with parameters 

n and1
T

e


 . Hence the denominator of Equation (16) reduces to Equation (18). Equation (16) 

therefore becomes  

 

1

1

1 (1 )

( | )

( )

1

n

i T

i

n

i

i

t
n n e

obs

t
n

n
T

e e
h Y

n e

e










 











  














 which reduces to  
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 

1 1 (1 )
( | ) ( ) (1 )

T
n e T n

obs
h Y n e e


 

 
    

           (19) 

Let y

 be the random variable being predicted. Then using Equation (10), the posterior 

predictive distribution of y

 is given as  

   0

( | ) ( | , ) ( | )
obs obs obs

f y Y f y Y h Y d  



 
          (20) 

Hence the Bayesian UPL for y
  with level   must satisfy  

    

( )

( | )

U
y

obs
f y Y dy




 



  .         (21) 

Case 2: when the shape parameter   is unknown, we consider the following non-informative 

joint prior density for   and   (we assume that   and   are independent). 

    

1
( , )  


 ,   , 0   .         (22) 

Hence the corresponding joint posterior density is obtained as  

       

1

1

1 1 (1 )

1 1 (1 )

0 0

( , | ) .

n

i T

i

n

i T

i

t
n n e

obs

t
n n e

e e
h Y

e e d d











 
 

   










   

  
   







 

        (23) 

The denominator of Equation (23) reduces to 

 

11

0

( )

1

n

i

i

t
n

n
T

e
n d

e











 








  after applying the results 

from Equation (17) and Equation (18). Hence Equation (23) reduces to 
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 

1

1

1 1 (1 )

1

0

( , | ) .

( )

1

n

i T

i

n

i

i

t
n n e

obs

t
n

n
T

e e
h Y

e
n d

e










 
 











   


 














         (24) 

The integration 

 

11

0 1

n

i

i

t
n

n
T

e
d

e











 






  in the denominator of Equation (24) has no closed form and 
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Similar to Equation (20) and Equation (21), Let yU  denote the Bayesian UPL of y with level , 

then  the posterior distribution of y
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4.3 Main results for single-sample prediction using non-informative prior 

4.3.1 Proposition A1 

The probability that the target value 
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  will be achieved at time  ( )T    is  
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Proof 

Let ( / )
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  denote the posterior density of e
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
 . Hence the probability that the target 
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  from Equation (29) follows a gamma distribution with parameters 
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Equation (31) implies the first part of the formula in Prop. A1 
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Equation (33) implies the formula in the second part of Prop. A1 

4.3.2 Proposition B1 
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For given level  , the time required to attain the target value 
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  is *
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Equation (37) implies the first part of the formula in Prop. B2 
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4.3.3 Proposition C1 
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Remark 2: The second part of Prop. C1 is such that tv
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Remark 3: The UPL with level   is equal to the lower prediction limit with level 1    

4.3.4 Proposition D1 
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Proof 
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h Y  is given by (19) and  

    

Pr[ ( ) | , ] ( , ( ) | ) / ( | ).

n k

obs obs obs

j n

N n k Y f Y N j f Y    





           (43) 

From (14) we have 1 (1 )
( | )

n

i T

i

t
n n e

obs
f Y e e





  






 


  and  

      
1

1( : , )

( , ( ) | ) ( , , ..., , ( ) )

j

obs obs n j

nD j n T

f Y N j f Y x x N j dx



  


 

     
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1 (1 )

1( : , )

( , ( ) | )

j

i

i

jt
j j e

obs

nD j n T

f Y N j e e dt







    


 

 


    

            1 1(1 )

1( ; , )

.

jn

i

i n

jt t
j j e

nD j n T

e e e dt


 




 


  

 
 

 

 
        (44) 

Solving the integral part, we proceed as follows: 

0

1
(1 )

t

t t
e dt e

 



 
  . Substituting the limits T and   we obtain 

1 1
(1 ) (1 )

T
e e

 

 

 
    which 

reduces to 
1

( )
T

e e
 



 
 . Hence the integral part of Equation (44) is obtained as 

   

1

1( ; , )

1 ( )
.

( ) !

j

n

T j njt

j n

nD j n T

e e
e dt

j n

 




 

  



 

 



         (45) 

Substituting Equation (45) into Equation (44) we obtain 

        

1 (1 ) 1 ( )
( , ( ) | )

( ) !

n

i

i

T j nt
j j e

obs j n

e e
f Y N j e e

j n


 


   







  
 



 
 


 

From Equation (43) we have 

1

1

(1 )

(1 )

( )

( ) !
( , ( ) | ) / ( | )

n

i

i

n

i T

i

T j nt
j n e

obs obs

t
n n e

e e
e e

j n
f Y N j f Y

e e





 





 

  

 









  
 


 

 


 


  

which reduces to 

( ) ( )
( , ( ) | ) / ( | )

( ) !

T
T j n

j n e e

obs obs

e e
f Y N j f Y e

j n

 
 


   

 
  

   
 


.  

Therefore, Equation (43) becomes  
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( ) ( )
Pr[ ( ) | , ]

( ) !

T
T j nn k

j n e e

obs

j n

e e
N n k Y e

j n

 
 


  

 
  

  




  


       (46) 

And Equation (42) becomes  

( ) 1 (1 )

0

( )
(1 )

( ) ! ( )

T T
T j nn k

j n e e n e T n

k

j n

e e
e e e d

j n n

  
 

  
   

  

   

      




 

 
  

1 (1 )

0

( ) (1 )

( ) ! ( )

T j n T nn k

j e

j n

e e e
e d

j n n


  


 



   

  



 


 
 

 

   

   

   11

0

1 1( )

! ( ) ( )1

j n n j
T T

n k
ej

j

j n

e e e ej
e d

j n n je


   





 



   

 




  


  
  (47) 

   

   

1 ( )
.

! ( ) 1

j n n
T T

n k

j

j n

e e e j

j n n e

  




  






  


  
          (48) 

(Since the integral part of Equation (47) integrates to 1 from the fact that it is a gamma 

distribution with parameters j  and (1 e


 ) 

After re-arranging Equation (48) we obtain 

              

11
.

1 1

n j
T Tn k

k T

j n

je e e

ne e e

  

  


  

  



     
     

     
         (49) 

Hence, the first formula of Prop. D1 follows. 

When   is unknown, noting that  Pr ( ) | , ,
obs

N n k Y     and ( , | )
obs

h Y   are given by 

Equation (46) and Equation (25) respectively, we have 

        

 
0 0

Pr ( ) | , , ( , | )
k obs obs

N n k Y h Y d d       

 

     
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 

  1( ) 1 1 (1 )

0 0

1

! ( )

n

iT T

i

n k t
j n

j n e e T n n e

j n

e e e e e d d
d j n n

  


   
    

  



  


        




 

 
    

                    
 

 

 
11

0

( )
.

! ( ) 1

n

i

i

j n
T

n k t
n

j

j n

e en
e d

d j n n e

 




 


  









  
         (50) 

Where d k  as is used in Equation (25). Letter d  has been substituted for k  in Equation (50) 

since the summation is from n  to n k  and the 'k s  are not the same. Equation (50) implies the 

second formula in Prop. D1 

4.4 Main results for single-sample prediction using informative priors 

4.4.1 Some important results for the derivation of the methodologies 

In this section, we will still use the joint density of obs
Y  as is given in Equation (14).  

Case 1: When the shape parameter is known, the study will adopt the following informative prior 

distribution. The study assumes that ~ ( , )Gamma a b , where a  and b are known. 

 
1a b
e


  

 
            (51) 

The posterior distribution of   is thus obtained from Equation (9) as 

  
   

   
0

| ,
| .

| ,

obs

obs

obs

f Y
h Y

f Y d

   


    






 

Using Equation (14) and Equation (51), we obtain 

     
1

1

1 (1 )

1 (1 )

0

( | )

n

i T

i

n

i T

i

t
n n a e b

obs

t
n n a e a

e e
h Y

e e d











 


  










    


    









                               (52)           

 

After evaluating the denominator, Equation (52) reduces to  

        
 

1 1 (1 )
( | ) ( ) (1 )

T
n a e b T n a

obs
h Y n a e e b


 

 
       

           (53) 
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Case 2: When the shape parameter   is unknown, the study derives the joint informative prior 

distribution of  and   as follows, 

We assume that ~ ( , )Gamma a b  and ~ ( , )Gamma c d . This implies that  
1a b
e


  

 
  and 

 
1c d
e


  

 
 . Since  and   are independent, the joint prior density  ,    is given as 

            which implies that 

        
 

1 1
,

a b c d
e e

 
    

   
          (54) 

From Equation (14) and Equation (54), we get the corresponding joint posterior density of   

and   as 

         

1

1

1 1 (1 )

1 1 (1 )

0 0

( , | )

n

i T

i

n

i T

i

t
a b c d n n e

obs

t
a b c d n n e

e e e e
h Y

e e e e d d






  


  

   
 

     










     

  
     







 

 

                

1

1

( )
1 1 (1 )

( )
1 1 (1 )

0 0

n

i T

i

n

i T

i

t d
n a n c e b

t d
n a n c e b

e e

e e d d











 

   









 
      

   
      







 

 

     

1

1
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1 1 (1 )

( )
1 1 (1 )

0 0

n

i T

i

n

i T

i

t d
n a n c e b

t d
n c n a e b

e e

e e d d











 

   









 
      

  
      




    
  

   

 

 

    

 
 

1

1

( )
1 1 (1 )

( )
1

0

.

1

n

i T

i

n

i

i

t d
n a n c e b

t d
n c

n a
T

e e

e
n a d

e b










 










 
      

 
  










 

 


           (55) 
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Letting 

 

1

( )
1

0 1

n

i

i

t d
n c

n a
T

e
p d

e b










 
  








 
 , Equation (55) becomes 

                   
    1

( )
1 1 1 (1 )

, | ( )

n

i T

i

t d
n a n c e b

obs
h Y p n a e e





   





 
       


               (56) 

4.4.2 Proposition A1.1 

The probability that the target value 
tv

  will be achieved at time  ( )T    is  

  

1

1
1

0

( )
(1 ) 1

0 0

1

1                                         if  is know n
!

1

1
1

! (1 )

T

tv

n

T i

itv

h
T

e btvn a

e

h

h
T

t d
e btv n cn

e
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h

e b

e
e

h

e b
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p h e b











 





 













 














   





 
   

 



  
 
 





  
 

 


 




1

    if  is unknow n

a



 




















Prop.A1.1 

Proof 

Let ( / )
obs

f Y

  denote the posterior density of e




 


 . Hence the probability that the target 

value 
tv

  will be achieved at time   ( T  ) is given by Equation (28). 

 When   is known, making the transformation e



 


 , we have 

e











  

and
1d

d e






 


 . Consequently, the posterior density of 
 is ( | ) ( | )
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d
f Y h Y

d





 


 . This 

implies that  
1

(1 )1 1
( | ) 1 .
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

 

 
   

  

 which after 

simplification reduces to 
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1

( | ) .
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T
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e b
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 




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
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   
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 
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       (57) 
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We note that 
  from Equation (57) follows a gamma distribution with parameters n a  

and
1

T
e b

e










 
. Noting the relationship between gamma and Poisson distributions as 
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00
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( ) !
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x e dx e
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 
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


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                     (58)  

and from Equations (28) and Equation (57), we obtain 

1
1

0

1

1
!

T
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h
T
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e

h

e b

e
e

h


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   
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 
 

   .        (59) 

Equation (59) is exactly the same as the first formula in Prop A1.1 

When   is unknown, making the transformation e



 


  and   , we obtain 

e











  and   . Note that the Jacobian is
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 . From Equation (56), the 

joint posterior density of ( , )

   is given as  
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From Equation (28), Equation (30) and Equation (60) we obtain 
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Equation (61) is the same as the equation in the second formula of Prop. A1.1 

4.4.3 Proposition B1.1 

For given level  , the time '
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tv
  is  
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Remark 3: The second formula of Prop. B1.1 is such that   is the solution to the equation  



 

35 
 

1

( )
(1 ) 11

0 0

1

1
1 .

! (1 )

n

T i

i
tv

h
T

t d
e btv n cn

e

T n a

h

e b

e e
e d

p h e b








 






 

 








 
    

 



  
 

 
 

 
   

Proof  

For given level  , the time required to attain the target value 
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Making  the subject from Equation (63) we obtain  
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Therefore, from Equation (64), we obtain the time required to attain the target value 
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  given 
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Equation (65) is as the equation in the first formula of Prop. B1.1 

When   is unknown, the time required to attain the target value 
tv

  with level   is '
T    

where   is the solution to  
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4.4.4 Proposition C1.1 
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For a pre-determined   ( )T  , the Bayesian Upper Prediction Limit (UPL) for 

  with level   

is 
( )

( )
U


   satisfying 

( )
Pr( ( ) | )

U obs
Y




     . From Equation (28) and Equation (62) we have 

( ) (1 )( )

1

0

1

( )

T

n
T

e b

n e

e b

e
e d

n a




 



   


 


  







  


  
 
 


 

 .  

This implies that  

   

( ) 21
2 ( ) (2 ; )

T

U

e b
n

e






   







  
 

 

         (67) 
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Therefore, for a pre-determined   ( )T  , the Bayesian UPL for 
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4.4.5 Proposition D1.1 

The probability that at most k  failures will occur in the time interval ( , ]T   with T   is 
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Proof  
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(Since the integral part of Equation (75) integrates to 1 from the fact that it is a gamma 

distribution with parameters j  and1 e


 ) 

After re-arranging Equation (76) we obtain 
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Equation (77) implies the first formula of Prop. D1.1 

When   is unknown, noting that  Pr ( ) | , ,
obs

N n k Y     and ( , | )
obs

h Y   are given by 

Equation (74) and Equation (56) respectively, we have 
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Equation (78) implies the second formula of Prop. D1.1 

4.5 Main results for the two-sample prediction 

4.5.1 Proposition A2 

The Bayesian UPL of 
r

y (i.e. the r th  failure time of the second software system) with level   
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Consequently,  

    

 

1

11

1 2 1

1

, , ..., | ~ ( 1) !

(1 )

n

i

i

n

x
n

n n n

x

i

e
x x x x n

e


























         (79) 

The joint density of 1
( , ..., )

n
x x  is also given by Equation (14). Dividing Equation (14) by 

Equation (79), the density of n
x  is obtained as  
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Replacing 
n

x  by 
r

y , for the second system, we have the density of 
r

y  given as 
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From Equation (20) we have  
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From Equation (21) and Equation (82), we have 
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Equation (83) implies the formula in Prop. A2 

4.5.2 Proposition B2 

The probability that the number of failures 
2

( )N t  in the time interval 
2

(0, ]t  for the second 

software system does not exceed a pre-determined nonnegative integer m , when   is known is 
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Here, an equivalent problem is considered. For any given positive integer m , we want to 

compute the probability that 
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When   is known, from Equation (84) and Equation (19) we have 
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Therefore, Equation (86) becomes 
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Equation (87) implies the formula in Prop. B2 

4.5.3 Proposition C2 

Given that the number of failures in 
2

(0, ]t  for the second software is m , the Bayesian UPL of 
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r
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Proof  

First, we want to find the conditional density of r
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Expanding the exponential term with the observed variables we have, 
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This implies that after integrating Equation (88) with respect to 
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 we have 
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Further integrating Equation (90) with respect to 
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Therefore, the conditional density of r
y given 
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which is independent of  . When   is known, Equation (20) can be re-written as 
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( | ( ) , ) ( | ( ) )

r obs r
f y N t m Y f y N t m   .  

Given 2
( )N t m , the Bayesian UPL of r

y with level   is 
( )

U
y


 such that  

          

( )

2

0

( | ( ) , )

U
y

r obs r
f y N t m Y dy



         

      

( )

2

2

1

0

!
(1 ) ( ) .

( ) !( 1) !(1 )

U

r r r

y

y y y tr m r

rt m

m
e e e e dy

m r r e



   




    


  

  
              (93) 
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If r m , Equation (93) becomes 

( )

2

1

0

!
(1 ) .

( 1) !(1 )

U

m m

y

y ym

mt m

m
e e dy

m e



 






 


 

 
         (94) 

Solving the integral part of Equation (94), we proceed as follows 

Let my
x e


 , ln

m
x y  

 

1
ln

m
y x


    and 

1 1
.

m
dy dx

x
  . This implies that 

( )

2

1

1

! 1 1
(1 ) . .

( 1)!(1 )

y
Ue

m

t m

m
x x dx

m e x
















  

 
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1
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!
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( 1)!(1 )
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Ue
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x dx

m e











  

 
  

Again, letting 1u x  , dx du   
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

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
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                      (95) 

Thus, the Bayesian UPL of 
m

y  with confidence level   is 
( )

U
y


 that satisfies Equation (95). The 

UPL with level   is equal to the lower prediction limit with level 1   
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4.6 Real Examples for Single sample Bayesian Prediction 

4.6.1 Using non-informative prior 

In this subsection, real data on the time between failures in Table 1 is used to illustrate the 

developed methodologies for the one-sample Bayesian predictive analysis. 

Table 1: Time between Failures Data (Xie et al. 2002). 

Failure No. Time 

between 

failures 

Cumulative 

time between 

failures 

Failure No. Time 

between 

failures 

Cumulative 

time between 

failures 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

30.02 

1.44 

22.47 

1.36 

3.43 

13.2 

5.15 

3.83 

21 

12.97 

0.47 

6.23 

3.39 

9.11 

2.18 

30.02 

31.46 

53.93 

55.29 

58.72 

71.92 

77.07 

80.90 

101.90 

114.87 

115.34 

121.57 

124.96 

134.07 

136.25 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

15.53 

25.72 

2.79 

1.92 

4.13 

70.47 

17.07 

3.99 

176.06 

81.07 

2.27 

15.63 

120.78 

30.81 

34.19 

151.78 

177.50 

180.29 

182.21 

186.34 

256.81 

273.88 

277.83 

453.93 

535.00 

537.27 

552.90 

673.68 

704.49 

738.68 

 

The study used the cumulative time between failures which are the failure times 

1 2 30
0 ...t t t     where 30n  . Satya et al. (2011) argued that these data obey the Goel-

Okumoto software reliability model and they obtained the MLEs of the parameters as 

31.698171   and 0.003962  . In the illustration of the developed methodologies, the study 

has used the MLE of   as was obtained by Satya et al. (2011) for the case where   is assumed 

known. 

(A1) Suppose that the target value is given by 0.03
tv

  . At time 182.21T  , the MLE of the 

achieved failure rate for this software is  
182.21

182.21 0.061e


  

  


   which is greater 
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than
tv

 . Implying that the target value cannot be achieved at time 182.21T  . Thus the 

development testing will continue. Suppose we want to find the probability that the target value 

tv
  will be achieved at time 277.83  , (i) when   is known, say 0.003962  , from the first 

formula in  (Prop. A1) we obtain 0  .  Thus it is not likely that the target value (failure rate) 

will be achieved. (ii) When   is unknown, from the second formula in (Prop. A1), we obtain 

0.0576   based on Monte Carlo sample size of 1000L  . 

(B1) Since the target value 
tv

 was not achieved at time 182.21T  , we want to know how long 

it will require in order to attain 
tv

 . (i) When   is known (i.e. 0.003962  ), Let 0.90  , 

from the first formula in  (Prop. B1) we obtain *
268.6116h  . In other words, it will take 

another 268.6116h in order to achieve the desired failure rate. (ii) When   is unknown, from 

the second formula of (Prop. B1) and Remark 1, we obtain *
  817.74h. In other words, it will 

take another 817.74h in order to achieve the desired failure rate when   is unknown.  

(C1) Given 900 h  , (i) When   is known,   from the first formula in (Prop. C1), the Bayesian 

Upper Prediction Limit of e



 


  with level 0 .90 is given by 

 
  0.0051

u


    (ii) When 

  is unknown, from the second part of (Prop. C1) and Remark 2, the Bayesian UPL of 

e



 


  with level 0.90 is given by 

 
  0.131952.

u


     

(D1) Suppose that we are interested in the probability k
 that at most k failures will occur in the 

future time period ( , ] (180, 250]T   (i) When   is known (say 0.003969   ), using the first 

formula in (Prop. D1), we have
0 1 2 3 4

0.0039, 0.0235,  0.0750,  0.1677,  0.2970         , 

5 6 7 8 9
0.4456,  0.5920,  0.7193,  0.8188,  0.8898         ,

10 11
0.9366,  0.9653,  

12
0.9819, 

13 14 15
0.9910,  0.9957,  and 0.9980       

(ii) When   is unknown, from the second formula in (Prop. D1), we obtain 

0 1 2 3
0.0010,  0.0087,  0.0292,  0.0721,        

4 5
0.1575,  0.2566   , 

6 7 8 9 10
0.3920,  0.5099,  0.6344,  0.7534,  0.8350         ,

11 12 13 14 15
0.9062,  0.9462,  0.9621,  0.9831,  0.9944         . Figure 1 shows the graph of 

the desired probabilities for the case when   is known and when   is unknown. 



 

49 
 

 

Figure 1: The graph of the probabilities k
  that at most k  failures will occur in the time interval 

(180, 240]  for the cases of known and unknown  . 

4.6.2 Using informative prior 

In this section, the parameters of the informative priors ( , )  and ( , )Gamma a b Gamma c d  are 

chosen arbitrarily as 2,  1 / 2,  2,  and 1 / 2a b c d    .  

(A1.1) The discussion in the first part of A1 follows. (i) When   is known, say 0.003962  , 

from the first formula in  (Prop. A1.1) we obtain 0.04542  .  Thus, as was in the case of non-

informative prior, it is unlikely that the target value (failure rate) will be achieved. (ii) When   

is unknown, from the second formula in (Prop. A1.1), we obtain 0.0269   where the Monte 

Carlo sample size is 1000.L   

(B1.1) The target value 0.03
tv

  has not been achieved at time 182.21T  . The interest now is 

to know how long it will require in order to attain 
tv

 . (i) When   is known 

(i.e. 0.003962  ), Let 0.90  , from the first formula in  (Prop. B1.1) we obtain 

*
97.167 h  . In other words, it will take another 97.167h in order to achieve the desired failure 
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rate. This is a significant reduction in the time that it will take to achieve the required 
tv

  

compared to the case when non-informative prior was used. (ii) When   is unknown, from the 

second formula of (Prop. B1.1) and Remark 3, we obtain '
323.79h  . In other words, it will 

take another 323.79 hours in order to achieve the desired failure rate when   is unknown.  

(C1.1) Given 900 h  , (i) When   is known,   from the first formula in (Prop. C1.1), the 

Bayesian Upper Prediction Limit of e



 


  with level 0 .90 is given by 

 
  0.0026

u


    (ii) 

When   is unknown, from the second formula of (Prop. C1.1) and Remark 4, the Bayesian 

UPL of e



 


  with level 0.90 is given by 

 
  0.1339.

u


    

(D1.1) Suppose that we are interested in the probability k
 that at most k failures will occur in the 

future time period ( , ] (180, 250]T   considering only the case when   is known (say 

0.003969  ), using the first formula in (Prop. D1.1), we have 

0 1 2 3 4
0.0438, 0.1744,  0.3750,  0.5867,  0.7592         ,

5 6
0.8748,  0.9412,  

7 8 9
0.9748,  0.9900,  0.9963     ,

10 11
0.9987,  0.9996,  

12 13
0.9999,  1.0000,    

14 15
1.0000,  and 1.0000   . The study established that the probabilities obtained will depend 

on the length of the time period ( , ]T . 

4.7 Simulation study for the two sample Bayesian prediction 

In this section, two software failure data sets are generated from the Goel – Okumoto (1979) 

software reliability model. The two data sets are simulated using the same model and parameters. 

The simulated data is used to illustrate the methodologies developed for the two sample Bayesian 

predictive analyses. The simulation procedure was as follows.  The Goel – Okumoto (1979) 

model is as given in Equation (13). 

The values of 100  and 0.0010741    were fixed. A value of T  from the set 

3 3 4
[200,  500, 10 ,  5 10 ,  10 ]S    was selected. The study used 200T  . The simulation used in 

the study is for illustrative purposes only. Nevertheless, there is a practical interpretation to the 

choices of ,   and T  . Case studies e.g. Musa (1987) have shown that a software fault density 

at the system testing stage is frequently on the order of five bugs per 1,000 lines of code. The 
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choice of 100  could be thought of as symbolizing a practically large software system that is 

on the order of 20,000 lines of codes. The choices for  and T  together imply that most of the 

failures will be discovered during the simulated test period. Following the forgoing discussion, 

the following two data sets were simulated from the Goel – Okumoto (1979) software reliability 

model using the following steps: 

Step 1: 0,  0t I   

Step 2: G enerate a random  num ber U  

Step 3: 
1

log . If ,  stop.t t U t T


    

Step 4: Generate a random number .U  

Step 5: If ( ) / ,  set 1,  ( ) .U t I I S I t      

Step 6: Go to step 2. 

In the above steps, ( )t  is known as the intensity function and  is such that ( ) .t   the last 

value of I  represents the number of events time T , and (1), ..., ( )S S I  are the event times. The 

above procedure of simulation is referred to as the thinning algorithm since it ‘thins’ the 

homogeneous Poisson points. It is the most efficient simulation procedure in the sense that it has 

the fewest number of rejected events times when ( )t  is near   throughout the interval 

(Sheldon, 2002). Using the above procedure, the following two data sets were generated. The 

first data set is assumed to be the software failure times from the first software and the second 

data set is assumed to be the failure times from the second software. 

 Software one: 8.9345, 27.0177, 34.5816, 54.8606, 83.5715, 111.4006, 139.8851, 157.4743, 

181.0868, 182.8410 

Software two: 2.3159, 16.2530, 20.5721, 23.3416, 42.8030, 46.7417, 61.0926, 63.8807, 75.1330, 

80.7768, 97.3435, 117.9091, 129.3157, 138.0590, 169.3410, 172.7516, 186.0293, 193.1918, 

198.5999 
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4.8 Maximum Likelihood Estimation 

Suppose the observation of the failure times occurred in the time interval (0, ]T  where 200T  , 

and n  faults were observed at the failure times 1 2
0 ...

n
t t t T     . The joint density of the 

failure times is as in Equation (14). Taking the log-likelihood function of (14) gives 

      1

ln ln (1 )

n

T

i

i

L n n t e


   




                   (96) 

Differentiating L  partially with respect to  and    and equating to zero (equating the partial 

derivatives of L  to zero optimizes the values of  and   ) gives 

(1 ) 0.
TL n

e


 


   


         (97) 

1

0.

n

T

i

i

L n
t Te




 






   


          (98) 

Solving Equation (91) and Equation (92) for  and   , we obtain 

1
T

n

e













           (99) 

1

.

1

Tn

i
Ti

n nTe
t

e















 



         (100) 

Hossain and Dahiya (1993) showed that a necessary and sufficient condition for Equation (99) 

and Equation (100) to have a unique and positive solution ( , ) 
 

 is if and only if 

1

(2 / )

n

i

i

t n T



 . That is, the ML estimates of  and    will exist only and only if two times the 

mean failure time is less than T . In most cases, the value of  and  T will be such that 

Pr[ ( ) 0]N T   is negligible. As a result, there will be one fault discovered during the testing 

(i.e., n 1)  and the degenerate no failure case is of little concern, (Daniel and Hoang, 2001). 
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In most cases, the precision in the difference 1
T

e




 in the denominator of the second part in the 

RHS of Equation (100) will be poor since 
T

e




 will always be very close to unity. This brings a 

numerical difficulty in finding the root of Equation (100). An alternative form of Equation (100) 

that overcomes this difficulty is  

1

1

.

( )

!

n

i
ji

j

n nT
t

T

j

 
 





 



       (101) 

A numerical procedure known as the Newton Raphson method can be used to solve Equation 

(99) and Equation (101). The Newton Raphson method requires choosing initial values 

of  and   . Consequently, 95 and 0.0012    were chosen as the initial values. There is no 

any other explanation to the choosing of the initial values other than the fact that they are very 

close to the values 100  and 0.0010741    that were used during the simulation of the two 

software failure data sets in section 4.6. Consequently, the ML estimates 102.756  and 


  

0.001022177


  for software one were obtained.  

4.9 Real example for two-sample Bayesian prediction 

Here, we use the two software data sets simulated in section 4.6 to illustrate the developed 

methodologies in section 4.4 for two sample Bayesian prediction problems. Assuming that the 

two software systems were observed in the time interval (0, 200] , and their successive failure 

times are given by:  

 Software one: 8.9345, 27.0177, 34.5816, 54.8606, 83.5715, 111.4006, 139.8851, 157.4743, 

181.0868, 182.8410 

Software two: 2.3159, 16.2530, 20.5721, 23.3416, 42.8030, 46.7417, 61.0926, 63.8807, 75.1330, 

80.7768, 97.3435, 117.9091, 129.3157, 138.0590, 169.3410, 172.7516, 186.0293, 193.1918, 

198.5999 

The two software failure times are simulated from the same Goel – Okumoto (1979) software 

reliability model. The three issues in the two sample prediction in Chapter Three are addressed as 

follows: 
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Issue A2: First, we assume that the failure times of the second software were not observed. 

Based on the failure data of software one, the maximum likelihood estimate of   is given by 

0.001022177. When   is known to be 0.001022177, and from Prop. A2, the Bayesian UPL for 

the 15th  failure time of the second software with level 0.90   is ( )
33.737

U
y


  such 

that    
 

( ) 1

1

0

1
( ) ( ) ( ) 1

(2 )

r rU

r

r
y yy

n
T

ry T r n

e e
r n r n e dy

e e

  



 
 


 

 

  


     

 
 .  

Issue B2: If 0.001022177  ,  then from Prop. B2, the probability that the number of failures in 

the time interval (0, 200]  for the second software not exceeding a pre-determined non-negative 

integer 16m  , is 0.9157  .  

Issue C2: suppose that the number of observed failures of the second software during (0, 200]  

is 15m  . Based on the failure data of the second software, if 0.001022177  , then from Prop. 

C2, the Bayesian UPL for 15
y  with level 0.90   is 198.00.

U
y


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CHAPTER FIVE 

SUMMARRY, CONCLUSIONS AND RECOMMENDATIONS 

5.1 Introduction 

In this chapter, the summary of the thesis is provided. Conclusions from the analysis carried out 

in the thesis and recommendations for further research are also discussed. 

5.2 Summary 

Many software reliability models have been developed by various authors in the past three 

decades, amongst, the Goel – Okumoto (1979) software reliability model. The models are mainly 

based on the history of failure of software and they can be categorized depending on the nature 

of the failure process studied. Several prediction problems arise during the development of any 

software especially when the Goel – Okumoto (1979) software reliability model is used to model 

the failure process. The study has proposed four issues associated closely to software 

development testing process in the single sample case and three issues in two sample case.  

Explicit solutions to these issues have been provided. The derived methodologies for the single 

sample case have been illustrated by time between software failure data given by (Xie et al. 

2002). For the two sample case, simulated data from the Goel-Okumoto software reliability 

model have been used to illustrate the derived solutions.  

5.3 Conclusions 

This research work has mainly focused on deriving explicit solutions to various prediction issues 

that may arise during the software development testing program using Bayesian approach. These 

solutions may prove to be very useful for the modification, debugging and for the decision to 

terminate the development testing process of the software. 

 

The adoption of Bayesian approach for the derivation of the solutions is advantageous in that the 

approach is available for cases of small sample sizes (Phillips, 2000; Quigley and Walls, 2003). 

Another advantage of the Bayesian approach is that it allows the input of prior information about 

the reliability growth process and provides full posterior and predictive distributions (Jun-Wu et 

al. 2007). The study has used both informative and non-informative priors to explicitly derive the 

posterior and predictive distributions to address the discussed software prediction problems. In 



 

56 
 

both cases, closed form solutions to some of the predictive inferences are not available and as 

such, the study has used MCMC.  

 

Gamma distribution has been used as the prior distribution in the case of single-sample 

prediction using informative prior. This is because experience in Bayesian modeling has shown 

that gamma distributions are reasonable representations for failure rates. They provide a spread 

of values from which the Likelihood function can emphasize the values needed to fit the data 

(Allan, 2012). Choosing of the parameters of the gamma prior distribution has poised some 

challenges. The study thus resorted to trial and error in choosing the gamma parameters until 

results that were closer to those from non-informative priors were reached.  

5.4 Recommendations 

This thesis has only considered and derived predictive procedures on the Goel – Okumoto (1979) 

software reliability model. However, the procedures presented in this thesis can also be extended 

to other NHPPs such as the delayed S-shaped process, the Cox – Lewis process and the Musa-

Okumoto process. In addition, in the investigation of two-sample prediction, this study has only 

considered the derivations of the methodologies for the case when the shape parameter   is 

known. It may be of interest to derive the methodologies for the case of unknown  . Again, for 

the two-sample prediction, the study has assumed that the failure times of the two software 

systems obey the same Goel – Okumoto (1979) software reliability model. When this assumption 

is violated, (e.g., 
1 2 1 2

 but        ), it is still of research interest to study the two-sample 

prediction problems. This is left open for future research. 

 

 

 

 

 

 

 



 

57 
 

REFERENCES 

Allan, T. M., (2012). Bayesian Statistics applied to Reliability Analysis and Prediction. 

            Raython Missile Systems, Tucson, AZ. 

Amrit, L. G., (1985). Software Reliability Models: Assumptions, Limitations and Applicability. 

 IEEE Transactions on Software Engineering, SE-11: 1411-1423. 

Andrew, G., John, B. C., Hal, S. S. and Donald, B. R., (1995). Bayesian Data Analysis. Texts in 

  Statistical Science, Chapman & Hall. 

Bain, L. J., (1978). Statistical Analysis of Reliability and Life-Testing Models. Marcel Dekker,  

 NewYork. 

Bain, L. J. and Engelhardt, M., (1980). Inference on the parameters and current system reliability 

      for a time-truncatedWeibull process. Technometrics, 22: 421–426. 

Crow, L. H., (1982). Confidence interval procedures for the Weibull process with application to 

 reliability growth. Technometrics, 24: 67–72. 

Daniel, R. J. and Hoang P. (2001). On the Maximum Likelihood Estimates for the Goel- 

            Okumoto Software Reliability Model. The American Statistician, 55: 219-222. 

Duane, J. T., (1964). Learning Curve Approach To Reliability Monitoring. IEEE Transactions 

            on Aerospace, AS-2: 563-566. 

Glickman, M. E. and Van D. D. A., ( 2007). Basic Bayesian Methods. In: Methods in Molecular 

Biology: Topics in Biostatistics (WT Ambrosius, ed.). Humana Press, Totwa, NJ, USA: 

104: 319-338. 

Goel, A. L. and Okumoto, K., (1979). Time-dependent error detection rate model for software  

 reliability and other performance measures. IEEE Trans.Reliability, 28: 206–211. 

Guida, M., Alabria, R., Pulcini, G., (1989). Bayes inference for a nonhomogeneous Poisson 

 process with power intensity law. IEEE Trans. Reliability, 38: 603-609. 

Hossain, S. A. and Dahiya, R. C., (1993). Estimating the Parameters of a Non- homogenous 

 Poisson-Process Model for Software Reliability. IEEE Tranis- actions on Reliability, 42: 

 604-612. 

Jelinski, Z. and Moranda, P., (1972). Software Reliability Research. Statistical Computer  

Performance Evaluation, Ed. W. Freiberger. New York: Academic. 

Jun-Wu, Y., Guo-Liang, T. and Man-Lai, T., (2007). Predictive analyses for non-homogeneous 

            Poisson processes with power law using Bayesian approach. Computational Statistics & 

            Data Analysis, 51: 4254-4268. 

Kapur, P. K., Pham, H., Gupta, A. and Jha, P. C., (2011). Software Reliability Assessment with 

           OR Applications. Springer Series in Reliability Engineering, Springer-Verlag London 

            Limited 2011. 



 

58 
 

Lynn, K. and Tae Y., (1995). Bayesian Computation of Software Reliability. Journal of  

            Computation and Graphical Statistics, 4: 65-82. 

Lynn, K. and Tae, Y., (1996). Bayesian Computation for Nonhomogeneous Poisson process 

in Software Reliability. Journal of the American Statistical Association, 91: 763-773. 

Meth, M., (1992). Reliability growth myths and methodologies: a critical view. In: Proceedings 

of the Annual Reliability and Maintainability Symposium.IEEE, NewYork, 230–238. 

Meyfroyt, P. H. A., (2012). Parameter Estimation for Software Reliability Models. Masters 

           Thesis, Eindhoven University of Technology, Eindhoven, Netherlands. 

Muralidharan K., Rupal, S. and Deepak H. D., (2008). Future Reliability Estimation Based on 

            Predictive Distribution in Power Law Process. Quality Technology & Quantitative 

            Management, 5: 193-201. 

Musa, J. D. and Okumoto, K., (1984). A Logarithmic Poisson Execution Time Model for 

           Software Reliability Measurement. In Proceedings of the Seventh International 

           Conference on Software Engineering, pp. 230- 238. 

Musa, J., (1987). Software Reliability: Measurement, Prediction, Application. New York: 

            McGraw-Hill. 

Nuria, T. R., (2011). Stochastic Comparisons and Bayesian Inference in Software Reliability. 

 Ph.D. Thesis, Universidad Carlos III de Madrid. 

Phillips, M.J., (2000). Bootstrap confidence regions for the expected ROCOF of a repairable 

  system. IEEE Trans. Reliability 49: 204–208. 

Preeti, W. S. and Nidhi J., (2011). Reliability Prediction During Development Phase of a System. 

            Quality Technology & Quantitative Management, 8: 111-124. 

Quigley, J. and Walls, L., (2003). Confidence intervals for reliability-growth models with small 

  sample-sizes. IEEE Trans. Reliability 52: 257–262. 

Razeef, M. and Mohsin, N., (2012). Software Reliability Growth Models: Overview and 

            Applications. Journal of Emerging Trends in Computing and Information Sciences, 3: 

            1309-1320. 

Rigdon, S.E. and Basu, A.P., (2000). The Power Law Process: a Model for the Reliability of 

            Repairable systems. Journal of Quality Technology, 21: 251-260. 

Satya, P., Bandla, S. R. and  Kantham, R. R. L., (2011). Assessing Software Reliability 

using Inter Failures Time Data. International Journal of Computer Applications, 18: 975-   

978. 

Shaul, K. B., Idit, L. and Benjamin, R., (1992). Bayesian Inference for the Power Law 

            Process. Ann. Inst. Statist. Math., 44: 623-639. 

Sheldon, R., (2002). Simulation. 3rd edition. Academic Press. 

Singpurwalla, N. D and Simon, P. W., (1994). Software Reliability Modeling International 



 

59 
 

    Statistical Review/ Revue Internationale de Statistique, 62: 289-317. 

Stringfellow, C. and Amschler, A. A., (2002). An Empirical Method for Selecting 

            Software Reliability Growth Models. Empirical Software Engineering, 7: 319-343. 

Tae, Y. Y. and Lynn K., (1999). Bayesian Computation for the Superposition of 

 Non-homogeneous Poisson Processes. The Canadian Journal of Statistics, 27: 547-556. 

Xie, M., Goh, T. N and Ranjan, P., (2002). Some effective control chart procedures for reliability 

 monitoring. Elsevier,Reliability engineering and System safety. 

Yamada, S., Ohba, M. and Osaki, S., (1983). S-shaped reliability growth modeling for software  

 error detection. IEEE Trans. Reliability, 32: 475–484. 

Zhao, C., (2010). Empirical Bayes Analysis on the Power Law Process with Natural Conjugate 

 Priors. Journal of Data Science, 8: 139-149. 

Zhao, C., (2004). Bayesian and Empirical Bayes approaches to power law process and 

            microarray analysis. PHD Thesis, University of South Florida. USA. 

Zhao, M. and Xie, M. (1996). On Maximum Likelihood Estimation for a General Non- 

 homogeneous Poisson Process. Scandinavian Journal of Statistics, 23: 597-607. 

 

 

 

 

 

 

 

 

 

 

 

 



 

60 
 

APPENDIX 

The following are the R-codes that were used in the simulation and computation of the results. 

One Sample Bayesian prediction using non-informative prior 

Proposition A1 

i) When   is known, the program used was: 

n<-30 

lamtv<-0.03 

T<-182.21 

tao<-277.83 

beta<-0.003962 

h<-0:(n-1) 

d<-((1-exp(-beta*T))*lamtv)/(beta*exp(-beta*tao)) 

t<-(d^h)/factorial(h) 

z<-t*exp(-d) 

y<-1-sum(z) 

y 

 

ii) When   is unknown, the program used was: 

n<-30 

st<-7190.86 # sum of the ti's 

lamtv<-0.03 

T0<-182.21 

tau<-277.83 

g1<-function(b){ 

                (1-exp(-b*T0))^-n*factorial(n-1)/st^n 

               } 

g2<-function(b,h){ 
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                b1<-(1-exp(-b*T0))*lamtv/(b*exp(-b*tau)) 

                b2<-1-exp(-b*T0) 

                (b1^h/factorial(h))*exp(-b1)*factorial(n-1)/(b2*st)^n 

                 } 

H<-0:(n-1) 

vec1<-rep(0,n) 

for (j in 1:n){ 

                h<-H[j] 

                G<-1000 

                vec2<-rep(0,G) 

                vec3<-rep(0,G) 

                for (i in 1:G){ 

                                 br<-rgamma(1,n,st) 

                                 vec2[i]<-g1(br) 

                                 vec3[i]<-g2(br,h) 

                               } 

                vec1[j]<-sum(vec3)/sum(vec2) 

                } 

1-sum(vec1) 

 

Proposition B1 

i) When   is known, the program used was: 

beta<-0.003962 

n<-30 

T<-182.21 

lambdatv<-0.03 

chi<-qchisq(0.10, df =  60) 
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x<-(1-exp(-beta*T)) 

y<-(beta*chi)/(2*lambdatv*x) 

taostar<-(log(y)/beta)-T 

taostar 

 

ii) When   is unknown, the program used was: 

n<-30 

st<-7190.86 # sum of the ti's 

lamtv<-0.03 

T0<-182.21 

vectau<-890:1090 

p<-0.7 

g1<-function(b){ 

                (1-exp(-b*T0))^-n*factorial(n-1)/st^n 

               } 

g2<-function(b,h,tau){ 

                b1<-(1-exp(-b*T0))*lamtv/(b*exp(-b*tau)) 

                b2<-1-exp(-b*T0) 

                (b1^h/factorial(h))*exp(-b1)*factorial(n-1)/(b2*st)^n 

                 } 

k<-1 

vecp<-c() 

while(p<=0.9){ 

tau<-vectau[k] 

H<-0:(n-1) 

vec1<-rep(0,n) 

for (j in 1:n){ 
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                h<-H[j] 

                G<-1000 

                vec2<-rep(0,G) 

                vec3<-rep(0,G) 

                for (i in 1:G){ 

                                 br<-rgamma(1,n,st) 

                                 vec2[i]<-g1(br) 

                                 vec3[i]<-g2(br,h,tau) 

                               } 

                vec1[j]<-sum(vec3)/sum(vec2) 

                } 

vecp[k]<-p 

p<-1-sum(vec1) 

k<-k+1 

} 

which(vecp==max(vecp))+min(vectau) 

 

Proposition C1 

i) When   is known, the program used was: 

beta<-0.003962 

tau<-900 

n<-30 

T<-182.21 

chi<-qchisq(0.10, df =  60) 

x<-(1-exp(-beta*T)) 

UPL<-(chi*beta*exp(-beta*tau))/(2*x) 

UPL 
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ii) When   is unknown, the program used was 

n<-30 

st<-7190.86 # sum of the ti's 

veclamtv<-seq(0.03, 1,length=1000) 

T0<-182.21 

tau<-277.83 

g1<-function(b){ 

                (1-exp(-b*T0))^-n*factorial(n-1)/st^n 

               } 

g2<-function(b,h,lamtv){ 

                b1<-(1-exp(-b*T0))*lamtv/(b*exp(-b*tau)) 

                b2<-1-exp(-b*T0) 

                (b1^h/factorial(h))*exp(-b1)*factorial(n-1)/(b2*st)^n 

                 } 

k<-1 

vecp<-c() 

p<-.7 

while(p<=0.9){ 

lamtv<-veclamtv[k] 

H<-0:(n-1) 

vec1<-rep(0,n) 

for (j in 1:n){ 

                h<-H[j] 

                G<-1000 

                vec2<-rep(0,G) 

                vec3<-rep(0,G) 

                for (i in 1:G){ 
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                                 br<-rgamma(1,n,st) 

                                 vec2[i]<-g1(br) 

                                 vec3[i]<-g2(br,h,lamtv) 

                               } 

                vec1[j]<-sum(vec3)/sum(vec2) 

                } 

vecp[k]<-p 

p<-1-sum(vec1) 

k<-k+1 

} 

veclamtv[which(vecp==max(vecp))] 

 

Proposition D1 

i) When   is known, the program used was: 

T0<-180 

tau<-250 

n<-30 

b<-0.003962 

const1<-(1-exp(-b*T0))/(exp(-b*T0)-exp(-b*tau)) 

const2<-(exp(-b*T0)-exp(-b*tau))/(1-exp(-b*tau)) 

k<-0:15 

vecyk<-rep(0,length(k)) 

for (i in 1:length(k)){ 

                      J<-n:(n+k[i]) 

                      a<-rep(0,length(J)) 

                      for (j in 1:length(J)) a[j]<-choose(J[j]-1,n-1)*const2^J[j] 

                      vecyk[i]<-const1^n*sum(a)} 
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vecyk 

 

ii) When   is unknown, the program used was: 

T0<-180 

tau<-240 

st<-7190.86 

n<-30 

k<-0:15 

G<-1000 

vecyk2<-rep(0,length(k)) 

fb<-function(b0)(exp(-b0*T0)-exp(-b0*tau))^(j0-n)/((1-exp(-b0*tau))^j0*st^n) 

g1<-function(b){ 

                (1-exp(-b*T0))^-n*factorial(n-1)/st^n 

               } 

for (i in 1:length(k)){ 

                      J<-n:(n+k[i]) 

                      a<-rep(0,length(J)) 

                      for (j in 1:length(J)){ 

                         j0<-J[j]   

                         vecb0<-rgamma(G,n,st) 

                         d<-mean(g1(vecb0)) 

                         k0<-mean(fb(vecb0))            

                         a[j]<-factorial(J[j]-1)*k0/(d*factorial(J[j]-n))} 

vecyk2[i]<-sum(a) 

}                                

vecyk2 
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One-Sample Bayesian prediction using informative prior 

Proposition A1.1 

i) When   is known, the program used was: 

n<-30 

lamtv<-0.03 

T<-182.21 

tao<-277.83 

beta<-0.003962 

a<-2 

b<-1/2 

c<-2 

d<-1/2 

h<-0:(a+n-1) 

d<-((1-exp(-beta*T)+b)*lamtv)/(beta*exp(-beta*tao)) 

t<-(d^h)/factorial(h) 

z<-t*exp(-d) 

y<-1-sum(z) 

y 

 

ii) When   is unknown, the program used was: 

n<-30 

st<-7190.86 # sum of the ti's 

lamtv<-0.03 

T0<-182.21 

tau<-277.83 
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a<-2 

b<-1/2 

c<-2 

d<-1/2. 

g1<-function(x){ 

                (1-exp(-x*T0)+b)^-(n+a)*factorial(n+c-1)/(st+d)^(n+c) 

               } 

g2<-function(x,h){ 

                k1<-(1-exp(-x*T0)+b)*lamtv/(x*exp(-x*tau)) 

                k2<-factorial(n+c-1)/((1-exp(-x*T0)+b)^(n+a)*(st+d)^(n+c)) 

                (k1^h/factorial(h))*exp(-k1)*k2 

                 } 

H<-0:(n+a-1) 

vec1<-rep(0,(n+a)) 

for (j in 1:(n+a)){ 

                h<-H[j] 

                G<-1000 

                vec2<-rep(0,G) 

                vec3<-rep(0,G) 

                for (i in 1:G){ 

                                 br<-rgamma(1,n+c,st+d) 

                                 vec2[i]<-g1(br) 

                                 vec3[i]<-g2(br,h) 

                               } 

                vec1[j]<-sum(vec3)/sum(vec2) 

                } 

1-sum(vec1) 



 

69 
 

 

Proposition B1.1 

i) When   is known, the program used was: 

n<-30 

lamtv<-0.03 

T<-182.21 

tao<-277.83 

beta<-0.003962 

t<-qchisq(0.10,2*n) 

a<-2 

b<-1/2 

c<-2 

d<-1/2 

r<-(beta*t)/(2*lamtv*(1-exp(-beta*T)+b)) 

taoprime<-((1/beta)*log(r))-T 

taoprime 

 

ii) When   is unknown, the program used was: 

n<-30 

st<-7190.86 # sum of the ti's 

lamtv<-0.03 

T0<-182.21 

p<-0.7 

vectau<-300:1090  

#values of the parameters of prior distribution 

a<-2 

b<-1/2 
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c<-2 

d<-1/2 

g1<-function(x){ 

                (1-exp(-x*T0)+b)^-(n+a)*factorial(n+c-1)/(st+d)^(n+c) 

               } 

g2<-function(x,h,tau){ 

                k1<-(1-exp(-x*T0)+b)*lamtv/(x*exp(-x*tau)) 

                k2<-factorial(n+c-1)/((1-exp(-x*T0)+b)^(n+a)*(st+d)^(n+c)) 

                (k1^h/factorial(h))*exp(-k1)*k2 

                 } 

k<-1 

vecp<-c() 

while(p<=0.9){ 

      tau<-vectau[k] 

      H<-0:(n+a-1) 

      vec1<-rep(0,(n+a)) 

      for (j in 1:(n+a)){ 

                          h<-H[j] 

                          G<-1000 

                          vec2<-rep(0,G) 

                          vec3<-rep(0,G) 

                          for (i in 1:G){ 

                                 br<-rgamma(1,n+c,st+d) 

                                 vec2[i]<-g1(br) 

                                 vec3[i]<-g2(br,h,tau) 

                               } 

                            vec1[j]<-sum(vec3)/sum(vec2) 
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                } 

vecp[k]<-p 

p<-1-sum(vec1) 

k<-k+1 

} 

vecp 

which(vecp==max(vecp))+min(vectau) 

 

Proposition C1.1 

i) When   is known, the program used was: 

n<-30 

lamtv<-0.03 

T<-182.21 

tao<-277.83 

taoprime<-900 

beta<-0.003962 

t<-qchisq(0.10,2*n) 

a<-2 

b<-1/2 

c<-2 

d<-1/2 

r<-(beta*t*exp(-beta*taoprime))/(2*(1-exp(-beta*T)+b)) 

r 

 

ii) When   is unknown, the program used was: 

n<-30 

st<-7190.86 # sum of the ti's 
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veclamtv<-seq(0.03, 1,length=1000) 

T0<-182.21 

tau<-277.83 

p<-0.7 

#values of the parameters of prior distribution 

a<-2 

b<-1/2 

c<-2 

d<-1/2 

g1<-function(x){ 

                (1-exp(-x*T0)+b)^-(n+a)*factorial(n+c-1)/(st+d)^(n+c) 

               } 

g2<-function(x,h,tau){ 

                k1<-(1-exp(-x*T0)+b)*lamtv/(x*exp(-x*tau)) 

                k2<-factorial(n+c-1)/((1-exp(-x*T0)+b)^(n+a)*(st+d)^(n+c)) 

                (k1^h/factorial(h))*exp(-k1)*k2 

                 } 

k<-1 

vecp<-c() 

p<-.7 

while(p<=0.9){ 

lamtv<-veclamtv[k] 

H<-0:(n+a-1) 

vec1<-rep(0,n+a) 

for (j in 1:(n+a)){ 

                h<-H[j] 

                G<-1000 
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                vec2<-rep(0,G) 

                vec3<-rep(0,G) 

                for (i in 1:G){ 

                                 br<-rgamma(1,n+a,st+d) 

                                 vec2[i]<-g1(br) 

                                 vec3[i]<-g2(br,h,lamtv) 

                               } 

                vec1[j]<-sum(vec3)/sum(vec2) 

                } 

vecp[k]<-p 

p<-1-sum(vec1) 

k<-k+1 

} 

veclamtv[which(vecp==max(vecp))] 

    

Proposition D1.1 

i) When   is known, the program used was: 

T0<-180 

tau<-240 

n<-30 

x<-0.003962 

e<-2 

b<-1/2 

c<-2 

d<-1/2 

const1<-(1-exp(-x*T0)+b)/(exp(-x*T0)-exp(-x*tau)) 

const2<-(exp(-x*T0)-exp(-x*tau))/(1-exp(-x*tau)+b) 
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const3<-(1-exp(-x*T0)+b)/(1-exp(-x*tau)+b) 

k<-0:10 

vecyk<-rep(0,length(k)) 

for (i in 1:length(k)){ 

                      J<-n:(n+k[i]) 

                      a<-rep(0,length(J)) 

                      for (j in 1:length(J+a)) a[j]<-choose(J[j]+e-1,n+e-1)*const2^J[j] 

                      vecyk[i]<-const1^n*const3^e*sum(a)} 

vecyk 

 

Two Sample-Bayesian Prediction 

Simulation 

For simulation and calculation of the MLE for the simulated data, the following R-codes was 

used: 

t<-0; I<-0; T<-200; alpha<-100; beta<-0.0010741 

lambda0<-alpha*beta*exp(-beta*T) 

lambda<-function(t)   alpha*beta*exp(-beta*t) 

S0<-c() 

while(t<=T) { 

   u<-runif(1) 

   t<-t-log(u)/lambda0 

   u1<-runif(1) 

      if(u1<=lambda(t)/lambda0){ 

     I<-I+1 

     S0[I]<-t  } else {I<-I} 

} 

S<-S0[-length(S0)] 
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n<-length(S) 

Loglik<-function(par){ 

  a<-par[1] 

  b<-par[2] 

  -n*log(a)-n*log(abs(b))+abs(b)*sum(S)+a*(1-exp(-abs(b)*T)) 

 

} 

par0<-c(147,0.0012) 

2*sum(S)/n 

mle<-optim(par0,Loglik) 

mle 

est<-mle$par 

est 

 

Proposition A2 

The following program was used to illustrate Proposition A2: 

n<-10 

r<-15 

T<-200 

b<-0.001022177 

const<-(factorial(r+n-1)*b*(1-exp(-b*T)))/(factorial(r-1)*factorial(n-1)) 

g1<-function(yr){ 

                 const*(exp(-b*yr)*(1-exp(-b*yr))^(r-1))/((2-exp(-b*yr)-exp(-

b*T))^(r+n)) 

                } 

g<-integrate(g1,0,33.73700) 

g 
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Proposition B2 

The following program was used to illustrate the Proposition B2: 

T<-200 

t2<-200 

n<-10 

b<-0.001022177 

k<-0:16 

z<-((1-exp(-b*t2))^k)/(2-exp(-b*t2)-exp(-b*T))^k 

g<-((1-exp(-b*T))^n)/(2-exp(-b*t2)-exp(-b*T))^n 

r<-choose(n+k-1,k) 

y<-z*r*g 

sum(y) 

 

Proposition C2 

The following program was used to illustrate the Proposition C2 

m<-15 

yu<-1:200 

b<-0.001022177 

t2<-200 

t<-(1-exp(-b*yu))^m 

k<-(1-exp(-b*t2))^m 

y<-t/k 

y[198] 

 

 

 

   


