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ABSTRACT 

Due to rapid increase in development of complex computer systems over the past decades, 

there is need to estimate and predict the reliability of software systems during the testing 

process. Reliability refers to how well software meets its requirements and the probability of 

failure free operation for the specified period of time in a specified environment. The high 

demand and use of software has led to increased quest for more reliable software. For the past 

few decades several software reliability growth models have been used to describe the 

behavior of software testing process. Predictive analyses of software reliability model is of 

great importance for modifying, debugging and determining when to terminate software 

development testing process. This study performed one-sample Bayesian predictive analyses 

for Musa – Okumoto software reliability model using informative and non – informative 

priors. The study mainly focused on four issues on single-sample case that have been outlined 

in chapter three as issue A, B, C and D that relate to software development testing process. 

Simulated and secondary data were used to illustrate these issues. For secondary data, 

Goodness of Fit (GOF) test based on Laplace statistics was performed to check whether the 

model fit well to the data before it was used to illustrate the derived methodologies and It was 

found fit well to the data. The study developed explicit solutions to the issues and on issue D 

coverage probability was computed and found to be a good estimator and thus it will help to 

solve problems related to reliability of developed software and make a trade-off decision in 

software industry. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background information 

Software has become a driver for nearly everything in the 21
st
 century from elementary 

education to genetic engineering. Thus due to high dependency, the size and complexity of 

computer systems has grown and this poses a great problem in its reliability as failures are 

prone to happen during their operations. To avoid the failures and faults, reliability of 

software needs to be studied during development of software so as to come up with reliable 

software. Computer software have of late been applied in different fields ranging from  

automotive mechanical and safety control systems, industrial and quality control processes, 

hospital healthcare and air traffic control systems among others affecting millions of people. 

Reliability of software is of a lot of concern to the developers. 

 

Software reliability is defined as the probability of failure free software operations for a 

specified period of time in a specified environment (Nuria, 2011). With the increasing need 

of software with zero defects, predicting reliability of software systems is gaining more and 

more importance (Sonia and Renu, 2014). Software reliability is achieved through testing 

during the software development stage (Daniel and Hoang, 2001). Software Reliability 

modeling is done to estimate the form of the curve of the failure rate by statistically 

estimating the parameters associated with the selected model. In most cases, the reliability 

development of a complex system often take place by testing a system until it fails, then 

making repairs and design changes and testing it again. This process continues until a desired 

level of reliability is achieved (Muralidharan et al., 2008). The purpose of this measure is to 

estimate the extra execution time during test required to meet a specified reliability objective 

and to identify the expected reliability of the software when the product is released. During 

reliability modeling, the software systems are tested in an environment that resembles to the 

operational environment (Ullah et al., 2013). 

 

Developing reliable software is one of the most difficult problems facing the software 

industry. Schedule pressure, resource limitations, and unrealistic requirements can all 

negatively impact software reliability. Developing reliable software is especially hard when 

there is interdependence among the software modules as is the case with much of existing 

software. It had been found to be a hard problem to know whether or not the software being 

delivered is reliable due to lack of a well-developed predictive method. After the software is 
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shipped, its reliability is indicated by customer feedback- problem reports, system outages, 

complaints or compliments, and so forth. However, by then it is too late; software vendors 

need to know whether their products are reliable before they are shipped to customers. 

Software reliability growth models attempt to provide that information. 

 

According to Meth (1992), software reliability modeling can provide the basis for planning 

reliability growth tests, monitoring progress, estimating current reliability, forecasting and 

predicting future reliability improvements. This is due to the fact that software reliability 

growth model is a powerful tool for prediction and forecasting. Its predictive analyses are 

useful for determining when to terminate a development process (Jun-Wu et al., 2007). 

Usually, upper predictive interval is constructed to indicate the time frame when the kth 

(k>0) future observation will occur with pre-determined confidence level. These predictive 

intervals are often utilized in software industry in that they provide useful information for 

software developers to decide the optimal software release time and to refine the quality of 

software testing tasks. 

 

Over the past decades many software reliability models that can be used for predictive 

analyses have been developed by different authors; (Jun- Wu et al., 2007, Akuno et al., 

2014). The Musa – Okumoto reliability model had not been applied to predictive analyses. 

Musa and Okumoto (1984) developed this model as they were looking for a model with high 

predictive validity. The Musa – Okumoto software reliability model is one of non-

homogeneous Poisson process software model. The model is based on the assumptions that 

failures are observed during execution time caused by remaining faults in the software; 

whenever a failure is observed, an instantaneous effort is made to find what caused the failure 

and the faults are removed prior to future tests and whenever a repair is done it reduces the 

number of future faults not like other models. The failure intensity function of this model 

reduces exponentially with time and the expected number of failures has logarithmic function 

and thus also referred to as Musa- Okumoto logarithmic Poisson model. The model is an 

infinite failure model. Whenever predictive analyses are done using the above model, the 

future failures are expected to depict the above features. 

 

The model must remain stable during the entire testing period for any particular testing 

environment and a reasonably accurate prediction of reliability must be provided by the 

model. These are the two main aspects of a good reliability model (Kapur et al., 2011). The 
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Musa – Okumoto (1984) model has been used in various testing environment and in many 

instances, it provides good estimation and prediction of software reliability. Compared to 

other models when used in testing industrial data set, Musa- Okumoto model is the best 

performer in terms of fitting and predictive capability to the data (Ullah et al., 2013). 

 

Bayesian reliability modeling is one of the best methods in predictive analysis. Development 

of reliability posterior distribution from which predictive inference is made is the main thing 

required in Bayesian reliability model. The reliability posterior distribution is usually 

constructed using prior distribution for the parameters of the software reliability model. The 

advantage of using Bayesian approach is that it allows prior information such as engineering 

judgments and test results to be combined with more recent information from test or field 

data. This is vital since it helps software developers to arrive at a prediction of reliability 

based upon a combination of all available information. This information includes; the 

environment under which the software will work, previous tests on the software and even 

intuition based upon experience (Allan, 2012).  

 

1.2 Statement of problem 

Reliable software has been the main goal of any software developer. This is because non- 

reliable software means that the customers will be dissatisfied with the product thus loss of 

market shares and significant cost to the supplier. For critical applications such as banking or 

health monitoring, non reliability can lead to great damage not only to the consumer but also 

to the developer. Due to the above reasons, there is need to develop reliable software. There 

are many software reliability growth models that have been used in analyzing software 

reliability data. Musa- Okumoto is one of the software reliability models which best 

performed in fitting industrial failure data set. Parameter estimation of Musa-Okumoto (1984) 

software reliability model has been done using maximum likelihood method. Bayesian 

predictive analyses for Musa – Okumoto model had not been explored. This study explored 

Bayesian predictive analyses of Musa-Okumoto reliability model. The research only 

considered one- sample case with non- informative priors and informative priors. 
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1.3 Objectives 

1.3.1 General objective 

To carry out a study on Bayesian predictive analyses for Non-homogeneous Poisson process 

(NHPP) in software reliability with Musa- Okumoto intensity function. 

 

1.3.2 Specific objectives 

(i) To derive one- sample posterior and Bayesian predictive distribution of NHPP in 

software reliability with Musa – Okumoto intensity function using non – 

informative and informative priors. 

(ii) To derive upper limit credible sets for one – sample and evaluate their coverage 

probabilities using simulated data on Musa – Okumoto software reliability model. 

(iii) To apply one- sample Bayesian predictive analyses for Musa – Okumoto software 

growth model on real data. 

 

1.4 Assumptions 

(i) During testing, the software is executed in a manner similar to the anticipated 

operational usage. 

(ii) Given                 to be software failure times where T  is the 

time truncated, we assume that     . 

(iii) Initial operational profile test of the software must have been done. 

 

1.5 Justification 

Software is one of the complex intellectual products. During its development, it is inevitable 

that some errors are made during its formulations as well as during designing, coding and 

testing the product. Development process of this software includes efforts to discover and 

correct faults resulting from errors. Dealing with faults cost money as well as impacting on 

development schedule and system performance. Consequently, there can be too much as well 

as too little effort spent dealing with faults, thus the system engineer needs the knowledge of 

software reliability predictive models to understand the current status of the system and make 

trade – off decision. This is because, if the decision is not made early enough it will affect the 

stakeholders, managers, developers and end- users. The developers are then required to 

deliver reliable software with acceptable level of quality within given budget and schedule. 

For these to happen, there is need for software developers to go for that procedure that 

minimizes the cost of software development and at the same time guarantees the reliability of 
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the software. This can be achieved through software predictive analysis procedure on the 

Musa- Okumoto software reliability model, a logarithmic Non- Homogeneous Poisson 

Process. With this software reliability model, software developers are able to achieve their 

desire of high quality, cost effective and reliable software to be released to the market early 

enough. 

1.6 Outline of the Thesis 

This thesis has five chapters; chapter one, chapter two, three, four and five where chapter one 

presents background information, objectives and statement of the problem. Chapter two 

presents literature review, three has materials and methods. In chapter three source and how 

the data was analyse is presented. Chapter four presents derivation of posterior predictive 

distributions and real data analyses on the developed methodologies while chapter five has 

conclusion and recommendation. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Software Reliability  

Software reliability is defined as the probability of failure free software operations for a 

specified period of time in a specified environment (Nuria, 2011). Usually software reliability 

analysis is performed at various stages during the process of software engineering in order to 

evaluate if the reliability requirements have been achieved. There are two activities that relate 

to software reliability analysis: Estimation and prediction. In both activities statistical 

inference techniques and reliability models are applied to failure data obtained from testing or 

during operation to measure software reliability. According to Ganesh (2002), estimation in 

most cases is retrospective and it is performed to determine achieved reliability from a point 

in the past to the present time while prediction activity parameterizes reliability models used 

for estimation and utilizes the available data to predict the future reliability. 

2.2 Categories of Software Reliability models 

In literature software reliability have been conducted for the last over 40 years and many 

models have been proposed for the estimation and prediction of software reliability. There 

exist some classification systems of software reliability models. Model classifications are 

helpful for identifying similarity between different models and to provide ideas when 

selecting an appropriate model. They are classified into the following categories:  Markov 

models and non-homogeneous Poisson process (NHPP) models. Among these models, NHPP 

models are straightforward to implement in real-world applications. 

 Markov models: A model belongs to this class if its probabilistic assumption of the 

failure process is essentially a Markov process. In these models, each state of the 

software has a transition probability associated with it that governs the operational 

criteria of the software.  

 Non-homogeneous Poisson process models: A model is in this class if the main 

assumption is that the failure process is described by a non-homogeneous Poisson 

process. The main characteristic of this type of model is that there is a mean value 

function that is defined by the expected number of failures up to a given time. NHPP 

models are Cox-Lewis (1996) model with intensity           , the Goel-Okumoto 

(1979) model with            , the delayed S-shaped model Yamada et al. (1983) 

with               and Musa-Okumoto (1984) model with              
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Jun – Wu et al. (2007). This study focuses on Musa – Okumoto software reliability 

model.  

2.3 Counting Process 

A sequenced collection of random variables in a given system is called a stochastic process 

and when the focus is on counts, the process is called a counting process and is denoted by 

    , t   . Therefore, a counting process is the count of the number of events that occur in 

any time interval. A stochastic process {         } is said to be a counting process if      

represent the total number of “events” that occurred up to the time t. 

 A counting process {        } must satisfy: 

(i)        

(ii)      is integer valued 

(iii) If    , then            

(iv) For                 equal the number of events that have occurred in the 

interval (s , t). 

A counting process is said to possess stationary increment if the number of events which 

occur in any interval of time depends only on the length of the time interval. In other words, 

the process has the stationary increment if the number of the events in the intervals (t1 + s, t2 

+ s)  {N(t2 + s)  - N(t1 + s)} has the same distribution as the number of events in the interval  

(t1,t2) {N(t2) - N(t1)} for all t2  t1 and s 0. Also it is said to possess independent increment if 

the number of events which occur in disjoint time intervals are independent. If this property 

of independent increment is achieved then the counting process is a Poisson process 

(Sheldon, 1997). 

 

A software system receives different types of input each with its own different path through 

the software; this will lead to creation of a capability of bringing different errors into light 

(Jelinski and Moranda, 1972). The different input types are viewed as arriving randomly to 

the software leading to detection of errors in a random way. These results will mean that 

there is an underlying random process that governs the software failures and thus justifies the 

use of stochastic methods to model software failures (Singpurwala and Simon, 1994). There 

are some probabilistic models describing the counting process. These are homogeneous and 

non-homogeneous Poisson processes. The following definitions are given in terms of 

software failure as that is the focus of the study. 
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2.3.1 Poisson process  

A counting process {        } is said to be a Poisson process if; 

(i)         

(ii) For any time points                  the random variables 

       ]         ]            ] are independent random variables. This is 

called the independent increment property. 

(iii) There is a function λ such that              
                  ]

  
 

(iv)             
                  ]

  
  = 0. This property forestalls the possibility of 

simultaneous failures. 

The above properties (i) to (iv) of Poisson process imply that 

           ] = (∫       
 

 
)
 

 exp( ∫       
 

 
).           (1) 

 

2.3.2 Homogeneous Poisson process 

As noted by Zhao (2004), that counting process is          is said to be a homogeneous 

Poisson process (HPP) if the intensity function      is constant, i.e            and  

(i)       . The failure at time zero. 

(ii) The process has independent increment and stationary increment. Which is one of 

the property of a counting process. 

(iii) The number of events occurring in any interval of length         has a 

Poisson distribution with mean   , that is  

                 ] = 
         

  
  ;               .            (2) 

A homogeneous Poisson process (HPP) has the following properties (Rigdon and Basu, 

2000) 

(i) A process is a HPP with constant intensity function λ if and only if times between 

events are identically and independent distributed exponential random variables 

with mean 
 ⁄ . 

(ii) If              are the failure times from a HPP, then the joint 

probability distribution of             is 

 

               =            ,                                     (3) 
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(iii) The time to the     failure from a system modeled by a HPP has a gamma 

distribution with parameters       
 ⁄ . 

(iv) For a HPP, condition on       , the failure times                are 

distributed as order statistics from uniform distribution in the interval     . 

(v) The probability of a system failure after time   is  

           ]           ]      . 

 

2.3.3 Non - Homogeneous Poisson process 

A NHPP is a Poisson process whose intensity function is not constant (Zhao, 2004). A 

counting process              has a NHPP if 

(i)        

(ii) The process has independent increment. 

(iii) The number of failures in any interval       ] has Poisson distribution with mean 

∫       
  

  
, that is 

                  ]=
 

  
(   ( ∫       

  

  
) (∫       

  

  
)
 

) 0,1, 2,3,...k        (4) 

The following are the properties of non-homogeneous Poisson process (Rigdon and Basu, 

2000). 

(i) The joint pdf of the failure times            from a non-homogeneous Poisson 

process with intensity function      is given by 

 

               = ∏      
 
        ( ∫       

 

 
)                                (5) 

where T is the stopping time:       for the failure truncated case while T= t for 

the time truncated case. Equation (5) is also known as likelihood function. 

(ii) If              are the epoch at which the failure times occurs, then the 

time between occurrence intervals                       are independent 

random variables and with densities. 

1

( ) ( )exp ( )
k

k

k

t

t k k

t

f t t t dt 



 
  

 
 
 .  (6)

     

Again,           is a Markov sequence with transition density given as 

              =         ( ∫       
  
    

)              (7) 
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(iii) If the failure times of a non-homogeneous Poisson process with intensity function 

     are                conditioned on      for failure truncated case, 

then the random variables              are distributed as     order 

statistics or when conditioned on      for time truncated case, then random 

variables            are distributed as n order statistics from the 

distribution with density 

 

      
    

∫       
  
 

                             (8) 

which reduces to uniform distribution over [0,  ] when       . 

There are probabilistic models describing software reliability growth, these models are NHPP 

and one of it is Musa – Okumoto software reliability growth model. 

2.4 Musa – Okumoto software reliability growth model 

Musa – Okumoto model, also known as logarithmic model introduced by Musa and Okumoto 

(1984) is one of the extensively applied in software reliability analysis. Infact Musa himself 

demonstrated that the model is more accurate compared to exponential models Musa et al. 

(1987). The model is a rate function for NHPP, when failure occurs the failure intensity 

function decreases exponentially (Abdel-Ghaly et al., 1986, Lyu, 1996). The possible number 

of failures over time is a logarithmic function therefore it is called logarithmic Poisson. This 

reflect the view that as failure is detected and corrected it is expected that the number of 

failures remaining is less, that is correcting the failure reduces the chance of future failure 

occurring. 

The following are assumptions of Musa – Okumoto software reliability growth model (Musa 

and Okumoto, 1984, Lyu, 1996). 

(i) There is no failure observed at time     i.e        with probability one. 

(ii) The cumulative number of failures by time t,     , follows a Poisson process. 

(iii) The software is operated in a similar manner as that in which reliability 

predictions are to be made. 

(iv) Every fault has the same chance of being encountered within a severity class as 

any other fault in that class. 

(v) The failures, when the faults are detected, are independent. 

(vi) For small time interval    the probabilities of one and more than one failure 

during        ] are              and 0( )t , respectively. where 
     

  
    as 
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       It should be noted that the probability of no failure during          is 

given by                . This implies that the model is Poisson. 

(vii) The failure intensity will decrease exponentially with the expected number of 

failures experienced, that is,          
    

  where         . 

From the above assumptions we can show that; 

            ]   
{    }       

  
 ,                          (9) 

 

                                    (10) 

 

        
  

    
                              (11) 

where      is the expected number of failures observed by time t and      is the failure rate, 

also known as the intensity function. In this model,  is the expected number of failures to be 

observed eventually and   is the fault detection rate per fault. In this model, the number of 

faults to be detected is a random variable whose observed value is dependent on the test and 

other environmental factor.  

 

Musa-Okumoto model consist of two components; the execution time and calendar time 

component which are useful for managers and engineers in expressing when a specified 

reliability goal is expected to be reached. This will help the designers in making a trade-off 

decision on when to stop the testing process and release the product to the consumers. 

Execution time is the best time domain for expressing reliability and is the most practical 

measure of the failure induction stress being placed on a program. The principle objective of 

a software reliability model is to forecast failure behavior that will be experienced when the 

program is operational. 

 

There has been a lot of application of Musa- Okumoto software reliability growth model as it 

is one of the best predictive models, it belongs to the selected models in the America Institute 

of Aeronautics and Astronautics (AIAA) recommended practice standard on software 

reliability (Lyu, 1996, Malaiya and Denton, 1997). Musa- Okumoto model have also been 

used in software cost estimation models with high accuracy (Xia et al., 2008, Nassif et al., 

2013, Nassif et al., 2010). A critical review and categorization of software reliability have 

been done by many researchers (Yadav and Khan, 2009, Sheakh et al., 2012) 
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Developing a reliable software is a challenging task facing software industry. This therefore 

calls for a method for checking whether the developed software is reliable or not. To 

determine when to terminate development process of a software there is need to carry out 

predictive analyses. Bayesian predictive analyses using various software reliability growth 

models has attracted a number of researches. For instance predictive analyses for the power 

law process (PLP) was developed, where most problems that relates to development process 

of software were solved using Bayesian approach Jun-Wu et al. (2007). Akuno et al. (2014) 

also solved the issues related to software development process by use of Bayesian approach 

for Goel- Okumoto software reliability growth model. Both models assume failures are finite, 

a software can be free of errors at a given time when all faults have been removed which 

might not happen in a real situation. It was interesting to note that predictive analyses for 

Musa – Okumoto software reliability growth model given that it had not been developed and 

the model assume failures to be infinite, which is true in real situation. The model assumes 

that the earlier faults that are removed have great impact than the remaining faults. The study 

explored the issues related to development process of software taking in consideration Musa 

– Okumoto software reliability growth model using Bayesian approach. 

 

2.5 Bayesian method 

Bayesian method owes its name to the fundamental role of Bayes’ theorem. In Bayesian 

reasoning, uncertainty is attributed not only to data but also to the parameters. Therefore, all 

parameters are modelled by distributions. Before any data are obtained, the knowledge about 

the parameters of a problem are expressed in the prior distribution of the parameters. Given 

actual data, the prior distribution and the data are combined into the posterior distribution of 

the parameters. The posterior distribution summarizes our knowledge about the parameters 

after observing the data. 

2.5.1 Prior distributions 

The most controversial element in Bayesian method is choosing the prior distributions. It has 

been criticized for introducing subjective information; the use of a prior is purely an educated 

guess and can vary from one scientist to another. Getting the prior distributions is one of the 

procedures of developing the main goal of Bayesian statistical analysis to obtain the posterior 

distributions of the model parameter. The posterior distribution is defined as a weighted 

average between the knowledge about the parameters before data is observed, which is 

represented by the prior distribution and the information contained in the data about the 
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unknown parameters which is represented by the likelihood function. Normally before a 

Bayesian analysis is conducted, the statistician needs to observe the data at hand and 

formulate or choose a probability model for the data. Once the data model is formulated, a 

Bayesian analysis requires the assertion of a prior distribution for the unknown parameters of 

the model. The prior distribution is usually viewed as representing the current state of 

knowledge or current description of uncertainty, about the model parameters prior to data 

being observed (Glickman and Van, 2007). Prior distributions are divided into two categories 

namely, informative and non-informative priors.  

 

When the statistician uses his/her intuitive knowledge about the substantive problem at hand, 

possibly based on past data along with expert opinion to formulate a prior distribution that 

properly reflects his/her (and experts’) beliefs about the unknown parameters of the model, 

that is an informative prior and thus this approach has always been criticized as it seems to be 

subjective and unscientific. However, it can be argued that if prior knowledge or information 

about the model parameters exists prior to observing data, then it would be unscientific not to 

include such knowledge or information into data analysis.  

 

The other main approach to choosing a prior distribution is by using non-informative prior. 

This approach represents ignorance about the model parameters. This approach is also 

referred to as objective, vague, diffuse and sometimes, reference prior distribution. Choosing 

a non-informative prior distribution is an attempt towards objectivity as it involves acting as 

though no prior knowledge about the parameters exists before data is observed. This is 

achieved through assigning equal probabilities to all values of the parameters. The beauty of 

this approach is that it directly addresses the criticism of informative prior distributions as 

being subjectively chosen. 

 

2.5.2 Bayes rule 

When   is a parameter and   is a random variable, the probability statement about   given   

can be made when we first consider a model providing a joint probability distribution for    

and    (Andrew et al., 1995). The joint probability mass or density function are written as a 

product of two densities that are often referred to as the prior distribution        and the 

sampling distribution          respectively, that is  

                      .  
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Conditioning on the known value of y and using the basic conditioning property known as the 

Bayes rule, we obtain the posterior density as 

Pr( , )
Pr( / )

Pr( )

y
y

y


     

Pr( ) Pr( / )

Pr( )

y

y

 
                        (12) 

where       ∑          |     and the sum is over all possible values of   and for the 

case of continuous  ,       ∫                . An equivalent form of the posterior 

distribution above omits the factor        that is independent of   and with fixed   which is 

considered as a constant of proportionality yielding the unnormalized posterior density which 

is the right side of the equation     |                 . This expression encloses the 

technical core of Bayesian inference. The primary task of any specific application is to 

develop the model          and perform the necessary computation to summarize          in 

appropriate ways (Andrew et al., 1995).  

 

2.5.3 Bayesian predictive inference  

Usually to make inference about an unknown observable, often called predictive inference, it 

follows the same logic as in the Bayes’ rule. Andrew et al. (1995) shows that before the data 

y are considered, the distribution of the unknown but observable y  is 

Pr( ) Pr( , ) Pr( ) Pr( )y y d y d         (13)  

where Pr( )y  is the prior predictive distribution which is also known as marginal distribution 

of the data. This is usually the integral of the likelihood function with respect to the prior 

distribution and the distribution is not conditional on observed data. After the data y   has 

been observed, we can predict an unknown observable, y , from the same process. The 

distribution of y  is called the posterior predictive distribution, as it is the distribution of 

unobserved observation (prediction) conditional on the observed data. Thus the posterior 

predictive distribution of y  is given as; 

Pr( / ) Pr( , / )y y y y d     

         Pr( / , ) Pr( / )y y y d      

         Pr( / ) Pr( / )y y d    .   (14) 



15 

 

The second and third lines display the posterior predictive distribution as an average of 

conditional predictions over the posterior distribution of θ. The last step follows from the 

assumed conditional independence of y and y given θ. 

Bayesian methods have been applied to many areas for example; used as a basis for 

computation for the superposition of non-homogeneous Poisson processes (Tae and Lynn, 

1999), also been applied on reliability growth models based on the power law process and 

also in the study of micro arrays (Zhao, 2004), Compodόnico and Singpurwalla (1994) 

applied Bayesian estimation to Musa- Okumoto model. Bayesian predictive analyses on the 

power law process (PLP) using non – informative priors have also been conducted (Jun – Wu 

et al., 2007). Also Bayesian predictive analyses on software reliability growth model with 

Goel- Okumoto intensity function has been conducted (Akuno et al., 2014). In literature, 

Bayesian predictive analyses based on Musa – Okumoto software model is conspicuously 

missing. This therefore means Bayesian predictive analyses based on the model have not 

been explored and this study perform one-sample Bayesian predictive analyses based on 

Musa – Okumoto software reliability model. 

 

2.6 Prediction intervals 

A prediction interval is a confidence interval for a future observation or a function of some 

future observations (Jun – Wu et al., 2007). Specifically, a double-sided (bilateral) prediction 

interval for      a future failure time with confidence level   is defined by 

[                   ] where , ( )n k lX   and , ( )n k uX   are the lower and upper prediction limits 

respectively such that 

  {                        }     

Similarly, a single-sided (unilateral) lower or upper prediction limit for      with level   is 

defined by           (or           ), which satisfies   {              }    or   {     

         }   . Both lower and upper prediction limits,           and           respectively, 

depend only on a single sample (or a single software) and are called single-sample prediction 

limits. Prediction limits involving two samples (or two software) can be defined similarly and 

are called two-sample prediction limits.  

2.7 Goodness-of-fit test (GOF) based on Laplace Statistic  

Software reliability analysis is an important activity that software developers usually 

undertake in order to make a trade-off decision for their product. NHPP provides many 
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models for software analysis. For one to get an appropriate NHPP model for a given failure 

data, GOF test have to be carried out. In literature there are many GOF tests that have been 

developed for NHPP models. Most of these tests have been carried out on PLP. Other tests 

such as conditional probability integral transformation (CPIT) require the model to have non-

trivial sufficient statistics. GOF test based on the Laplace statistic has been found to be most 

powerful test in a large number of NHPP models with intensity function of the form 

( , )it   (Zhao and Wang, 2005). 

Suppose a repairable system is observed for  unit of time and that the number of failures 

that occurred between the time interval 0 and t is denoted by ( )N t . The failure times are 

denoted by 1 20 nt t t      and the data are said to be time-truncated. If the failure 

times 1 2,t t  are NHPP with intensity function ( )t  from a well-known property of NHPP, 

the transformed stochastic process 1 2( ), ( ),t t   is HPP with parameter 1, where 

0

( ) ( )

t

t u du    is cumulative intensity function corresponding to ( )t . The problem at hand 

was to check if the model is suitable for the given data. This is taken as the problem of GOF 

with the null hypothesis: 

0 :H  the failure process is a NHPP with intensity function ( , )it  . 

where  and  are unknown parameters. For this case we choose the famous Laplace test 

statistic. 

012

1 0

( , ) 1

( , ) 2

n
i

n n
i

t
S



 

 
  

 
 .             (15) 

where 0 is the true value of parameter  which in our case is not there and therefore must be 

estimated from the data using NR iterative method. Parameter  disappears in Laplace test 

statistic and thus it is not necessary to know . Let ˆ
n  be the MLE of  , if ˆ

n  is used in 

place of 0 in equation (15), we get; 

12

1

ˆ( , ) 1

ˆ 2( , )

n
i n

n n
i n

t
S



 

 
    

 .             (16) 
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The test at   level is: Reject 0H if  

2

ˆ( )n nS z   .                  (17) 

where 
2

z is the upper 
1

2

th quartile of the standard normal distribution. This is so because, 

(Zhao and Wang, 2005) showed that 

(0, ( ))d

nS N                     (18) 

where  
2

1

2

12 1 ( , ) ( , )
( ) 1

( , ) 2

u
E I

  
  

   

  
   

   
.  

2.8 Summary 

From literature, it is evident that a lot of work have been done by researchers on Musa – 

Okumoto model. They are majorly on parameter estimation using MLE and Bayesian 

approach. However, there is no literature on both classical and Bayesian prediction on Musa 

–Okumoto model and this study has presented a single-sample Bayesian predictive analyses 

on the model when non-informative and informative priors are considered. 
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Introduction  

In this chapter we present methodologies and materials that were used in this study. First we 

present the four issues associated with software development testing then the source of data 

that will be used in illustration, simulation study and finally how the data was analysed. 

3.2 Predictive issues and Bayesian Approach 

The study was limited to the development procedures that were used to address four issues in 

single sample prediction associated with software development testing program. The 

coverage probability of the credible set was also addressed by the study. 

The issues that were addressed in one- sample development program are: 

A:  What is the probability that at most k software failures will occur in the future time period 

    ] with T  ? 

B:  Given that the pre-determined target value     for the failure rate of the software 

undergoing development testing is not achieved at time T, what is the probability that the 

target value     will be achieved at time      ? 

C:  Suppose that the target value     for the software failure rate is not achieved at time T, 

how long will it take so that the software failure rate will be attained at    ? 

D: What is the upper prediction limit (UPL) of              with level  .   being a 

pre-determined value greater than T? 

The study adopted Bayesian approaches based on informative and non-informative priors to 

develop predictive distribution and derive explicit solutions to the four problems mentioned 

above. Informative and non-informative prior distributions for both parameters   and   were 

adopted by the study. For the case of informative prior distributions, the study assumed that 

the parameters   and   both follow a gamma distribution with parameters a, b and c, d 

respectively where a, b, c and d are known, i.e-                and               . 

 

3.3 Source of data 

Secondary software failure data was used to illustrate the methodologies that were developed. 

The study used secondary software failure data in the form of execution times between 

successive failures from one software system (Xie et al., 2002). The study assumed that the 

failure times follow the NHPP with intensity function given in Equation (11). Before the data 
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was applied to the model, Goodness of fit test was performed to check whether the model fits 

well to the data. The study used Laplace test statistics to check goodness of fit for the model. 

3.4 Simulation Study 

Simulated data from Musa- Okumoto model (1984) was also used to illustrate the 

methodologies that was developed and to evaluate the coverage probability of the credible 

sets. The simulated data was assumed to follow NHPP with intensity given in equation (11). 

The study adopted the thinning method for simulation using the following algorithm: 

Step 1: Generate points in the NHPP N(t) with intensity function ( )t in the fixed interval  

0(0, )t  . If the number of points generated, n , is such that 0n  , exist. There are no 

points in the process ( )N t  

Step 2: Denote the ordered points by 1 2, ,..., nT T T . Set 1i  and 0k   

Step 3: Generate iU , uniform distribution between 0 and 1. If ( ) / ( )a

i i iU T st T  , set 

1k k   and k iT T  

Step 4: Set 1i i  . If ai n st , then go to step 3. 

 The Programs for R- language (version 3.4.0) were developed to help in simulation of the 

data. 

 

3.5 Data analysis 

The study used both secondary and simulated software failure data. The analysis of both 

secondary and simulated data was done using a Statistical package called R-language version 

3.4.0. For cases where closed forms of predictive distributions and predictive inferences for 

the single sample case for both informative and non-informative priors were unavailable, 

MCMC integration algorithm was used to compute predictive estimates. The program codes 

for obtaining predictive distributions and predictive inferences using simulated and secondary 

data were developed. 
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CHAPTER FOUR 

RESULTS AND DISCUSION 

4.1 Results for predictive issues 

In this chapter four issues A, B, C and D as listed in chapter three associated with software 

development testing program have been presented. The four issues that were addressed are 

outlined as propositions and their proof given. Predictive distributions were derived using 

Bayesian method. In this thesis, it is assumed that a reliability growth testing is performed on 

a computer software system and the number of failures in the time interval (0, ]t , denoted by 

( )N t  is observed. It is also assumed that { ( ), 0}N t t   follows the NHPP with intensity given 

in equation (11). Let 1 20 t t    be the successive failure times. When testing stops after a 

pre-determined n  number of failures is observed, the failure data is said to be failure-

truncated. We denote the n  failure times by  
1

nf

obs i i
Y t


  where 1 20 nt t t     a time-

truncated data is when testing is observed for fixed time t . We denote the corresponding 

observed data by 1{ , , , ; }t

obs nY n t t t  , where 10 nt t t    . 

Let 

f

n obs

t

obs

t if the observed data are Y
T

t if the observed data are Y





    

Let obsY  represent f

obsY  or t

obsY . The joint density distribution of obsY  is therefore (Crowder et 

al., 1994): 

1 ( ln(1 ))

1

( / , ) ( ) (1 )
n

n T

obs i

i

f Y t e        



             0, 0             (19) 

Case 1:   , the shape parameter is known, we adopt the following non – informative prior 

 distribution for   : 

1
( ) , 0  


      (20) 

The posterior distribution of   can be obtained from equation (12) as; 

0

( / , ) ( )
( / )

( / , ) ( )

obs
obs

obs

f Y
h Y

f Y d

   


    






.  

Substituting equation (19) and (20) we have 
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1 1 ( ln(1 ))

1

1 1 ( ln(1 ))

10

(1 )

( / )

(1 )

n
n n T

i

i
obs n

n n T

i

i

t e

h Y

t e d

 

 

  



   

   





   













   (21) 

Considering the denominator, we get: 

1 1 ( ln(1 )) 1 1 ( ln(1 ))

1 10 0

(1 ) (1 )
n n

n n T n n T

i i

i i

t e d t e d          
 

       

 

     . 

                                          

1

1 ( ln(1 ))1

0

(1 ) ( )
(ln(1 ))

(ln(1 )) ( )

n
n

i n
n Ti

n

t n
T

e d
T n

 

 


 





  

 



 


    (22) 

  

                                                        

1

1

(1 ) ( )

(ln(1 ))

n
n

i

i

n

t n

T

 







 





 . (23)  

The integral part of equation (22) integrates to 1 since the integrand is gamma pdf with 

parameters n  and ln(1 )T . Thus equation (22) reduces to equation (23). Equation (21) 

therefore becomes 

 ln(1 )1 1

1

1

1

(1 )

( / )

(1 ) ( ) / (ln(1 ))

n
Tn n

i

i
obs n

n n

i

i

t e

h Y

t n T

 
  



  

  











  




 which reduces to; 

1 1 ( ln(1 ))( / ) [ ( )] (ln(1 ))n n T

obsh Y n T e          .   (24) 

Let y  be the random variable being predicted. The predictive density of y  from equation 

(13) is; 

0

( / ) ( / ) ( / )obs obs obsf y Y f y Y h Y d 


  .   (25) 

Hence, the Bayesian UPL of y  with level , denoted as ( )

Uy  , must satisfy 

( )

( / )
Uy

obsf y Y dy






  .   (26) 

 Case 2: The shape parameter   is unknown; the study considered the following joint prior 

distribution of   and   where both parameters are assumed to be independent 
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1
( , ) , , 0    


  .   (27) 

Thus the corresponding joint posterior distribution for   and   is given as; 

1 1 1 ( ln(1 ))

1

1 1 1 ( ln(1 ))

10 0

(1 )

( , / )

(1 )

n
n n T

i

i
obs n

n n T

i

i

t e

h Y

t e d d

 

 

  

 

    

    



 

    













.  (28) 

Considering the denominator of equation (28) we obtained 

 1 1

10

( ) (1 ) ln(1 )
n

nn

i

i

n t T d   


 



    and substituting it equation (28) we have; 

1 1 1 ( ln(1 ))

1

1 1

10

(1 )

( , / )

( ) (1 ) (ln(1 ))

n
n n T

i

i
obs n

n n

i

i

t e

h Y

n t T d

   

 

   

    





  







  




    (29) 

The integral part of the denominator of equation (29) does not have closed form and thus the 

study employed the MCMC integration algorithm to obtain its value. The value obtained 

from the MCMC integration is denoted by a constant value k, hence

1 1

10

(1 ) (ln(1 ))
n

n n

i

i

k t T d   


  



    . Therefore equation (29) reduces to; 

1 1 1 1 ( ln(1 ))

1

( , / ) [ ( )] (1 )
n

n n T

obs i

i

h Y k n t e           



   .  (30) 

Equation (30) is similar to equation (24), let y  be the random variable to be predicted. The 

predictive density of y  from equation (13) is; 

0 0

( / ) ( / , , ) ( , / )obs obs obsf y Y f y Y h Y d d     
 

     (31) 

and the Bayesian UPL denoted by Uy  of y  with level  similar to equation (22) is; 

( / )
Uy

obsf y Y dy


  .   (32) 
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4.2 Main results for prediction using non-informative priors 

Preposition 4.2.1. 

The probability that at most k  failures will occur in the time interval ( , ]T   with T   is 

1 1

1

0

1
ln

1[ln(1 )]

1 [ln(1 )]1
ln

1

(1 )
( ) 1

ln
( )! ( ) [ln(1 )] 1

j

n n k

n j
j n

k

n
n

j n
in k

i

j
j n

Tj nT
if is known

n

T

t
j

d if is unknown
d j n n T







 

 


 
 





 






   
   

    
              


   
  

     




 







  (33) 

   

 

Proof 

We first state the following identity without proof: That is 

  1

( ; , )

( ) ( ) ( ) ( ) / !
m

m

D m a b

dF t dF t F b F a m    

where m  is any positive integer, a  and b  are two real numbers such that a b , ( )F t  is an 

increasing and differentiable function and  1 1( ; , ) ( , ) :m mD m a b t t a t t b    . 

 The probability that at most k  failures will occur in the interval ( , ]T   is

 Pr ( ) / .k obsN n k Y     When   is known, we have 

 
0

Pr ( ) / , . ( / )k obs obsN n k Y h Y d    


     (34) 

where ( / )obsh Y  is given by equation (24) and 

Pr[ ( ) / , ] ( , ( ) / ) / ( / )
n k

obs obs obs

j n

N n k Y f Y N j f Y    




    .  (35) 
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From equation (19), we have

1 [ ln(1 )]

1

( / ) (1 )
n

n n T

obs i

i

f Y t e        



 
 and

1
( ; , )

1

( , ( ) / ) ( , ,..., , ( ) )
j

obs obs n j
D j n T

n

f Y N j f Y x x N j dx


  


 

      

 [ ln(1 )] 1

( , , )
1 1

(1 )
j j

j j T

i
D j n T

i n

e t dt 


    


  

     

                        1 [ ln(1 )] 1

( , , )
1 1 1

(1 ) (1 )
j jn

j j T

i
D j n T

i n n

t e t dt 


      


    

     . (36) 

Solving the integral part of equation (36), we proceed as follows: 1

0

1
(1 ) ln(1 )

t

t dt t 


    

substituting the limitsT  and  we obtain 
1 1

ln
1 T



 

 
 
 

 and substituting it into integral part 

of equation (36) we have 

1

( , , )
1 1

1
ln

11
(1 )

( )!

j n

j j

j nD j n T
n n

T
t dt

j n













   

  
  

   


  .  (37) 

Substituting equation (37) into equation (36), we have 

1 [ ln(1 )]

1

1
ln

11
( , ( ) / ) / ( / ) (1 )

( )!

j n

n
j j

obs obs i j n
i

T
f Y N j f Y t e

j n

 




     





  




  
  

    


   

which reduces to 

1
ln

1 1
ln

1
( , ( ) / ) / ( / )

( )!

j n

Tj n

obs obs

e
T

f Y N j f Y
j n




 



  

  
  

   
  
  

   


.  

Thus equation (35) becomes 

1
ln

1 1
ln

1
Pr[ ( ) / ]

( )!

j n
n k

Tj n

j n

obs

e
T

N n k Y
j n




 





  
   

   



  
  

    



.  (38) 

And hence equation (34) becomes 
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   ln(1 )1
1

ln
1

0

1
ln ln(1 )

1

( )! ( )

j n

n Tn

n k
Tj n

k

j n

T e
T

e d
j n n

 






 


  



 
      

   



  
  

  
 

   

 

 

 

   ln(1 )

0

1
ln ln(1 )

1 ln(1 )( )

( )! ( ) ( )ln(1 )

j n

n

j
n k

j n

j
j n

T
T j

e d
j n n j

 




 
 






 



  
  

   
  

  .  (39) 

The integral part of equation (39) integrates to 1 since it is a gamma distribution with 

parameters j  and ln(1 )  and hence equation (39) reduces to 

      

 

 

1
ln ln(1 ) ( )

1

( )! ( ) ln(1 )

j n

n

n k

k j
j n

T j
T

j n n















  
   

  
  

  .  (40) 

On re-arranging equation (40) we obtain 

 

 

1
ln

1ln(1 )

1 ln(1 )1
ln

1

j

n
n k

k n j
j n

Tj nT

n

T














  
  

     
  

     
  

  

  .  (41) 

This is the first formula of equation (33). 

When   is unknown, noting that  Pr ( ) / , ,obsN n k Y     and ( , / )obsh Y   are given by 

equation (38) and (30) respectively, we obtain 

            
0 0

Pr ( ) / , , . ( , / )k obs obsN n k Y h Y d d       
 

      

   

 
 ln(1 )1 1 1

10 0

1 1
(1 ) ln

( )! ( ) 1

j n
nn k

j n

i

j n i

t e d d
j n n T

 
    



 
   

 

  
    

    
    

                 
 

1 1

1

0

(1 )
( ) 1

ln
( )! ( ) 1ln(1 )

n
n

j n
in k

i

j
j n

t
j

d
d j n n T

 





 







   

   
     


  .  (42) 

Since the summation of k  is from n  to n k  and 'k s  are not the same, we substitute letter k  

with d in equation (42) where d k  as used in equation (30). Equation (42) implies the 

second formula in equation (33). 
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Preposition 4.2.2 

The probability that the target value tv  will be achieved at time  ( )T   is

 

11 ln(1 )

0

1 1
11 ln(1 )

1

0 0

1
ln(1 )

1
!

1
ln(1 ) (1 )

1
1

! ln(1 )

tv

h

n T

h

k h
n

n
tv in T

i

n
h

T

e if is known
h

T t

e d if is unknown
k h T




 




 




 







   


 


    
 



 
    

  



   
   
   


 
  

   
   

 






             (43) 

Proof 

Let ( / )obsf Y  denote the posterior of (1 ) .


   Hence, the probability that the target 

value tv  will be achieved at time  is given by 

 
0

Pr / ( / )
tv

tv obs obsY f Y d



          .   (44) 

When   is known, making transformation (1 )


   , we have
(1 )




 




  and 

(1 )d

d 

 

 


 . Consequently, the posterior density of   is 

( / ) ( / )obs obs

d
f Y h Y

d





 


    (45) 

 
1 1

ln(1 )(1 )1 (1 )
( / ) ln(1 ) .

( )

n
T

n

obsf Y T e
n




 




  
 

 

  
  

 
  

  
  

  

 

1
ln(1 )

11 1
ln(1 )

( )

n
T

nT e
n




 






 



  
   

   
  

   
   

.  (46) 

From equation (46), it can easily be noted that   has gamma distribution with parameters n  

and
(1 )

ln(1 )T






 . Noting that gamma and Poisson distributions have a relationship 

defined as 

1
1

00

( )
1

( ) !

a ha
a bx b

h

b b
x e dx e

a h




  



 


 .   (47) 
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 By substituting equation (46)and (47) into equation (44), we obtain 

1
1 ln(1 )

0

(1 )
ln(1 )

1
!

h

n T

h

T

e
h




 




 




 
   

 



 
 

 
  .  (48) 

Equation (48) implies the first formula of equation (43). 

When   is unknown, making transformation (1 )


   and   , we obtain

(1 )



 




  and .   Note that the Jacobian is ( , ) (1 )

( , ) .


  
  

 
   From equation (30), 

the joint posterior density of ( , )   is 

( , )
( , / ) ( , / )

( , )
obs obs

d
f Y h Y

d




 
   

 
 .   (49) 

1 1
1 (1 )
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1

(1 )
(1 ) (1 )

( , / ) .
( )

n
n

n i T
i
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f Y e
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
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

 
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 
 

 
 

 

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t
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 
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

 



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
 .  (50) 

 

By substituting equation (47) and (50) into equation (44), we obtain 
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 

1 1
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n
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T
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

 
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 
 
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 
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



   



  (51) 

which is the second formula of equation (43). 

Preposition 4.2.3 

For a given level , the time   required to attain tv is 

2 (2 ; ) 1

2 ln(1 )tv

n
T if is known

T

T if is unknown

 


   

 



 
  

  




 (52) 

Remark 1: For the second part of equation (52), is the solution to the equation   

 
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 
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
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


 .                        (53)                                        

Proof   

For given level , the time required to attain the target value tv is T    , where satisfies 

equation (44).When   is known, from equation (46), it can easily be seen that

(1 )
2 ln(1 )T 


 



 
 

 
 follows a chi-square distribution with 2n  degrees of freedom. Thus 

we have 
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   
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 
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ln(1 )
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n
T

  


 


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Making  the subject, we obtain 

2 (2 ; ) 1

2 ln(1 )tv

n

T

 


  
 


.  (56) 

From equation (56) we can obtain the time required to attain the target tv  with level  as 
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2
* (2 ; ) 1

2 ln(1 )tv

n
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 
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 
   
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.  (57) 

Equation (57) implies the first formula of equation (52). 

The time required to attain the target tv  with level  when   is unknown is * T    where 

 is the solution to 
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ln(1 )1

1 .
! ln(1 )

n
nh

in T
i

n
h

t
T

e d
k h T



 
   

 
 

 


 
   





   



 .              (58) 

Preposition 4.2.4 

The Bayesian UPL of
(1 )










 with level  is 

2

( )

(2 ; )

( ) 2(1 ) ln(1 )U

tv

n
if is known

T

if is unknown



 


   

 




  



                                                       (59) 

Remark 2: For the second part of equation (59), tv  is the solution to

 

1 1
(1 ) (1 )1 ln(1 )

1

0 0

(1 )
ln(1 )1

1 .
! ln(1 )

tv

n
nh

in T
tv i

n
h

t
T

e d
k h T

 
 

 

 
 

 


 
   





   



 .

             (60)

 

Proof 

For a pre-determined ( )T   , the Bayesian upper prediction limit for
(1 )










 with 

level  is ( ) ( )U

   satisfying  ( )Pr ( ) / .U obsY

      From equation (44) and (54), we have 

( ) (1 )( ) 1 ln(1 )

0

(1 )
ln(1 )

( )

n n T

T e d
n






 
 





  



   
  

 
 .                                                (61) 

From equation (61) it can easily been seen that 

( ) 2(1 )
2 ln(1 ) ( ) (2 ; )UT n

    


 
  

 
.                                                                     (62) 

Making ( ) ( )U

   the subject in equation (62) we have 
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2
( ) (2 ; )

( )
2(1 ) ln(1 )

U

n

T

  
 

 


 
.                                                                                        (63) 

Equation (63) implies the first part of equation (59). 

When   is unknown, the Bayesian UPL for
(1 )










with level is tv  where tv is the 

solution to 

 

1 1
(1 ) (1 )1 ln(1 )

1

0 0

(1 )
ln(1 )1

1 .
! ln(1 )

n
nh

in T
i

n
h

t
T

e d
k h T



 
   

 
 

 


 
   





   



 .

             (64)

 

 4.3 Main results for prediction using informative priors 

The joint density of obsY  as in equation (19) will also be used in this section. 

Case 1: When   the shape parameter is known, we adopt the following informative prior for

 , that is ( , )Gamma a b , where a andb  are known 

1( ) a be      .  (65)  

The posterior of is thus obtained from equation (12) as  

0

( / , ) ( )
( / )

( / , ) ( )

obs
obs

obs

f Y
h Y

f Y d

   


    






.  

Substituting equation (19) and equation (65) into equation (12) we have 

1 ln(1 ) 1

1

1 ln(1 ) 1

10

(1 ) .

( / )

(1 ) .

n
n n T a b

i

i
obs n

n n T a b

i

i

t e e

h Y

t e e d

  

  

   



    

    





    













  

                  

 

 

ln(1 )1 1

1

ln(1 )1 1

10

(1 )

(1 )

n
T bn n a

i

i

n
T bn n a

i

i

t e

t e d

 

 

  

   

    




    













. (66)  

Considering the denominator of equation (66) 
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 

 
ln(1 )1 1 1

10

(1 ) ( )

(1 )
ln(1 )

n
n

in
T bn n a i

i n a
i

t n a

t e d
T b

 

 

   



     




  

 
 


 . (67)  

Thus equation (66) reduces to 

     1 ln(1 )1( / ) ( ) ln(1 )
n a T bn a

obsh Y n a T b e
 

  
          . (68)  

Case 2: Shape parameter   is unknown, we assume the informative priors for  and   as 

( , )Gamma a b  and ( , )Gamma c d . This implies that 1( ) a be       and

1( ) c de      . Since  and   are independent the joint prior density ( , )    is given as

( , ) ( ). ( )       . Implying that 

1 1( , ) a b c de e         .  (69)  

 From equation (11) and (54) we obtain the joint posterior density of  and   as 

1 1 1 ln(1 )

1

1 1 1 ln(1 )

10 0

(1 )

( , / )

(1 )

n
a b c d n n T

i

i
obs n

a b c d n n T

i

i

e e t e

h Y

e e t e d d

   

   

    

 

      

      



 

      













  

                     

 

 

ln(1 )1 1 1

1

ln(1 )1 1 1

10 0

(1 )

(1 )

n
T bn a n c d

i

i

n
T bn c d n a

i

i

t e e

t e e d d

 

 

  

    

       



 
       






  

  
  



 

  

 

 

 

ln(1 )1 1 1

1

1 1

1

0

(1 )

(1 )

( )
ln(1 )

n
T bn a n c d

i

i

n
n c d

i

i

n a

t e e

t e

n a d
T b

 



  

 




       



   












 
 






 . (70) 

Letting 
 

1 1

1

0

(1 )

ln(1 )

n
n c d

i

i

n a

t e

p d
T b

 




   









 


  equation (70) reduces to 

   1 ln(1 )1 1 1

1

( , / ) ( ) (1 )
n

T bn a n c d

obs i

i

h Y p n a t e e
     

        



    . (71)  

 

Preposition 4.3.1 
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The probability that at most k  failures will occur in the interval ( , )T  with T   is 

 

 

 

 

 

1 1

1

1

1

1

1

(1 )

ln(1 )
0

ln1ln(1 )ln(1 )

1ln(1 ) ln(1 )ln

( )

( )! ( )

n
n c d

i

i

j a

j
a n

n k
T

n j
j n

T
k

t en k

b
j n

j aT bT b
if is known

n ab b

j a
d if is unknown

j n p n a











 






 


 

   










 


 

 


          
              

 

  



 



   

(72) 

 

Proof 

The probability that at most k  failures will occur in the interval ( , )T   is

 Pr ( ) /k obsN n k Y    , when   is known, we have 

 
0

Pr ( ) / , ( / )k obs obsN n k Y h Y d    


     (73)  

where ( / )obsh Y  is given by equation (68) and 

 Pr ( ) / , ( , ( ) ) / ( / )
n k

j
obs obs obs

j n

N n k Y f Y N f Y   




    . (74)  

From equation (15) 1 ln(1 )

1

( / ) (1 )
n

n n T

obs i

i

f Y t e        



    

 and 

1

1( ; , )

( , ( ) ) ( , , , , ( ) )
j

j
obs obs n j

nD j n T

f Y N f Y x x N j dx



 

 

      

ln(1 ) 1

1 1( ; , )

( , ( ) ) (1 )
j j

j j Tj
obs i

i nD j n T

f Y N e t dt 




     

  

      

 1 ln(1 ) 1

1 1 1( ; , )

(1 ) (1 )
j jn

j j

i

i n nD j n T

t e t dt 



      

    

     .  (75)  

Solving the integral part in equation (75), we proceed as follows: 
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1

0

1
(1 ) ln(1 )

t

t dt t 


   . Substituting the limitsT  and  we have

1 1
ln(1 ) ln(1 )T 

 
    which reduces to  1

1

1
ln

T









 . Therefore the integral part of 

equation (75) becomes 

 1

11

1 1( ; , )

ln1
(1 )

( )!

j n

j j
T

j n
n nD j n T

t dt
j n
















   

 
  


  . (76)  

 Substituting equation (76) to equation (75) we have 

 1

11 ln(1 )

1

ln1
( , ( ) ) (1 )

( )!

j n

j
Tj jj

obs i j n
i

f Y N t e
j n



 
   






  




 
   


 .  

From equation (74), we obtain 

 1

11

1

1 ln(1 )

1

ln1
(1 )

( )!
( , ( ) ) / ( / )

(1 )

j n

n
Tj j

i j n
ij

obs obs n
n n T

i

i

t
j n

f Y N f Y

t e







 

  


 

  









  



 
 


 






  

                          
   1

1
ln1

1
ln

( )!

T
j n

j n

T
e

j n










  


 
 


.  

Thus equation (74) becomes 

     1

1
ln1

1

1
Pr ( ) / , ln

( )!

T

n k j n
j n

obs T

j n

N n k Y e
j n







  





  





   
  

  (77)  

and equation (73) becomes 

 
 

   

1

1
ln

ln(1 )1 1

1

0

ln . ln(1 )
( )! ( )

Tn k j n n a T bj n n a

k T

j n

e
T b e d

j n n a






 


    




        





   
    

   

       
   ln(1 )1 1

1

0

ln(1 )
ln

( )! ( )

n a
n k j n

T bj a

T
j n

T b
e d

j n n a

 




 

  
    




 
 
    

   (78)  

         
   

 

1

1
ln ln(1 ) ( )

( )! ( ) ln(1 )

j n n a
n k

T

j a
j n

T b j a

j n n a b



 



 







      
    

  . (79) 

The integral part of equation (78) integrates to 1 since it is a gamma distribution with 

parameters j a  and ln(1 )T b  .   
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On re-arranging equation (79), it becomes  

 

 

 

 

1

1

1

1

ln1ln(1 )ln(1 )

1ln(1 ) ln(1 )ln

j
a n

n k
T

k n j
j n

T

j aT bT b

n ab b












 






 


            
        

 

 . (80)  

This implies the first formula of equation (72). 

When   is unknown, from equation (71) and equation (77) we have 

           0

0 0

Pr ( ) / , , ( , / )k obs bsN n k Y h Y d d       
 

      

 
     
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 
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Equation (81) implies the second formula of equation (72). 

Preposition 4.3.2 

The probability that the target value tv  will be achieved at time  T    is 
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    (82)            

Proof  

Let ( / )obsf Y  denote the posterior of (1 ) .


   Hence, the probability that the target 

value tv  will be achieved at time  is given by equation (44). When   is known, making 
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transformation (1 )


   , we have
(1 )




 




  and 

(1 )d

d 

 

 


 . Consequently, the 

posterior density of   is 
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Equation (83) follows a gamma distribution with parameters n a  and  (1 )
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. From the relationship of gamma and Poisson distribution  
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From equation (44), (83) and (84) we have 
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Equation (85) implies the first formula of equation (82). 

When   is unknown, making transformation on (1 )


   and   , we obtain
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Thus from equation (44), (84) and (86) we obtain, 
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Equation (87) implies the second formula of equation (82). 

Preposition 4.3.3 

For a given level , the time   required to attain tv   
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Remark 3: For the second part of equation (88),  is the solution of the equation 
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Proof 

For given level  , the time required to attain the target value tv is T    , where satisfies 

equation (44). When   is known, from equation (83), it can easily been seen that
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making  the subject 
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Hence T     is given as 
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Equation (93) implies the first formula of equation (88). 

When   is unknown, the time required to attain the target value tv  with level  is T    . 

Where  is the solution to   
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Preposition 4.3.4 

The Bayesian UPL of
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Remark 4: The second part of equation (95) is such that tv
  is the solution to 
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Proof 

For a pre-determined ( )T   , the Bayesian UPL for   with level  is ( ) ( )U

   satisfying
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This implies that 
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Making ( ) ( )U

   the subject from equation (98) we obtain 
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Equation (99) implies the first formula of equation (95). 

When   is unknown, the Bayesian UPL for   with level  is tv
  where tv
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4.4 Real Data Examples for Bayesian Prediction  

Table 4.1 is the real data on the time between failures which has been use to illustrate the 

developed methodologies for the one-sample Bayesian predictive analyses (Xie et al., 2002) 
 

Table 4.1: Time between Failures Data. 

Failure 

No 

 

Time 

between 

failures 

 

Cumulative 

time 

between 

failures 

 

Failure No. 

 

Time 

between 

failures 

 

Cumulative 

time 

between 

failures 

 

1  

2  

3  

4  

5  

6  

7  

8  

9  

10  

11  

12  

13  

14  

15  

30.02  

1.44  

22.47  

1.36  

3.43  

13.2  

5.15  

3.83  

21  

12.97  

0.47  

6.23  

3.39  

9.11  

2.18  

30.02  

31.46  

53.93  

55.29  

58.72  

71.92  

77.07  

80.90  

101.90  

114.87  

115.34  

121.57  

124.96  

134.07  

136.25  

16  

17  

18  

19  

20  

21  

22  

23  

24  

25  

26  

27  

28  

29  

30  

15.53  

25.72  

2.79  

1.92  

4.13  

70.47  

17.07  

3.99  

176.06  

81.07  

2.27  

15.63  

120.78  

30.81  

34.19  

151.78  

177.50  

180.29  

182.21  

186.34  

256.81  

273.88  

277.83  

453.93  

535.00  

537.27  

552.90  

673.68  

704.49  

738.68  

 

4.4.1 Parameter estimation using maximum likelihood estimation 

Parameter estimation for NHPP model to be used in software reliability analysis is of primary 

importance. Parameter estimation was obtain by applying a technique of Maximum 

Likelihood Estimate (MLE) using Musa-Okumoto model. The MLE is consistent and 

asymptotically normally distributed as the sample size increases (Zhao, 1996). To obtain the 
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MLE of   and   for a sample of   units, we first take the log-likelihood of equation (19). The 

Log-likelihood is 

1

( , ) log log log(1 ) log(1 )
n
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i

n n t T      


      .             (101) 

Differentiating partially equation (101) with respect to  and  and equating the derivatives 

to zero in order to optimize the values of    and   we get their estimates. 
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Solving equations (102) and (103) for  and  we obtain; 
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Equations (104) and (105) do not have closed forms and the values of ̂ and ̂  can only be 

obtained numerically. There are number of numerical methods but this study used Newton 

Raphson (NR) as it converges faster than other methods (Lin and Chou, 2012). NR method 

was applied using R-program version 3.4.0 and by letting equation (103) be equal to ( )g b , 
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Taking derivative of ( )g b with respect to   we get; 
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The parameter ' 'b  is estimated by iterative Newton Raphson method using 1

( )

'( )

n
n n

n

g b
b b

g b
    

which is substituted in finding̂ . NR iterative method was applied to get the estimates of̂

and ̂  from the data in Table 4.1. The initial value of  was assumed to 0 0.0001  .The 
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Newton Raphson method depends on the initial guess being close to the true value. If this 

requirement is not satisfied the procedure might converge to a minimum instead of a 

maximum, or just simply diverge and fail to produce any estimates at all. Methods of finding 

good initial estimates depend very much on the problem at hand and may require some 

ingenuity. Applying NR iterative method on data on table 4.1 with Musa – Okumoto model 

we obtained the estimates for ˆ 0.008282448   and ˆ 15.285550499  . 

4.4.2 Goodness of Fit test for Musa – Okumoto model  

For the case of Musa – Okumoto since 
0

( ) ( )

t

t u du   , we have: 

( , ) ln(1 )u u    .                  (108)  

Therefore substituting in equation (16), we obtain the Laplace test for Musa - Okumoto; 

12

1

ˆln(1 ) 1

ˆ 2ln(1 )

n
n i

n n
i n

u
S



 

 
    

 .                (109) 

In order to determine the rejection region for the test statistic we need to derive the 

asymptotic properties of nS . To derive the asymptotic properties of nS , we first need to give 

the asymptotic properties of maximum likelihood estimator (MLE) ˆ
n  through a Lemma 

without proof. 

Lemma 4.1 Assume that the usual regularity condition for MLE apply to the function, 

( , )
( , ) ,0

( , )

u
f u u

 
 

 
  


. Then under 0H and conditionally on ( )N n  , it holds with 

probability 1 that the likelihood equation (105) admits a sequence of solution  ˆ
n satisfying 

 

.

0
ˆ a s

n                      (110) 

 

and 

 

1

0 0
ˆ( ) (0, ( ))d

nn N I                     (111) 

 

where 
2

2

log ( , )
( )

f u
I E






 
   

 
is the Fisher information. 
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The theorem below gives the asymptotic distribution of nS . 

Theorem 4.1 With the same assumption as in Lemma 4.1, and 0( , )( , ) tt 

 




 
 

uniformly for t , as 0  . Then, 

0(0, ( ))d

nS N   .                  (112) 

 

where 
 

 

2

2 2 2 2 2

6 2 (2 ) ln(1 )
( ) 1

ln(1 ) (5 2 ) ln(1 ) 2

  
 

      

  
 

     

 for Musa – Okumoto 

model. In this thesis we only derived ( )  for Musa – Okumoto model as the theorem was 

proved by Zhao and Wang, (2005). From Lemma 4.1 and equation (108), it can easily be seen 

that  

( , )
(1 ) ln(1 )

f u
u




 


 
.                 (113) 

 

Taking logarithms on both sides we obtain; 

 

log ( , ) ln ln(1 ) ln(ln(1 ))f u u        .              (114) 

 

The first and second derivative of equation (114) we have; 

 

log ( , ) 1 (1 )

(1 ) ln(1 )

f u u

u

 

    

 
  

  
 

 

 

2 2

22 2 2

log ( , ) 1 ln(1 ) 1

(1 ) ln(1 )

f u u

u

 

   

  
   

  
.               (115) 

 

For 
2

2

log ( , )
( )

f u
I E






 
   

 
 and substituting equation (115) we have; 

 

 

2

22 2

1 ln(1 )
( )

(1 ) ln(1 )

u
I E

u




  

 
     

   
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 

2

22 2

1 ln(1 )

(1 ) ln(1 )

u
E

u



  

  
   

  
               (116) 

 

where 
2 2

2 2

0

( , )
(1 ) (1 )

u u
E f u du

u u




 

 
 

  
  which we obtain; 

2 2

2 3

0
(1 ) ln(1 ) (1 )

u u
E du

u u




  

 
 

   
  

2 2

2

2 (1 ) 2(1 ) ln(1 )

2 (1 ) ln(1 )

    

  

     


 
.              (117) 

Hence  

2 2 2 2

2 2 2 2

1 ln(1 ) 2 (1 ) 2(1 ) ln(1 )
( )

(1 ) [ln(1 )] 2 (1 ) ln(1 )
I

       


     

       
  

   
 

    
2 2 2 2

2 2 2

(5 2 ) ln(1 ) 2

2 (1 ) [ln(1 )]

     

  

  


 
.                (118) 

Since ( , ) ln(1 )     , thus 

( , )

1

u u

u



 




 
.                  (119) 

Expectation of equation (119) is; 

 

0

( , )
( , )

1

u u
E f u du

u





 




 
 

     
(1 ) ln(1 )

(1 ) ln(1 )

  

  

  


 
.                       (120) 

 

1 ( , ) ( , ) (1 ) ln(1 )

2 2(1 ) (1 ) ln(1 )

u
E

      

     

    
  

    
 

 

      
2 (2 ) ln(1 )

2 (1 ) ln(1 )

  

  

  


 
.                   (121) 

 

From equation (118) and (120) ( )   can be obtained by substituting them in equation (107). 

Thus we obtain; 
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 

 

2

2 2 2 2 2

6 2 (2 ) ln(1 )
( ) 1

ln(1 ) (5 2 ) ln(1 ) 2

  
 

      

  
 

     

.             (122) 

To test the real data from Xie et al. (2002) on Table 1 for Musa – Okumoto model. It consist 

of 30n  and interfailure times up to the time 738.68  . To test Musa - Okumoto model, the 

MLE 
ˆ 0.008282448n 

and
ˆ( ) 0.9327387n  

. The value of the test statistic is

 -0.3446299nS 
. If we choose significance level 0.05 

2

ˆ0.3446299 ( ) 1.892902n nS Z    
and the p-value is 0.639394. So we do not reject 

Musa – Okumoto model. Since the Musa – Okumoto model fit well to the data, it was used to 

check on the methodologies derived. From Zhao and Wang (2005), ( )  for Goel – Okumoto 

was derived and to test the model on the same real data in table 1, MLE 
ˆ 0.003969n 

 and 

ˆ( ) 0.1046887n  
. The value of the test statistic is

0.5760702nS 
 . Similarly, we choose 

the significance level 0.05  , then 2

ˆ0.5760702 ( ) 0.6341587n nS Z    
 and the p – 

value is 0.03750259 . So we reject Goel – Okumoto model. 

4.4.3 Using Non – Informative Priors 

(A) Suppose we are interested in the probability k  that at most k failures will occur in a 

future time period ( , ] (180,250]T   . (i) When   is known, ( 0.008282448  ), using the 

first formula in equation (33), we have 

0 1 2 3 4 5

6 7 8 9 10 11

12 13

0.00204337, 0.01347748, 0.04653484, 0.11230530, 0.21351423, 0.34188371, 

0.48155675, 0.61554018, 0.73112395, 0.82215131, 0.88836847, 0.93328146,

0.96190403,

     

     

 

     

     

  14 150.97915241, 0.98903392, 0.994444044  

(ii) For the case when  is unknown, from the second formula of equation (33), we obtain 

0 1 2 3 4 5

6 7 8 9 10 11

12

=0.002423218, =0.015348190, =0.052195351, =0.122789747, =0.229662151, =0.362653362, 

=0.504636623, =0.639743372, =0.750133795, =0.836483617, =0.897655409, =0.941055333, 

=0.

     

     

 13 14 15963420189, =0.981411270, =0.989850595, =0.991582449  

Figure 4.1 shows the graph of desired probability of k when   is known and when it is 

unknown for non-informative prior. 
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Figure 4.1:The graph of the probabilities k  that at most k failures will occur in the time 

interval (180, 250] for the cases of   known and unknown for non-informative prior. 

 It can be noted that the probability of failure occurring depend on the length of the time 

interval. From the graph it can be seen that there is high probability that at most 15 failures 

will occur during that time interval when   is unknown as compared to when it is known. 

(B) Suppose the target value is given by 0.03tv  chosen arbitrarily. At the time 182.21T  , 

the MLE of the achieved failure rate for this software is 

ˆˆˆ(182.21) 0.05045615ˆ(1 182.21 )




 


, which is greater than tv  thus it cannot be 

achieved at time 182.21T  and development testing will continue. Suppose we want to find 

the probability that the target value tv will be achieved at the time 277.83h  . (i) When 

is known (say, 0.008282448  ), from the first formula in equation (43), we obtain 

 1.687506e-06  . Hence, the target value will not be achieved. (ii) when  is unknown, 

from the second formula in equation (43) we have 0.193896   based on the Monte Carlo 

1000L  . 
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(C) Since the target value tv was not achieved at 182.21T  , we want to know how long it 

will take for the target value to be achieved. (i) when  is known (say, 0.008282448  ), let 

0.90  , from the first formula in equation (52) we obtain 538.7523h   . This means that, 

it will take another 538.7523h in order to achieve the desired failure rate. (ii) when   is 

unknown, from second formula in equation (52) and Remark1, we obtain 414h   . Thus, it 

takes another 414 hours in order to achieve the desired failure rate when   is unknown. This 

shows a high reduction in time as compared to when   is known. (D) Given 900h  , from 

first formula in equation (59) the Bayesian UPL of 
1










with level 0.90  is given by 

( ) ( ) 0.02473799U

   . 

4.4.4 Using Informative priors 

In this section we have used gamma priors for both parameters. The values of parameters of 

informative priors ( , )Gamma a b and ( , )Gamma c d  are chosen arbitrarily as 

2, 1/ 2, 2a b c   and 1/ 2d  . 

(A) Suppose we are interested in the probability k  that at most k failures will occur in a 

future time period ( , ] (180,250]T   . Considering the case when  is known (i.e, 

0.008282448  ) , using the first formula in equation (72) we have

0 1 2 3 4 5

6 7 8 9 10 11

12 1

=0.01202933, =0.06169460, =0.16742455, =0.32202724, =0.49656381, =0.65870012, 

=0.78770083, =0.87805309, =0.93488273, =0.96747044, =0.98470892, =0.99320106,

 =0.99712719, 

     

     

  3 14 15=0.99884169, =0.99955271, =0.99983403 

Figure 4.2 shows the graph of probabilities that at most  k  failures will occur in the time 

interval (180, 250]  for   known for both informative and non-informative priors. From the 

graph it can be seen that the probabilities for informative prior is high as compared to that of 

non-informative. This is more seen at issue C, where there is high reduction of time required 

to achieve a predetermined target value in informative prior. 

(B) Suppose the target value is given by 0.03tv  . At the time 182.21T  , the MLE of the 

achieved failure rate for this software is
ˆˆˆ(182.21) 0.05045615ˆ(1 182.21 )




 


, which is 

greater than tv  thus it cannot be achieved at time 182.21T  and development testing will 

continue. Suppose we want to find the probability that the target value tv will be achieved at 
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the time 277.83h  . (i) When  is known (say, 0.008282448  ), from the first formula in 

equation (82), we obtain 0.0007319763  . In this case also as that of non-informative prior, 

the target value is unlikely to be achieved. (ii) When  is unknown, from the second formula 

in equation (82), we obtain 0.08730647  where the Monte Carlo 1000L  .  

 

Figure 4.2: The graph of the probabilities k  that at most k failures will occur in the time 

interval (180, 250] for the cases of   known for informative and non-informative prior. 

 (C) Since the target value 0.03tv  is not achieved at time 182.21T  . It is interesting now 

to know how long it will take in order to achieve the desired target value. (i) When   is 

known (say, 0.008282448  ), using the first formula in equation (88) and letting 0.90  , 

we obtain  242.3671h   . Thus, it will take another  242.3671hours in order to achieve the 

target value which is a significant reduction from the value obtained for the case of non-

informative prior. (ii) When  is unknown, from the second formula in equation (88) we 

have 147h   . It will take another 147 hours for the desired target value to be achieved 

when  is unknown. . (D) Given 900h  , when  is known (i.e, 0.008282448  ), from 

first formula in equation (95) the Bayesian UPL of 
1










with level 0.90  is given by 

( ) ( ) 0.01602707U

   . 
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4.4.5 Coverage Probability for Bayesian Upper prediction limit (UPL) 

Coverage probability (CP) of random interval [ ( ), ( )]L X U X   is the probability that the 

interval covers the true parameter , that is ( [ ( ), ( ))]) ( ( ) , ( ) )P L X U X P L X U X       . 

It should be noted that the interval is random not  .  In this thesis, coverage probability of 

Bayesian UPL is presented, this was calculated by repeated sampling through simulation. In 

simulation case, we simulated L = 1000 data sets. In each data set, parameters were estimated 

and 95%  Bayesian UPL were computed. In addition coverage probabilities for the UPL were 

calculated. 

 

Figure 4.3: Graph of Coverage probability of 95% Bayesian UPL against the number of 

iterations L=1000. 

From the Figure 4.3, all the coverage probabilities are close to the nominal 95% and this 

means that our Bayesian UPL is a good estimator. Similar observation is also made from the 

summary of coverage probability as shown in Table 4.2,  

Table 4.2: Summary of Coverage probabilities of 95% Bayesian Upper prediction limit. 

Min. 1
st
 

Quartile 

Median  Mean  3
rd

 

Quartile 

Max. 

0.9150 0.9360 0.9410 0.9414 0.9460 0.9630 

 

From the Table 2, it can be seen that 0.9150 and 0.9630 are the lowest and highest coverage 

probabilities with the mean of 0.9414.  From the results above of CP, Bayesian UPL is a good 

estimator and this can even be extended to real data. 



48 

 

CHAPTER FIVE 

SUMMARY, CONCLUSION AND RECOMMENDATION 

5.1 Introduction 

This chapter covers the summary of thesis, conclusion from the results and the 

recommendation for future work. 

5.2 Summary 

The study has presented results on Bayesian prediction analyses on software reliability. It 

mainly focuses on deriving Bayesian predictive distribution on single-sample case on four 

issues that relate to software development testing process. The derived methodologies has 

been presented on chapter four as preposition and were illustrated using real data on time 

between failures. Coverage probability of Bayesian UPL was computed using simulated data. 

5.3 Conclusion 

In software development, predictive analysis is very important as it helps the software 

developer to make a trade-off decision at the right time. The study used both non-informative 

and informative priors to derive posterior and predictive distributions for issues that relates to 

software development testing process. The derivations have been given as preposition in this 

thesis and their proof given .In all the cases when the shape parameter was known, solutions 

to posterior and predictive distributions had closed forms while when it is unknown, solutions 

had no closed forms and the study used Markov Chain Monte Carlo (MCMC). The 

methodologies developed were illustrated using real data and had explicit solutions. Coverage 

probability of Bayesian UPL was also computed and found to be a good estimator. These 

solutions are helpful to software developers in many instances such as resource allocation, 

when to terminate the testing process, modification needed in the software before 

termination. Bayesian approach was used as it is advantageous over classical approach as it is 

available for small sample sizes and allows the input of prior information about reliability 

growth process and provides full posterior and predictive distributions (Jun-Wu et al., 2007). 

5.4 Recommendation 

The analysis discussed in this thesis is quite useful tool for the software developers to plan 

and work out the details of the requirement for testing resources so that the product is ready 

for the release by its due date. It helps the organization to beat the intense competition by 

launching the reliable and good quality product well on time and thus retaining the present 

clientele and building future ones. 
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This study has considered and derived both posterior and predictive distributions for one – 

sample software on Musa – Okumoto (1984) model on the selected issues that may arise 

during software development. However, it will be interesting to look at two-sample 

prediction for Musa – Okumoto (1984) model considering procedures that Jun-Wu et al 

(2007) used. The procedures presented in this thesis can also be extended to other NHPP 

models such as Cox- Lewis process and the delayed S-shaped process. This is left open for 

future research. 
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