
 
 

COFINITE TOPOLOGICAL MANIFOLDS AND INVARIANCE OF TOPOLOGICAL 

PROPERTIES WITH RESPECT TO ALMOST CONTINUOUS FUNCTIONS  

  

 

 

 

 

 

 

 

Were Hezron Saka 

 

 

 

 

 

 

 

 

 

A Research Thesis Submitted to the Graduate School in Partial Fulfillment for the 

Requirements of the Award of Master of Science Degree in Pure Mathematics of Egerton 

University  

 

 

 

 

 

 

EGERTON UNIVERSITY 

APRIL, 2014  



ii 
 

DECLARATION AND RECOMMENDATION 

 

DECLARATION 

 

This thesis is my original work and has not been submitted in part or whole for an award in any 

university. 

 

Mr. Were H. S. 

SM12/3024/11 

Signature: _________________________________  Date: __________________ 

 

RECOMMENDATION 

 

This thesis has been submitted with our approval as supervisors for examination according to 

Egerton University regulations. 

 

 

Prof. Sogomo K. C. 

Egerton University 

Signature: ________________________________  Date: ____________________ 

 

 

 

Dr. Gichuki M. N. 

Egerton University 

Signature: ________________________________  Date: ____________________  

 

 

 

 

 



iii 
 

COPYRIGHT 

All rights reserved. No part of this research work may be reproduced, stored in retrieval system or 

transmitted in any form or by any means, electronic, mechanical, photocopying and recording 

without prior written permission of the author or Egerton University on that behalf. 

© 2013Were Hezron Saka 

All rights reserved 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

DEDICATION 

This dissertation is dedicated to my wife Rhoda A. Saka, my mother Yunia A. Were and my late 

father Samson Fred Were all of whom I attribute my success in life to their tireless efforts in my 

upbringing and great support in my academics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

ACKNOWLEDGEMENT 

First I want to thank God Almighty for giving me good life, health and energy through all tests in 

life. I owe my deepest gratitude to the Egerton University Council for their full masters degree 

scholarship they awarded me that enabled me to do this masters course. I also want to express my 

sincere appreciation to my supervisors: Prof. K. C. Sogomo for his guidance, patience, support, 

valuable suggestions and motivation throughout this work till it came to terms with reality and   

Dr. M. N. Gichuki whose knowledge, experience and gentleness generated sparkling suggestion 

right from the tittle to where this study has paused. The two worked with me, positively criticized 

this work and gave good ideas, valuable corrections and stylistic changes with a lot of dedications. 

They also provided me with the materials that were relevant to this work. I would also like to 

register my appreciations to Prof. J. O. Omollo the Dean Faculty of Science and the late                   

Dr. J. W. Mwangi the then Chairman Mathematics Department for having did everything possible 

and looked for me to come and be awarded the Scholarship. 

I am thankful to my parents especially my late father for his encouragements, my mother for her 

constant prayers, my brother (Paul Otieno) for his encouragements and to the rest of the family 

members for the list is too long to fit, your love, patience, moral and financial support throughout 

my school and University life were very vital. 

To my classmates W. Olivia and S. G. Macharia  and my other friends; P. A. Otieno, E. M. Njuguna  

and Z. M. Msyoka in this area of specialization, I am grateful for your support and encouragement 

during this masters degree especially on such times when things never seemed to work out well. 

Last but not least my thanks goes to the lecturers in the mathematics department for their 

encouragement and friendliness atmosphere they provided to me. To all and many others whose 

list not mentioned, I say ‘thanks’ though small word, it has a lot of appreciation which I will always 

remember. 

 

 

 



vi 
 

ABSTRACT 

Manifolds are generalization of curves and surfaces to arbitrary higher dimensions. They are of 

many kinds, one of them being topological manifolds. The main feature common to manifolds is 

that every point of the space is in one to one correspondence with a point in another space. 

Hausdorff manifolds have been developed on infinite dimensional spaces such as Banach spaces 

and Fréchet spaces. Topological properties of non-Hausdorff manifolds have been studied and the 

notion of compatible apparition points have been introduced for such non-Hausdorff manifolds. 

Among many generalizations of the notion of continuity, almost continuous functions have been 

used on both 
1

T  and 
2

T  spaces. In such spaces, the properties and characterization of almost 

continuous functions have been studied and interesting results have been obtained especially with 

the class of 
1

T  spaces. Invariance and inverse invariance of some topological properties have 

been investigated with respect to almost continuous functions and continuous functions. Manifolds 

have not been modeled on a 
1

T  space having cofinite topology. Invariance of topological 

properties such as compactness and its other notions have not been investigated from an infinite 

cofinite space to the Euclidean space with respect to almost continuous functions. This study has 

therefore investigated the invariance of these topological properties from the cofinite space to the 

Euclidean ℝn spaces with respect to almost continuous functions. Differentiable manifolds are 

among the most fundamental notions of modern mathematics as it is the cornerstone of modern 

mathematical science. The study has also obtained a cofinite manifold where almost continuous 

functions have been used as maps. Pseudoderivative on almost continuous functions has also been 

defined in this study and some of its properties have been stated. This has facilitated the 

development of pseudodifferentiable cofinite manifolds. Manifolds, especially the differentiable 

manifolds have applications in survey and physics. In physics, the applications are found in 

mechanics and electromagnetics where boundary value problems are solved in mesh generation. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background information 

Manifolds generalize the notion of curves and surfaces in two and three dimensions to higher 

dimensions. Examples of manifolds start with open domains in the Euclidean space ℝ𝑛. A 

manifold has been looked at in its broadest sense as a topological space locally homeomorphic to 

the Euclidean space ℝn of a fixed dimension without assuming the Hausdorff separation axiom 

(Baillif and Gabard, 2008). The definition of a topological manifold 𝑀 of dimension 𝑛 which is 

based on the properties of Hausdorffness (for every pair of distinct points 𝑝, 𝑞 ∈ 𝑀 there exists a 

disjoint open subsets 𝑈, 𝑉 ⊂ 𝑀 such that  𝑝 ∈ 𝑈 and  𝑞 ∈ 𝑉), second countability (there exists a 

countable basis for the topology of 𝑀) and that 𝑀 is locally Euclidean of dimension 𝑛 (every point 

in the manifold 𝑀 has a neighborhood that is homeomophic to an open subset of ℝn, that is            

Φ ∶ 𝑈 ⊂ 𝑀 ⟶ 𝔄 ⊂ ℝn ) was given by Lee (2000). This definition of topological manifold has also 

been shown in much of the mathematical literature. This shows that topological manifolds have 

been defined on Hausdorff spaces and a continuous function  have been used from these spaces to 

Euclidean ℝn spaces allowing manifolds to behave in the same way Euclidean spaces do. This 

holds since continuity is defined on 
2

T  spaces and above and its existence is also guaranteed by 

Urysohn’s lemma. The concept of Manifolds enables us to connect non-Euclidean spaces to some 

similar objects in the Euclidean spaces. Intuitively the charts give local coordinates on the 

manifolds and allow us to treat it like Euclidean space. Any local or global object defined on the 

manifold including functions, vectors and tensors will be linked back to Euclidean spaces through 

charts and atlases. A non - Hausdorff manifold was defined as a topological space which has a 

countable base of open sets and locally Euclidean of dimension 𝑛 (Kent et al., 2009). The article 

stated that one can easily show that every non-Hausdorff manifold is a 
1

T  space since every point 

in such a space has a Euclidean neighborhood showing that manifold can be defined on 
1

T  spaces. 

This relaxed the idea of a Hausdorff property, being independent of other conditions from the 

standard definition of topological manifold.  

Among many generalization of notion of continuity, almost continuous functions have been 

defined on both Hausdorff spaces and 
1

T  spaces. For the product space 𝑋 × 𝑌 which is a 
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completely normal Hausdorff space, where 𝑋 and 𝑌  are topological spaces and 𝑋 is connected, it 

was shown by Stallings (1959) that if 𝑓: 𝑋 ⟶ 𝑌 is an almost continuous function then the graph 

𝐺(𝑓) is connected. Given that 𝐴 ⊂ 𝑋  and  𝑓 ∶  𝑋 ⟶ 𝐴 is an almost continuous function in the 

sense of Singal and Singal (1968) which is a retraction of  𝑋 onto  𝐴, then 𝐴 is a closed subset 

of  𝑋  provided that 𝑋 is a Hausdorff space (Long and Carnahan, 1973). The properties of almost 

continuous functions were also studied where one of the theorems in the article defined almost 

continuous function on a first countable 
1

T  space  𝑋  to another first countable space 𝑌 (Long and 

McGehee, 1970). Other properties such as the composition of an almost continuous function 

𝑓: 𝑋 ⟶ 𝑌 and a continuous function : ,g Y Z that is :g f X Z  being almost continuous, 

was shown by Stallings (1959), where 𝑋, 𝑌and 𝑍 were considered topological spaces. Invariance 

and inverse invariance of some topological properties with respect to continuous functions and 

almost continuous functions have been studied (Gichuki, 1996). On separable locally convex 

topological vector spaces, one variant of the inverse function theorem have been developed where 

 𝐷𝛽𝑐,𝛾𝑐
 derivative at a point in a given open subset of a locally convex space have been shown 

(Sukhinin and Sogomo, 1985). 

1.2 Statement of the problem 

Topological manifolds have been modeled on various spaces such as convenient vector spaces, 

Hilbert spaces, Banach spaces and Fréchet spaces. These manifolds have been defined based on a 

Hausdorff property on such spaces. But manifolds have not been developed on 
1

T  spaces having 

cofinite topology (cofinite spaces). Invariance of topological properties such as compactness and 

its other notions have not been investigated from an infinite cofinite space to the Euclidean n
R

space with respect to almost continuous functions. Therefore the study have investigated the 

invariance of compactness and its other notions with respect to almost continuous functions from 

the cofinite space which is a 
1

T  space to the Euclidean ℝn space. A pseudoderivative on almost 

continuous functions has also been defined and its properties stated which has facilitated the 

development of cofinite topological pseudodifferentiable manifolds. 
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1.3 Objectives 

1.3.1 General objective 

To investigate the invariance of topological properties with respect to almost continuous functions 

from cofinite space to the Euclidean n
R spaces and develop a cofinite topological manifold using 

almost continuous functions as maps. 

1.3.2 Specific objectives 

1. To determine the invariance of topological properties from the 
1

T  space with cofinite 

topology (cofinite space) to the Euclidean  ℝn space with respect to almost continuous 

functions.            

2. To define pseudoderivative on almost continuous functions and find some of its    

properties. 

3. To develop topological manifold on a 
1

T  space with cofinite topology (cofinite space) 

using almost continuous functions as maps.      

1.4 Justification 

Cofinite topology as the coarsest topology satisfying the 
1

T  axiom, for which every singleton set 

is closed, is depicted on finite spaces as well as infinite spaces. When the space 𝑋 is infinite then 

the topology on it will not be 
2
,T  regular or normal as no two nonempty open sets are disjoint. 

Realization of invariance of topological properties in such kind of spaces with respect to almost 

continuous functions to Euclidean ℝn spaces may lead to generalization of the existing results on 

topological manifolds defined on Hausdorff spaces. It will also be a means of studying some 

topological properties that could not be easily studied in Euclidean space directly. Differentiable 

manifolds have been extensively studied due to their many applications in mechanics and 

electromagnetics. Generalization to pseudodifferentiable cofinite manifolds has however not been 

done yet and this could enhance the applications of manifolds in mechanics and electromagnetics. 

Modeling of topological manifolds on cofinite spaces will enable the properties of cofinite 

topology such as those of subspaces, separation and compactness and its other notions to be more 

useful on manifolds. Properties such as points of a 
1

T  space which are closed sets will also be 

useful in the modeled topological manifolds.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Overview of literature 

 Manifolds have been studied in both low and high dimensions. The classification theorem of two 

dimensional manifolds is known, the studies of three dimensional manifolds were pioneered by 

Poincaré in the 20th century and in the 1980s, Michael Freedman brought in the forefront of 

mathematical research the four dimensional manifolds (Lee, 2000). Manifolds are of many kinds, 

one of them being topological manifold. Topological manifold have been defined based on second 

countability, Hausdorffness and locally Euclidean spaces of dimension 𝑛. Continuity has been 

defined from topological manifold to Euclidean ℝn spaces. On a topological manifold, a 

superposition operator in the space of vector valued, bounded and continuous functions have been 

considered. The acting conditions and criteria of continuity and compactness have also been 

established (Dronka, 2010). In 1950s and 1960s, a broad definition of a manifold was given which 

omitted the point set axioms and allowed higher cardinalities and non-Hausdorff manifolds to be 

modeled. It also omitted finite dimension which allowed structures such as Hilbert manifolds to 

be modeled on Hilbert spaces, Banach manifolds to be modeled on Banach spaces and Fréchet 

manifolds to be modeled on Fréchet spaces. Manifolds have been modeled on convenient vector 

spaces, which are locally convex vector spaces that are C∞- complete (Kriegl and Michor, 1997). 

The topology of non-Hausdorff manifolds was investigated and applications to foliations where 

manifolds were necessarily 
1

T  spaces but not guaranteed to be Hausdorff were given         

(Gartside et al., 2008). Some topological properties of non-Hausdorff manifolds were reviewed 

and the notion of compatible apparition points for the non-Hausdorff manifolds were introduced 

where the properties of these points were studied (Kent et al., 2009).  

The concept of almost continuous function was studied for real valued functions on Euclidean 

spaces by Blumberg (1922). Almost continuous function had been defined differently       

(Stallings, 1959; Frolik, 1961; Husain, 1966; Singal and Singal, 1968). These concepts of almost 

continuous functions had been shown using examples that they are independent of each other 

(Mamata, 1971). Almost continuity generalizes the notion of continuity and every continuous 

function is an almost continuous function even though the reciprocal may not hold. To visualize 

this, consider two topological spaces X  and ,Y  each being the set of all real numbers with the 
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usual topology where the open sets are taken to be the open intervals in the real line, then the 

function :f X Y defined by:  

1
sin , 0

0 , 0

x
f x x

x




 

 

    is an almost continuous function that is 

not continuous at 0x  . This is so since this function oscillates near the point 0,x   hence its limit 

cannot exist at that point implying that the function cannot be continuous at the point 0x  .  

Almost continuous mapping have been introduced in several spaces and its properties and 

characterization have been studied. Some of the properties and several results concerning almost 

continuous functions have been studied and proved (Long and McGehee, 1970). Invariance and 

inverse invariance of some topological properties with respect to continuous functions and almost 

continuous functions have been studied and discussed by Gichuki (1996). Since all continuous 

functions are subsets of almost continuous functions, a property that is not preserved by continuous 

functions cannot be preserved by almost continuous functions. It had been established that among 

the class of 
1

T   spaces, invariance of topological properties with respect to continuous bijections 

(one to one and onto continuous functions) implies invariance of the same topological properties 

with respect to almost continuous bijections, and that if a property P is invariant of continuous 

functions, it must be invariant of continuous bijections and hence invariant of almost continuous 

bijections in the class of 
1

T  spaces (Gichuki, 1996). A remark was made that most of the 

interesting results with almost continuous functions are obtained with the class of 
1

T  spaces 

(Naimpally, 1966). The study of almost continuous path connected spaces showed that they are 

connected spaces (Herrington and Long, 1981). Almost continuous function on almost regular 

spaces were introduced by Shin and Lee (1983), where they studied the conditions of mappings 

under which the image of almost locally connected space is almost locally connected space. Some 

generalization of almost continuity in the sense of Singal and Singal (1968) were obtained by Noiri 

(1989) and showed that every nearly almost open and almost weakly continuous function is almost 

continuous in the sense of Husain (1966). 

The ordinary derivative at a point 𝑥 for any real valued function :f R R  has been defined in 

classical calculus and this has been obtained as a number. A generalization of this ordinary 

derivative of a real valued function of a single real variable to the case of vector valued functions 

of multiple real variables have been developed. This is known as Fréchet derivative. It extends the 
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concept of the derivative to operator in general normed spaces such as infinite dimensional 

function spaces and gives the best local linear approximation in the neighborhood of a point 

  𝑥 (Griffel, 1985). On separable locally convex topological vector spaces, one variant of the 

inverse function theorem has been developed where  𝐷𝛽𝑐,𝛾𝑐
 derivative at a point in a given open 

subset of a locally convex space have been shown (Sukhinin and Sogomo, 1985). Various notion 

of compactness such as countably compactness, limit point compactness, sequentially 

compactness and pseudocompactness have been studied by Yu (2012). The article looked at their 

useful properties and their relations on arbitrary topological spaces as well as on metric spaces. 

2.2 Cofinite space and almost continuous functions 

A subset 𝑈 of an infinite set 𝑋 is defined to be open if 𝑈 = ∅ or 𝑋 ∖ 𝑈 is finite. This defines a 

topology on 𝑋 called a cofinite topology. This infinite set  𝑋 together with the cofinite topology 

on it is known as the cofinite space (Deshpande, 1990). Properties of cofinite space such as 

compactness, connectedness, sequential compactness, separability and limit point compactness 

have triggered the investigation of invariance of topological properties with respect to almost 

continuous functions to the Euclidean ℝ𝑛 spaces. The culmination on this space is therefore 

achieved when a topological manifold is modeled using almost continuous functions as maps since 

a topology can be defined on it. 

Almost continuous functions as stated by Prakash and Srivastava (1977) were defined differently 

by Stallings (1959), Frolik (1961), Husain (1966) and Singal and Singal (1968) as follows: 

Let 𝑓: 𝑋 ⟶ 𝑌 be a function from a set 𝑋 into the setY . The set 𝐺(𝑓) = {(𝑥, 𝑓(𝑥))} is called the 

graph of .f  Given topological spaces  𝑋 and 𝑌, a function 𝑓: 𝑋 ⟶ 𝑌 is said to be almost 

continuous  if for each open set 𝑈 in 𝑋 × 𝑌 containing 𝐺(𝑓), there exists a continuous function 

𝑔: 𝑋 ⟶ 𝑌 such that 𝐺(𝑔) ⊆ 𝑈 (Stallings, 1959). According to Gichuki (1996), this definition of 

almost continuous functions implies that given any two neighborhoods 𝑈1 and 𝑈2 of 𝐺(𝑓) in       

𝑋 × 𝑌, there exists a function 𝑔: 𝑋 ⟶ 𝑌 such that 𝐺(𝑔) ⊆ 𝑈1⋂𝑈2 and that a similar results holds 

when one consider any finite number of neighborhoods of 𝐺(𝑓). A mapping 𝑓 ∶  𝑋 ⟶ 𝑌 is said to 

be almost continuous if for every open subset  𝑉 ⊂ 𝑌,  𝑓 ˉ ˡ(𝑉) ⊂ 𝐶𝑙(𝐼𝑛𝑡 𝑓 ˉ ˡ(𝑉)) by Frolik 

(1961). A different version of this concept of almost continuous function was also given by Husain 

(1966) as a function 𝑓 ∶  𝑋 ⟶ 𝑌 where 𝑋 and 𝑌 are topological spaces is almost continuous at 

  𝑥 ∈ 𝑋 if for each open set 𝑉 ⊂ 𝑌 containing 𝑓(𝑥),  𝐶𝑙(𝑓 ˉ ˡ(𝑉)) is a neighborhood of  𝑥. If 𝑓 is 
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almost continuous at each point of ,X  then 𝑓  is called almost continuous. Finally a definition 

given by Singal and Singal (1968) was that a mapping  𝑓 ∶  𝑋 ⟶ 𝑌 is said to be almost continuous 

at a point 𝑥 ∈ 𝑋  if for every neighborhood 𝑀 of  𝑓(𝑥) there is a neighborhood  𝑁 of  𝑥 such that            

 𝑓(𝑁) ⊂ 𝐼𝑛𝑡(𝐶𝑙(𝑀)). Thus 𝑓 is said to be almost continuous if it is almost continuous at each 

point 𝑥 of  𝑋.  

The concepts of almost continuous functions from one topological space into another which have 

been stated above are independent of each other. This can be shown by considering the following 

examples: 

1. Let ℝ represent the real numbers with the standard topology. Let 𝑓: ℝ ⟶ ℝ be given by 

 
,

,

x x irrational
f x

x x rational


 


  where 𝑓 is an almost continuous function that is not 

continuous (Long and McGehee, 1970). 

2. Let ℝ represent the real numbers with the standard topology and define 𝑓: ℝ ⟶ ℝ as 

 

1
sin , 0

0 , 0

x
f x x

x




 

 

 , where 𝑓 is an almost continuous function which is not 

continuous (Long and McGehee, 1970). 

3. Let ℝ represent the real numbers and 𝒯 be that it consists of ∅, ℝ and the complements of 

all countable subsets of ℝ. Let the set 𝑋 = {𝑎, 𝑏} and let  𝒯∗ = {𝑋, ∅, {𝑎}}. Let                

𝑓: (ℝ, 𝒯) ⟶ (ℝ , 𝒯∗) be defined as follows:  
,

,

a x rational
f x

b x irrational


 


. Then 𝑓 is an 

almost continuous function at each point of ℝ, but not continuous at 𝑥 ∈ ℝ if 𝑥 is rational 

(Singal and Singal, 1968). 

Example one above gives a function 𝑓 which is almost continuous in the sense of Husain (1966) 

but not almost continuous in the sense of Stallings (1959). Furthermore such a function 𝑓 is not a 

connected function, that is 𝑓 does not preserve connected subsets of 𝑋 and is not a connectivity 

function (the graph map 𝑔(𝑥) = (𝑥, 𝑓(𝑥)) from 𝑋 into 𝑋 × 𝑌 is not a connected function). 

Example two gives a function that is almost continuous in the sense of Stallings (1959), is 

connected and is a connectivity function but is not almost continuous in the sense of Husain (1966). 

Example three above shows that an almost continuous function in the sense of Singal and Singal 
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(1968) need not be an almost continuous in the sense of Husain (1966). From example one above, 

clearly an almost continuous function in the sense of Husain (1966) need not to be almost 

continuous in the sense of Singal and Singal (1968). An example of a function which is almost 

continuous in the sense of Singal and Singal (1968) but not in the sense of Stallings (1959) was 

constructed by Herrington et al. (1974). The article considered 𝑋 as the set of real numbers with 

the topology 𝒯 consisting of the usual open sets together with the sets of the form 𝑈⋂𝐷 where 𝑈 

was taken as an open set in the usual topology and 𝐷 the set of all irrational numbers. The article 

supposed that 𝑓: [0,1] ⟶ (𝑋, 𝒯 ) be defined by 𝑓(𝑥) = 𝑥. Then 𝑓 satisfied to be almost 

continuous in the sense of Singal and Singal (1968) and also in the sense of Husain (1966). Since 

the only continuous functions on [0,1] ⟶ (𝑋, 𝒯 ) are the constant functions, 𝑓 is not almost 

continuous in the sense of Stallings (1959). Almost continuous function may fail to be continuous 

as stated by Singal and Singal (1968). It considered (ℝ, 𝒯) to be the space as in example three 

above and 𝑈 to be usual topology for ℝ. Then an identity mapping  𝒾: (ℝ, 𝑈) ⟶ (ℝ, 𝒯) is an 

almost continuous function but not continuous at any point. 

Since these concepts of almost continuous functions are clearly independent of each other, this 

study has therefore considered the concept of almost continuous function as defined by Stallings 

(1959) while studying fixed point theorems for connectivity maps; in looking at the invariance of 

topological properties from cofinite spaces to the Euclidean ℝ𝑛 spaces, in defining 

pseudoderivative and finally in modeling cofinite topological manifolds. Pseudoderivative on 

almost continuous functions which is expected to facilitate the development of 

pseudodifferentiable manifolds on cofinite space is defined with almost continuous functions being 

approximated by a differentiable function for every neighborhood of zero. From this, it is 

important to focus on the concept of almost continuous functions whose graph can be 

approximated by the graph of the continuous function. Clearly it is the concept of almost 

continuous functions defined by Stallings (1959) where every open neighborhood of the graph of 

almost continuous functions contains the graph of some continuous functions.  

2.3 Topological manifold 

A topological space 𝑀 is a topological manifold of dimension 𝑛 if the following conditions hold:  

1. 𝑀 is a Hausdorff space, that is for any pair of distinct points 𝑝, 𝑞 ∈ 𝑀, there exists open 

neighborhoods 𝑝 ∈ 𝑈 and  𝑞 ∈ 𝑉  such that 𝑈⋂𝑉 = ∅ 
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2.  𝑀 is locally Euclidean, that is for any 𝑝 ∈ 𝑀 there exists a neighborhood 𝑈 of 𝑝 which is 

homeomorphic to an open subset 𝑉 ⊂ ℝ𝑛.  

3. 𝑀 has a countable basis of open sets, that is 𝑀 can be covered by countably many of such 

neighborhoods. 

This has been shown by Lee (2000). A coordinate chart on 𝑀 can be considered as a pair (𝑈, 𝜑) 

where 𝑈 ⊂ 𝑀 is an open subset and  𝜑: 𝑈 ⟶ ℝ𝑛 is an injective function such that 𝜑(𝑈) is open 

in ℝ𝑛. Since a manifold 𝑀 is one of the models that one can do some analysis locally, the charts 

on it should have some compatibility. Two coordinate charts (𝑈1, 𝜑1) and (𝑈2, 𝜑2) on the manifold 

𝑀 are said to be compatible if 𝜑𝑖(𝑈1⋂𝑈2) is open in ℝ𝑛  for some 𝑖 = 1,2 and              

 𝜑2𝜑1
−1: 𝜑1(𝑈1⋂𝑈2) ⟶ 𝜑2(𝑈1⋂𝑈2). A collection of these charts say 𝐵 = {(𝑈𝑖, 𝜑𝑖)} of pairwise 

compatible charts with ⋃ 𝑈𝑖𝑖 = 𝑀 is called atlas. A differentiable structure on 𝑀 is an equivalence 

class of atlases (or equivalently it is a maximal atlas on 𝑀). Clearly two atlases are said to be 

compatible if their union is an atlas and since compatibility is an equivalence relation; every atlas 

is contained in a maximal one; the union of all atlases compatible with it. Therefore when a 

topological manifold is equipped with a differentiable structure, then the space becomes a 

differentiable manifold (Lee, 2000). The idea of topological manifold being equipped with a 

differentiable structure and becoming a differentiable manifold is necessary in this study especially 

when modeling is done on a non-Hausdorff space using almost continuous functions as maps. The 

bijection between the cofinite spaces shown by the existence of the inverse function theorem 

require the composition of almost continuous functions similar to the case of continuous bijection 

shown above. Therefore the knowledge of topological manifold is necessary as the study consider 

its modeling on the cofinite space.  

2.4 Submanifolds  

Under this, the concepts like Fréchet derivative, partition of unity, implicit function theorem and 

inverse function theorem are given consideration since they guarantee the existence of 

submanifolds, bringing in differentiability on manifolds. A subset 𝑁 of a manifold 𝑀 is known as 

a submanifold if for each 𝑥 ∈ 𝑁, there is a chart (𝑈, 𝓊) of 𝑀 such that 𝓊(𝑈)⋂𝐹𝑈 where 𝐹𝑈 is a 

closed linear subspace of the convenient model space 𝐸𝑈. Then clearly 𝑁 is itself a manifold with 

(𝑈⋂𝑁, 𝓊|𝑈⋂𝑁) as charts (Kriegl and Michor, 1997). 
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A continuous linear operator 𝐿: 𝑁 ⟶ 𝑀 where 𝑁 and 𝑀 are Banach spaces is said to be Fréchet 

derivative of a function 𝑓: 𝑁 ⟶ 𝑀 at a point 𝑥 ∈ 𝑁 if 𝑓(𝑥 + ℎ) = 𝑓(𝑥) + 𝐿ℎ + 𝑜(ℎ) as ℎ ⟶ 0. 

It is noted that  𝐿 = 𝑓 ˈ(𝑥)  is the Fréchet derivative so as to distinguish it from a different kind of 

derivative in normed spaces and it comprises of all terms that are linear in ℎ (and possibly its 

derivatives). Higher order terms in ℎ (and derivatives) comprises the remainder term (𝑜(ℎ))  

(Griffel, 1985). The Fréchet derivative in infinite dimensional space is an extension of classical 

derivative in finite spaces. Most of the results of the classical derivatives can easily be generalized 

to Fréchet derivatives, for example the usual sum rule and product rule in case of functions of two 

or more variables apply to Fréchet derivatives. Other rules like chain rule and the implicit function 

theorem can as well be extended to Fréchet differentiable operators. This study is to define a 

derivative known as pseudoderivative by modifying the Fréchet derivative in the neighborhood of 

zero. The properties of this pseudoderivative are intended to be shown by the usual sum rule and 

product rule that have been known to be valid for classical derivatives and also extended to Fréchet 

derivatives. 

A partition of unity on a differentiable manifold 𝑀 is a collection {𝜓𝑖}𝑖∈𝐼 of smooth functions such 

that: 

1. 𝜓𝑖(𝑝) ≥ 0 for every 𝑝 ∈ 𝑀  

2. the collection of supports {𝑠𝑢𝑝𝑝 𝜓𝑖: 𝑖 ∈ 𝐼} is locally finite 

3.  ∑ 𝜓𝑖(𝑝) = 1𝑖∈𝐼  for every 𝑝 ∈ 𝑀 (Borisovich et al., 1985). 

Partition of unity has also been used to model manifolds bringing in the creation of submanifolds 

which makes manifold to be useful since analysis and calculus can be done on it.  This has been 

used in cases where modeling does not require a derivative. 

Inverse function theorem defined by letting 𝑃: 𝑈 ⊆ 𝐹 ⟶ 𝑉 ⊆ 𝐺 be a smooth map between Banach 

spaces. Suppose that for some 
0

f U the derivative 𝐷𝑃 (
0

f ) : 𝐹 ⟶ 𝐺 is an invertible linear map. 

Then we can find neighborhoods 𝑈̃ of 
0

f  and 𝑉̃ of  0 0
g P f   such that the map 𝑃 gives a one 

to one map of 𝑈̃ and 𝑉̃, and the inverse map 𝑃−1: 𝑉̃ ⊆ 𝐺 ⟶ 𝑈̃ ⊆ 𝐹 is continuous                

(Hamilton, 1982). This inverse function theorem is important as one is able to know when a 

differentiable function can be inverted locally and whether the local inverse is also differentiable. 
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This will be useful when modeling using almost continuous functions as maps since it proves the 

bijection between the two cofinite spaces.  

Implicit function theorem on the other hand was also defined by letting 𝐴, 𝐵 and 𝐶 be affine spaces 

modeled on the Banach spaces 𝑉, 𝑊 and 𝑋. Suppose 𝑈 ⊂ 𝐴 and 𝑉 ⊂ 𝐵 are open,   𝐹: 𝑈 × 𝑉 ⟶ 𝐶 

is smooth, (𝑝0, 𝑞0) ∈ 𝑈 × 𝑉 and 𝐹(𝑝0, 𝑞0) = 𝐶. Assume that the second partial derivative, 

(𝑑𝐹)(𝑝0,𝑞0)
2 : 𝑊 ⟶ 𝑋 is invertible. Then there exists a neighborhood 'U U  of 𝑝0 and a smooth 

function : 'g U V such that 𝐹(𝑝, 𝑔(𝑝)) = 𝐶 for all 'p U  and 𝑔(𝑝0) = 𝑞0. Furthermore    

 𝑑𝑔𝑝 = −(𝑑𝐹)
(𝑝,𝑔(𝑝))
2 ∘ (𝑑𝐹)

(𝑝,𝑔(𝑝))
1 . The knowledge of the implicit function theorem has been 

useful in modeling on spaces with Hausdorff properties especially where a derivative is needed for 

modeling. 

The inverse function theorem and implicit function theorem are related. It had been shown by 

Lerman (2005) that the inverse function theorem implies the implicit function theorem in finite 

dimensional spaces. The article considered the case of a function 2
:f R R  as follows; Assume 

that there is a point (𝑎, 𝑏) ∈  ℝ2 so that  
𝜕𝑓

𝜕𝑦
(𝑎, 𝑏) ≠ 0. Then there is a neighborhood 𝑈 of point 𝑎 

in ℝ, V of b  in ℝ and a function 𝑔: 𝑈 ⟶ 𝑉 so that 𝑓(𝑥, 𝑔(𝑥)) = 𝑐 for 𝑥 ∈ 𝑈. Here 𝑐 = 𝑓(𝑎, 𝑏). 

Proof 

Consider the map  𝐻(𝑥, 𝑦) = (𝑥, 𝑓(𝑥, 𝑦)). It is a map from ℝ2 to ℝ2. We argue that it is invertible 

near the point  (𝑎, 𝑏). Indeed, its differential 𝐷𝐻(𝑎, 𝑏) is 
   

1 0

, ,
f f

a b a b
x y

 

 

. Hence 

det  𝐷𝐻(𝑎, 𝑏) = 1 ⋅
𝜕𝑓

𝜕𝑦
(𝑎, 𝑏), which is not zero by assumption. Hence 𝐷𝐻(𝑎, 𝑏) is invertible. 

Hence by the inverse function theorem, the map 𝐻 is invertible near (𝑎, 𝑏). Denote the inverse 

by 𝐺. It is of the form 𝐺(𝑢, 𝑣) = (𝐺1(𝑢, 𝑣), 𝐺2(𝑢, 𝑣)) for some real - valued functions 𝐺2, 𝐺1 

defined on a neighborhood of 𝐻(𝑎, 𝑏) = (𝑎, 𝑓(𝑎, 𝑏) = (𝑎, 𝑐)) in  ℝ2.                                                    

Since 𝐺 and 𝐻 are inverses of each other,                                                                                                                                                                           

(𝑢, 𝑣) = 𝐻(𝐺(𝑢, 𝑣)) = 𝐻(𝐺1(𝑢, 𝑣), 𝐺2(𝑢, 𝑣)) = (𝐺1(𝑢, 𝑣), 𝑓(𝐺1(𝑢, 𝑣), 𝐺2(𝑢, 𝑣))) for all (𝑢, 𝑣) 

near   (𝑎, 𝑐). Therefore 𝑢 = 𝐺1(𝑢, 𝑣)……….. (i) and  𝑣 = 𝑓(𝐺1(𝑢, 𝑣), 𝐺2(𝑢, 𝑣))……… (ii). 
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Substituting (i) into (ii), we get 𝑣 = 𝑓(𝑢, 𝐺2(𝑢, 𝑣)) for all 𝑢 near 𝑎, all 𝑣 near 𝑐. Let v c , ,u x  

we get  𝑐 = 𝑓(𝑥, 𝐺2(𝑥, 𝑐)). Let  𝑔(𝑥) = 𝐺2(𝑥, 𝑐), we then have 𝑐 = 𝑓(𝑥, 𝑔(𝑥)).       

It had been noted by Lerman (2005) that the above result showing that the inverse function theorem 

implying the implicit function theorem is also valid in infinite dimensional spaces. The cofinite 

spaces on which modeling are to be done is an infinite dimensional spaces hence the fact that 

inverse function theorem implies implicit function theorem holds for them. Therefore during 

modeling, the inverse function theorem will be used which intern guarantee the existence of 

implicit function theorem that usually holds for modeling on Hausdorff spaces. The implicit 

function theorem on 
2

T  spaces has been used to get submanifolds thus using inverse function 

theorem in this study will lead to creation of submanifolds. 

2.5 Euclidean space ℝ𝒏  

The Euclidean space is the set of all n-tuples of real numbers ℝ𝑛 ∶= {(𝑝1, 𝑝2, … 𝑝𝑛|𝑝𝑖 ∈ ℝ)}.        

𝑝 ∈ ℝ𝑛 if and only if 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑛). The Euclidean space ℝ𝑛 is a topological space since 

there is a standard notion of open sets and the properties of a topological space hold. By the fact 

that a point in a topological manifold has a neighborhood that is homeomorphic to some open 

subset in the 𝑛 dimensional Euclidean ℝ𝑛 spaces, is enough to show that topological properties 

hold in the Euclidean spaces ℝ𝑛. The open sets in this space are the sets 𝑈 ⊂ ℝ𝑛 such that every 

point in 𝑈 lies in an open interval wholly contained in 𝑈, that is the point 𝑎 ∈ 𝑈  implies that there 

exists 𝑥, 𝑦 ∈ ℝ𝑛 such that 𝑎 ∈ (𝑥, 𝑦) ⊆ 𝑈. The open sets in the Euclidean space ℝ𝑛 can as well be 

described in terms of neighborhoods. For every 𝑥, 𝑦 ∈ ℝ𝑛, the open balls of some radius 𝜀 about 𝑥 

and 𝑦 gives the required neighborhoods, that is 𝐵𝑥 is an open ball of radius  
𝑟

2
  centered at 𝑥 and 

𝐵𝑦 an open ball of radius  
𝑟

2
  centered at 𝑦. Since this holds for every pair of distinct elements 

of  ℝ𝑛, it follows that the Euclidean space ℝ𝑛 is a Hausdorff space. The existence of open sets in 

the Euclidean space ℝ𝑛 is important especially when investigating the invariance of topological 

properties to that space. Since some topological properties hold in cofinite spaces, this study 

therefore investigates the invariance of these topological properties from the cofinite space to the 𝑛 

dimensional Euclidean spaces ℝ𝑛 with respect to almost continuous functions.  
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2.6 𝑻𝟏 - space and Hausdorff space (𝑻𝟐 - space) 

A topological space 𝑋 is a 
1

T  space if and only if for any pair of distinct points  𝑎, 𝑏 ∈ 𝑋, each of 

these points belongs to an open set which does not contain the other. In other words, there exists 

open sets 𝐺 and 𝐻 such that 𝑎 ∈ 𝐺, 𝑏 ∉ 𝐺 and 𝑏 ∈ 𝐻,  𝑎 ∉ 𝐻. These open sets 𝐺 and 𝐻 are not 

necessarily disjoint. A topological space 𝑋 is said to be a 
2

T  space if and only if for each pair of 

distinct points 𝑎, 𝑏 ∈ 𝑋 belongs respectively to disjoint open sets. In other words, there exists an 

open sets 𝐺 and 𝐻 such that 𝑎 ∈ 𝐺, 𝑏 ∈ 𝐻 and 𝐺⋂𝐻 = ∅ (Lipschutz, 1965). Every Hausdorff 

space is a 
1

T  space. This can be shown by letting (𝑋, 𝒯) be a Hausdorff topological space and 𝑥 

be an element of  𝑋. Suppose that  𝑦 ∈ 𝑋 ∖ {𝑥}, then  𝑥 ≠ 𝑦. So there must be neighborhoods 𝑈1 

of 𝑥 and 𝑈2 of 𝑦 with  𝑈1⋂𝑈2 = ∅. In particular  𝑥 ∉ 𝑈2. This shows that each element 𝑦 in          

𝑋 ∖ {𝑥} has a neighborhood 𝑈2 such that  𝑈2 ⊆ 𝑋 ∖ {𝑥}. Clearly 𝑋 ∖ {𝑥} is an open set. This means 

that {𝑥} is a closed set. As 𝑥 was an arbitrary element of  𝑋, this shows that (𝑋, 𝒯) is a 
1

T  space. 

In this study we consider a cofinite space that is a 
1

T  space and the  𝑛 dimensional Euclidean ℝ𝑛 

space that is a 
2

T  space, which by the above argument satisfies the conditions of a 
1

T  space. 

2.7 Summary of the literature review 

Manifolds have been modeled on several spaces that have either 
1

T  or 
2

T  as separation properties. 

This has led to the development of non-Hausdorff manifolds and Hausdorff manifolds 

respectively. Homeomorphisms have been used from Hausdorff manifolds to the Euclidean ℝ𝑛 

spaces. Invariance of topological properties has also been investigated with respect to continuous 

functions and almost continuous functions from one topological space (either a discrete or 

indiscrete) to another topological space. This study therefore intends to investigate the invariance 

of compactness and its other notions as topological properties from cofinite spaces which are 

infinite spaces to the Euclidean ℝ𝑛 spaces with respect to almost continuous functions. The study 

also seeks to define pseudoderivative on almost continuous functions which intern is intended to 

help in getting pseudodifferentiable cofinite manifolds. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Working technique 

The cofinite topology is a topology defined with open sets as complements of the finite subsets of 

the space (cofinite subsets of the space) along with the empty set. This gives the coarsest topology 

satisfying the 
1

T  axiom hence 
1

T  topology. This study has investigated the invariance of 

topological properties from the 
1

T  space with cofinite topology (cofinite space) to the Euclidean 

ℝn spaces with respect to almost continuous functions as defined by Stallings (1959). It has also 

defined a version of derivative called pseudoderivative on almost continuous functions. Such 

pseudoderivative has been obtained by modifying the Fréchet derivative                                              

𝑓(𝑥 + ℎ) − 𝑓(𝑥) = 𝑓 ˈ(𝑥)ℎ + 𝑟(ℎ) where for every neighborhood of zero 𝑈0, 𝑟(ℎ)  ⊂  𝑈0 . 

Where 𝑔(𝑥) for every 𝑥 is an almost continuous function, if there existed a continuous function 

𝑓(𝑥) such that  𝑔(𝑥) − 𝑓(𝑥) ⊂ 𝑈0 for every  𝑈0, 𝑔ˈ(𝑥) was taken as pseudoderivative on an almost 

continuous function 𝑔(𝑥) provided that  𝑔(𝑥 + ℎ) − 𝑔(𝑥) = 𝑔ˈ(𝑥)ℎ + 𝑟(ℎ). Since a cofinite 

topology can be defined on a cofinite space, this study has developed a topological manifold on 

such a cofinite space using almost continuous functions defined by Stallings (1959) as maps. 

Culmination of modeling have been achieved by showing the existence of an inverse function 

theorem as a bijection between the cofinite spaces. 

3.2 Some concepts used in developing results 

The concepts outlined below are going to be useful in developing results in chapter four especially 

when investigating the invariance of topological properties from cofinite space to the Euclidean 

space ℝ𝑛 with respect to almost continuous functions. 

3.2.1 Separable space 

A subset 𝐴 of a topological space 𝑋 is said to be a dense subset in 𝑋 if  𝐴 = 𝑋. This definition 

implies that a set 𝐴 is dense if and only if every nonempty open set of 𝑋 contains a point in 𝐴, 

meaning that any point in 𝑋 can be approximated by points in  𝐴. A topological space 𝑋 is said to 

be separable if it contains a countable dense subset. For instance a space ℝ is separable since ℚ is 

countable and it is dense for every real number is a limit of rationals; for the same reason the 

Euclidean space ℝ𝑛 is separable (Munkres, 2000). 
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3.2.2 First and Second countable spaces 

A space 𝑋 is a first countable space if at each point 𝑝 of the space, there is a countable local basis, 

that is a countable collection of open neighborhoods of p X such that each open set containing 𝑝, 

contains a member of the collection. A topological space 𝑋 is said to satisfy the second axiom of 

countability or to be second countable if it has a countable basis for its topology (Lipschutz, 1965). 

Clearly every second countable space is first countable for if  𝔅 is a countable basis for the 

topology of 𝑋, then the collection 𝔅𝑥 = {𝐵 ∈ 𝔅|𝑥 ∈ 𝐵} is a neighborhood basis for 𝑥 and it is 

countable. The Euclidean space ℝ𝑛 is second countable because the collection                                                           

𝔅 = {𝐵𝑟(𝑥)|𝑥 ∈ ℚ𝑛, 𝑟 > 0, 𝑟 ∈ ℚ} consisting of open balls of rational radius around points with 

rational coordinates is a basis for the topology and 𝔅 is a countable collection. Suppose 𝑋 is a 

second countable space; that is 𝑋 has a countable basis, then a subset 𝐴 of 𝑋 consists of one element 

from each of the basis elements. Clearly 𝐴 is countable and  𝐴 = 𝑋 showing that 𝑋 is separable 

(Gichuki, 1996). From this, clearly the Euclidean space ℝ𝑛 being a second countable space, is also 

a separable space. 

3.2.3 Compact space  

A family 𝒰 = {𝑈𝛼: 𝛼 ∈ 𝐴} of subsets of a space 𝑋 is called a cover for 𝑋 if  𝑋 = ⋃ 𝑈𝛼𝛼∈𝐴 . It is 

called an open cover if each 𝑈𝛼 is an open set. It is called finite if the index set 𝐴 is finite.                               

A sub-family 𝔄 of a cover 𝒰 is called a subcover for 𝑋 if  𝑋 = ⋃𝔄 = {𝒰𝛼: 𝑈𝛼 ∈ 𝔄}. A topological 

space 𝑋 is said to be a compact space if every open cover of 𝑋 has a finite subcover. A set 𝐾 in a 

space 𝑋 is said to be compact in 𝑋 if it is compact in the subspace topology (Deshpande, 1990). 

Equivalently a topological space 𝑋 is compact if it satisfies the finite intersection property; that is 

if every family of closed subsets whose intersection is empty contains a finite subfamily whose 

intersection is empty. The concept of compactness is not nearly as natural as the concept of 

connectedness. However it limits the number of open sets in a topology since every open cover of 

a compact topological space must contain a finite subcover. From the definition of compactness 

every finite space is compact. Compact topological spaces exhibit many of the delightful properties 

of closed and bounded subsets of ℝ. This concept is elaborately defined since its invariance and 

its other notions are investigated from the cofinite space to the Euclidean space ℝ𝑛 with respect to 

almost continuous functions. 
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3.2.4 Sequential compactness 

A topological space (𝑋, 𝒯) is a sequential space if and only if every sequentially open (closed) set 

is open (closed). Let 𝑋 be a topological space. If (𝑥𝑛) is a sequence of points of 𝑋 and if                 

𝑛1 < 𝑛2 < ⋯  < 𝑛𝑖 < ⋯ is an increasing sequence of positive integers, then the sequence 𝑦𝑖   

defined by setting 𝑦𝑖 = 𝑥𝑛𝑖
 is called a subsequence of the sequence 𝑥𝑛 (Munkres, 2000). Suppose 

𝑋 and 𝑌 are topological spaces and 𝑓: 𝑋 ⟶ 𝑌 is a map, then we say that 𝑓 is sequentially 

continuous at a point 𝑝 ∈ 𝑋 if for every sequence {𝑥𝑖}𝑖=1
∞  of elements in 𝑋 which converges at    

𝑝 ∈ 𝑋, {𝑓(𝑥𝑖)}𝑖=1
∞  converges to 𝑓(𝑝) as a sequence in  𝑌. If 𝑓 is continuous at 𝑝 in the usual sense, 

then 𝑓 is sequentially continuous at 𝑝. Conversely sequential continuity at 𝑝 implies continuity 

at 𝑝. Clearly continuity of a function at a point 𝑝 implies sequential continuity of the function at 

the same point and hence continuity of a function implies sequential continuity. Thus the space 𝑋 

is said to be sequentially compact if every sequence of points of 𝑋 has a convergent subsequence 

(Joshi, 1983). In the Euclidean space ℝ𝑛, every bounded sequence has a convergent subsequence. 

Clearly suppose  (𝑥𝑛) is a bounded sequence in ℝ𝑛, then it is contained in some closed and 

bounded cube 𝑀 and by Heine - Borel theorem, it is compact. This shows that 𝑀 is sequentially 

compact and implies that (𝑥𝑛) has a convergent subsequence. 

3.2.5 Heine - Borel theorem 

Let 𝐴 = [𝑎, 𝑏] be a closed and bounded interval and let 𝒢 = {𝐺𝑖: 𝑖 ∈ ℐ} be a class of open intervals 

which cover 𝐴, that is 𝐴 ⊂ ⋃ 𝐺𝑖𝑖 . Then 𝒢 contains a finite subclass, say {𝐺𝑖1
, … , 𝐺𝑖𝑚

} which also 

covers 𝐴, that is 𝐴 ⊂ 𝐺𝑖1
⋃𝐺𝑖2

⋃ … ⋃𝐺𝑖𝑚
 (Lipschutz, 1965). This theorem is important in this 

research as it supports the existence of other notions of compactness in the Euclidean space ℝ𝑛. 

This will enable the investigation of the invariance of these other forms of compactness from the 

cofinite space to the Euclidean space ℝ𝑛 with respect to almost continuous functions. 

3.2.6 Bolzano - Weierstrass theorem 

In a compact space 𝑆, a subset 𝐴 containing an infinite collection of points possesses a limit point 

(Cairns, 1961). For the case of Euclidean space ℝ𝑛, every bounded infinite subset of ℝ𝑛 has at 

least one accumulation point in ℝ𝑛. For if 𝐵 is a bounded infinite subset of  ℝ𝑛, it is contained in 

some closed cube 𝐼𝑛 = [−𝑛 × 𝑛] × [−𝑛 × 𝑛] × … × [−𝑛 × 𝑛]. Since 𝐼𝑛 is closed and bounded, it 

is compact by Heine - Borel theorem and since 𝐵 is an infinite subset of a compact set 𝐼𝑛, it must 
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have an accumulation point in ℝ𝑛. This theorem too supports the existence of other notions of 

compactness in the Euclidean space ℝ𝑛. Therefore this study investigates their invariance from the 

cofinite space to the Euclidean space ℝ𝑛 with respect to almost continuous functions. 

3.2.7 Pseudocompactness 

A topological space 𝑋 is said to be pseudocompact if every continuous real valued function on 𝑋 

is bounded. On the other hand, a topological space 𝑋 is said to be countably compact if every 

countable open cover of 𝑋 has a finite subcover. Every compact space 𝑋 is countably compact for 

if 𝐴 is a countable cover of a compact space 𝑋, then 𝐴 has a finite subcover since all open covers 

of 𝑋 have finite subcovers. This implies that 𝑋 is countably compact, though the converse of this 

statement may not hold. From the two definitions above, every countably compact space 𝑋 is 

pseudocompact although the converse does not hold. This is true since for a continuous function 

𝑓 on 𝑋, the set 𝑆𝑛 = {𝑥: |𝑓(𝑥)| < 𝑛} forms a countable cover of 𝑋 whose finite subcover yields a 

bound for the absolute value of 𝑓 (Steen and Seebach, 1970).  This shows that when a space 𝑋 is 

compact, then it is countably compact and hence pseudocompact. This statement therefore holds 

for the cofinite space which is compact and thus pseudocompact. 

3.2.8 Limit point compactness 

A point 𝑥 is a limit point of a subset 𝐴 of a topological space 𝑋 if and only if every neighborhood 

𝑈𝑥 of 𝑥 contains a point of 𝐴 other than 𝑥 (Kelly, 1975). A topological space 𝑋 is said to be limit 

point compact if every infinite subset of 𝑋, 𝐴 ⊂ 𝑋  has a limit point (Munkres, 2000). One would 

therefore say that a space is limit point compact if it contains no infinite closed discrete subspaces. 

A topological space is said to be weakly countably compact if every infinite set has a limit point. 

A space that is limit point compact is also known as weakly countably compact. In a 
1

T  space 

weak countable compactness is equivalent to countable compactness (Steen and Seebach, 1970). 

Hence in 
1

T  spaces countable compactness is equivalent to limit point compactness. Since 

cofinite space is a 
1

T  space which is compact, then it is also limit point compact. 

3.3 Some of the results developed on cofinite spaces 

These results that have been developed on cofinite spaces are important as they show some of the 

properties possessed by cofinite spaces. This will enable the investigation of invariance of these 
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properties from the cofinite spaces to the Euclidean space ℝ𝑛 with respect to almost continuous 

functions. 

3.3.1 Theorem 

Let 𝑋 be an infinite set with finite complement topology. Then any infinite subset 𝐴 of 𝑋 is dense 

in 𝑋 (Deshpande, 1990). 

Proof 

Since 𝑋 is an infinite set, by definition we know that the closed subset of 𝑋 are the finite subsets 

of 𝑋 and 𝑋 itself. Specifically the only infinite closed subset of 𝑋 is 𝑋 itself. Let 𝐴 be an infinite 

subset of 𝑋, then 𝐴 ⊆ 𝐴. Hence the closed set 𝐴 must be infinite; the only infinite closed subset is 

𝑋 and therefore  𝐴 = 𝑋. Hence 𝐴 is dense in 𝑋 thus making 𝑋 be a separable space.                      ■ 

3.3.2 Theorem  

Any space 𝑋 with cofinite topology is compact (Deshpande, 1990). 

Proof 

Let  𝑋 be an infinite space with cofinite topology. If 𝑉 is any open cover for 𝑋, then one of the 

members of 𝑉, say 𝑉0 covers all but finitely many points of 𝑋, since 𝑉0 = 𝑋 ∖ {𝑥1, … , 𝑥𝑛} for some 

𝑥1, 𝑥2, … , 𝑥𝑛 in 𝑋. There is some 𝑉𝔧 ∈ 𝑉 covering each 𝑥𝔧, so that {𝑉0, 𝑉1, … , 𝑉𝑛} forms a finite 

subcover for 𝑋. Thus the cofinite space 𝑋 is compact.                                                                      ■ 

3.3.3 Theorem  

Every cofinite space is sequentially compact (Deshpande, 1990). 

Proof  

Suppose (𝑥𝑛) is any infinite sequence in 𝑋 and 𝑈 is any neighborhood of a point  𝑝; say                   

𝑈 = 𝑋 ∖ {𝑝1, 𝑝2, … , 𝑝𝑛} for some 𝑝𝔧ˈs in 𝑋. Since {𝑥𝑛}  is an infinite set, there exists 𝑛0 such that 

for 𝑛 ≥ 𝑛0, 𝑥𝑛 ≠ 𝑝𝔧 (where  𝔧 = 1, 2, … , 𝑛) that is, 𝑥𝑛 ∈ 𝑈 for 𝑛 ≥ 𝑛0. In other words, every 

infinite sequence converges to every point 𝑝 in 𝑋. If (𝑥𝑛) is such that the set {𝑥𝑛} is finite, then 

(𝑥𝑛) certainly has a convergent subsequence. Thus 𝑋 is sequentially compact.                              ■ 

3.3.4 Theorem 

Compactness implies limit point compactness but not conversely (Munkres, 2000). 
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Proof 

Let 𝑋 be a compact space. Given a subset 𝐴 of 𝑋, we wish to show that if 𝐴 is infinite, then 𝐴 has 

a limit point. We show the contrapositive that if 𝐴 has no limit point, then 𝐴 must be finite. So 

suppose 𝐴 has no limit point, then 𝐴 contains all its limit points so that 𝐴 is closed. Furthermore 

for each 𝑎 ∈ 𝐴 we can choose a neighborhood 𝑈𝑎 of 𝑎 so that 𝑈𝑎 intersects 𝐴 in the point 𝑎 alone. 

The space 𝑋 is covered by open set 𝑋 ∖ 𝐴 and the open sets 𝑈𝑎. The space 𝑋 being compact, it can 

be covered by finitely many of these sets. Since 𝑋 ∖ 𝐴 does not intersect 𝐴 and each set 𝑈𝑎 contains 

only one point of 𝐴, the set 𝐴 must be finite.                                                                                     ■ 

3.3.5 Theorem  

Any infinite set 𝑍 ⊂ 𝑋 of a compact space 𝑋 has a limit point in 𝑋 (Borisovich et al., 1985). 

Proof 

Assume a contrary that 𝑍ˈ = ∅, then  𝑍 = 𝑍. Then 𝑍 is closed and consequently compact. On the 

other hand, each point 𝔞 ∈ 𝑍 is isolated in 𝑋. This implies that there exists an open neighborhood 

Ω(𝔞) in 𝑋 such that Ω(𝔞)⋂𝑍 = 𝔞. Neighborhoods 𝑈(𝔞) = Ω(𝔞)⋂𝑍 that are open in 𝑍 forms an 

infinite covering of the space 𝑍 from which a finite subcovering cannot be selected and so we 

arrive at a contradiction to the assumption that 𝑍 is compact.                                                          ■ 

3.3.6 Theorem  

Cofinite space is limit point compact (Adams and Franzosa, 2008). 

Proof  

Let 𝑋 be an infinite set with finite complement topology. We show that 𝑋 is limit point compact. 

Thus let 𝐵 be an infinite subset of 𝑋. We claim that every point of 𝑋 is a limit point of 𝐵.  If 𝑥 ∈ 𝑋 

and 𝑈 a neighborhood of 𝑥, then since 𝑈 contains all but finitely many points of 𝑋, it intersects 𝐵 

in infinitely many points. In particular, 𝑈 intersects 𝐵 in points other than 𝑥, implying that 𝑥 is a 

limit point of 𝐵. Therefore every infinite subset 𝐵 of 𝑋 has a limit point, implying that 𝑋 is limit 

point compact.                                                                                                                                           ■ 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

This chapter defines manifolds based on cofinite spaces using almost continuous functions as 

maps. This is done in two parts: the first part looks at the invariance of topological properties from 

a 
1

T  space with cofinite topology (cofinite space) with respect to almost continuous functions to 

the Euclidean ℝ𝑛 spaces, thereafter pseudoderivative is defined on almost continuous functions. 

The second part involves modeling of a cofinite topological manifold 𝒲 using 

pseudodifferentiable almost continuous functions bringing in the inverse function theorem which 

have been shown to imply the implicit function theorem in infinite cofinite spaces.  

4.1 Almost continuous function on a cofinite space 

The study defines an almost continuous function in every neighborhood of zero and shows a result 

of an almost continuous function as a map between any two cofinite spaces. 

4.1.1 Definition  

A function 𝑔 is an almost continuous function at 𝑥0 if there exists a continuous function 𝑓 such 

that (𝑓 − 𝑔)(𝑥0) ⊂ 𝑈0 for every neighborhood of zero 𝑈0. 

4.1.2 Theorem 

Let 𝑋1 = (𝑋, 𝒯) be an infinite space with finite complement topology and let 𝑔 be an almost 

continuous function. Then 𝑋2 = 𝑔(𝑋1) is an infinite space with finite complement topology. 

Proof 

Given that 𝑋1 is an infinite set with finite complement topology and if  𝑈 ⊂ 𝑋1, then 𝑈ˈ consists of 

finite elements. If 𝑓 is a continuous function from  𝑋1 ⟶ 𝑋2, then 𝑓(𝑈ˈ) ⊂ 𝑋2 consists of finite 

elements since 𝑓 is a one to one map. Note that 𝑔 is an almost continuous functions if for every 

neighborhood of zero  𝑈0 ⊂ 𝑋2, there exists a neighborhood 𝑉 ⊂ 𝑋1 such that                                      

(𝑓 − 𝑔)(𝑉) ⊂ 𝑈0 ∀  𝑉 ⊂ 𝑋1. Since 𝑓 − 𝑔 is one to one, then 𝑈0 consists of infinite elements and 

(𝑓 − 𝑔)(𝑉ˈ) must consist of finite elements since 𝑉 consists of infinite elements and  𝑉ˈ consists 

of finite elements. This is due to the fact that 𝑋1 is a cofinite space.                                                   ■           
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4.2 Invariance of topological properties 

At this point, this study narrows down to one of the 
1

T  spaces known as a cofinite space 𝐶, that 

is an infinite set 𝑋 having the cofinite topology. Attention is paid to separability as a cardinality 

property, compactness and its other notions such as sequential compactness, limit point 

compactness and pseudocompactness. A property is said to be a topological invariant (or 

topological property) if whenever one space possesses a given property, any space homeomorphic 

to it also possesses the same property. The properties of topological spaces that remain unchanged 

when space 𝑋 is mapped onto a space 𝑌 by means of a function are said to be invariant of that 

function. Thus if a property 𝑃 is known to be invariant of the function 𝑓, it can be determined 

whether a topological space 𝑌 has the property 𝑃 by only showing that 𝑌 = 𝑓(𝑋) for some function 

𝑓 and some topological space 𝑋 having property 𝑃. The behaviours of these topological properties 

are studied with respect to almost continuous functions from the cofinite space 𝐶 to the Euclidean 

ℝ𝑛 spaces. These are done with respect to continuous functions and then the remark 4.2.1 noted 

below is used to make a conclusion. 

4.2.1 Remark 

It has been shown in the literature review that if a property 𝑃 is invariant of continuous functions, 

it must be invariant of continuous bijections and hence invariant of almost continuous bijections 

in the class of 
1

T  spaces. Those topological properties which are invariant of continuous functions 

are also invariant of almost continuous functions in the class of 
1

T  spaces. 

4.2.2 Separability  

Separability is obtained from the concept 3.2.1 and from 3.2.2; it is concluded that every space 

that satisfies the second axiom of countability is separable. Since the Euclidean ℝ𝑛 space is a 

second countable space as shown in 2.5, it is a separable space. From theorem 3.3.1, clearly a 

cofinite space 𝐶 is a separable space.  

4.2.3 Theorem  

Let 𝑓 be a continuous function from a separable cofinite space 𝐶 to the Euclidean space ℝ𝑛. If 𝐴  

is a countable dense subset of 𝐶, then 𝑓(𝐴) is a countable dense subset of 𝑓(𝐶) in the Euclidean 

space ℝ𝑛. 
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Proof 

Consider a continuous function 𝑓: 𝐶 ⟶ ℝ𝑛 where 𝐶 is a separable cofinite space. Since 𝐴 is a 

countable dense subset of 𝐶, that is  𝐴 = 𝐶, it is then shown that 𝑓(𝐴) is dense in 𝑓(𝐶) which is a 

subset of the Euclidean ℝ𝑛 space due to the continuity of  𝑓. Now for 𝑓: 𝑋 ⟶ 𝑌 where 𝑋 and 𝑌 

are topological spaces being continuous and 𝐴 ⊆ 𝑋, letting 𝑥 ∈ 𝐴 implying that  𝑓(𝑥) ∈ 𝑓(𝐴). We 

let 𝑉 be a neighborhood of 𝑓(𝑥). By continuity of 𝑓, 𝑓−1(𝑉) is an open set in 𝑋 containing 𝑥. Thus 

we have 𝑓−1(𝑉)⋂𝐴 ≠ ∅ implying that 𝑓(𝑥) ∈ 𝑓(𝐴). Therefore 𝑓(𝐴) ⊆ 𝑓(𝐴). From this, 𝑋 can 

be taken as a separable cofinite space 𝐶 and 𝑌 be taken as the Euclidean space  ℝ𝑛. But 𝐴 ⊆ 𝐴 and 

𝐴 ⊆ 𝐶 by which would imply that 𝑓(𝐴) ⊆ 𝑓(𝐴) ⊆ 𝑓(𝐴) ⊆ 𝑓(𝐶). Clearly 𝑓(𝐴) ⊆ 𝑓(𝐶) and this 

would mean that 𝑓(𝐴) = 𝑓(𝐶). That is 𝑓(𝐶) has a countable dense subset 𝑓(𝐴), showing that 

𝑓(𝐶) is separable as a subset of ℝ𝑛. Therefore separability is invariant of continuous functions 

from cofinite space 𝐶 to Euclidean ℝ𝑛 space. From remark 4.2.1; separability is invariant of almost 

continuous functions from cofinite space 𝐶 to Euclidean ℝ𝑛 space.                                                   ■                                                                                                                                                                                                     

4.2.4 Compactness  

The concept of compactness was no doubt motivated by the property of closed and bounded 

interval as outlined in the concept 3.2.3, which also describe a compact space. From theorem 3.3.2, 

it is obtained that every infinite space  𝑋  with cofinite topology is compact. Suppose (ℝ𝑛, 𝒯𝑐𝑜𝑓) is 

a Euclidean space with cofinite topology. Then the open sets are any sets with a complement that 

is finite. Clearly every open set is infinitely large and contains all but finitely many points of ℝ𝑛. 

The closed sets of ℝ𝑛 consists of finitely many points, so a finite subcover can always be found 

by covering each point one at a time with the open set whose finite complement is each of the other 

points in that closed set. The remaining sets in ℝ𝑛, the open sets, clearly have a finite subcover of 

open sets, namely themselves. Therefore any subset of Euclidean space ℝ𝑛 with the finite 

complement topology is compact. 

4.2.5 Theorem   

Suppose 𝐶 is a compact cofinite space and 𝑓: 𝐶 ⟶ ℝ𝑛 is a continuous function, then 𝑓(𝐶) is a 

compact subset of the Euclidean ℝ𝑛 space. 
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Proof  

Let 𝒜 = {𝑈𝛼: 𝛼 ∈ ζ} be any open cover for 𝑓(𝐶). Then one of the members of 𝑈𝛼 say 𝑈𝛽 covers 

all but finitely many points of 𝑓(𝐶) since 𝑈𝛽 = 𝑓(𝐶) ∖ {𝑎1, 𝑎2, … , 𝑎𝑚} for some 𝑎1, 𝑎2, … , 𝑎𝑚 in  

𝑓(𝐶). Therefore 𝑓(𝐶) = ⋃ 𝑈𝛼𝛼∈𝜁  

                                 𝐶 = 𝑓−1(⋃ 𝑈𝛼𝛼∈𝜁 ) = ⋃ 𝑓−1(𝑈𝛼)𝛼∈𝜁       

Since 𝑓 is continuous, 𝑓−1(𝑈𝛼) is open in 𝐶 for some 𝛼 ∈ 𝜁. Then {𝑓−1(𝑈𝛼): 𝛼 ∈ 𝜁} is an open 

cover for   𝐶 . Because 𝐶 is compact, there exists  𝛼1, 𝛼2, … , 𝛼𝑚 ∈ 𝜁 such that                                     

 𝐶 = 𝑓−1(𝑈𝛽)⋃[⋃ 𝑓−1(𝑈𝛼𝑖
)𝑚

𝑖=1 ] = 𝑓−1(𝑈𝛽)⋃𝑓−1[⋃ 𝑈𝛼𝑖

𝑚
𝑖=1 ] = 𝑓−1[𝑈𝛽⋃(⋃ 𝑈𝛼𝑖

𝑚
𝑖=1 )]        

𝑓(𝐶) = 𝑈𝛽⋃(⋃ 𝑈𝛼𝑖

𝑚
𝑖=1 ). Hence {𝑈𝛽⋃𝑈𝛼𝑖

: 𝑖 = 1, … , 𝑚} is a finite subcover for 𝒜. From this, 

compactness is invariant of continuous functions from a compact cofinite space 𝐶 to the Euclidean 

ℝ𝑛 space.  From remark 4.2.1; compactness is invariant of almost continuous functions from the 

cofinite space 𝐶 to the Euclidean ℝ𝑛 space.                                                                                     ■                  

Attention is now paid to other notions of compactness which are equivalent to compactness in 

metric spaces but are nonequivalent topological properties in arbitrary topological spaces. 

4.2.6 Sequential compactness 

As the name suggests, sequential compactness is a sequence version of compactness. The concept 

3.2.4 gives a sequentially compact space and from the theorem 3.3.3, it is evident that the cofinite 

space 𝑋 is sequentially compact. Suppose ℝ𝑛 has the Euclidean topology, then an example of a 

compact set in ℝ1 would be [0,1]. This can be seen from the definition of a compact set and that 

this interval has a finite subcover. For (ℝ𝑛, 𝒯𝐸𝑢𝑐𝑙), a theorem that defines all its compact subsets 

can be obtained, that is a subset 𝐴 of a real Euclidean space ℝ𝑛,  𝐴 ⊆ (ℝ𝑛, 𝒯𝐸𝑢𝑐𝑙) is compact if and 

only if 𝐴 is closed and bounded. This is a generalization of Heine - Borel theorem and by        

Bolzano - Weierstrass theorem; any closed and bounded subset of the Euclidean space ℝ𝑛 is 

sequentially compact. Clearly if 𝐵 is a closed and bounded subset of the Euclidean ℝ𝑛 space, then 

𝐵 is sequentially compact. 

4.2.7 Theorem  

Let 𝑓 be a continuous function from a sequentially compact cofinite space 𝐶 to a closed and 

bounded subset 𝐵 of the Euclidean ℝ𝑛 space. Then 𝑓(𝐶) is a sequentially compact subset of the 

Euclidean space ℝ𝑛. 
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Proof  

Consider a continuous function 𝑓: 𝐶 ⟶ 𝐵 where 𝐶 is a sequentially compact cofinite space and 𝐵 

is a closed and bounded subset of the Euclidean ℝ𝑛 space. Because of continuity of 𝑓,   𝑓(𝐶) ⊂ 𝐵. 

Let (𝑦1, 𝑦2, … ) be a sequence in 𝑓(𝐶). Then there exists 𝑥1, 𝑥2, … ∈  𝐶 such that 𝑓(𝑥𝑛) = 𝑦𝑛 for 

every 𝑛 ∈ ℕ. But 𝐶 is sequentially compact, so the sequence (𝑥1, 𝑥2, … ) contains a subsequence 

(𝑥𝑖1
, 𝑥𝑖2

, … ) which converges to a point 𝑝 ∈ 𝐶. Now 𝑓 is continuous and hence sequentially 

continuous, so {𝑓(𝑥𝑖1
), 𝑓(𝑥𝑖2

), … } = {𝑦𝑖1
, 𝑦𝑖2

, … } converges to 𝑓(𝑝) ∈ 𝑓(𝐶). Thus 𝑓(𝐶) is 

sequentially compact with a sequence (𝑦1, 𝑦2, … ) having a convergent subsequence (𝑦𝑖1
, 𝑦𝑖2

, … ). 

Therefore sequential compactness is invariant of continuous functions from a cofinite space 𝐶 to 

Euclidean ℝ𝑛 space.  From remark 4.2.1; Sequential compactness is invariant of almost continuous 

functions from a cofinite space 𝐶 to the Euclidean space ℝ𝑛.                                                            ■ 

4.2.8 Pseudocompactness 

The concept outlined in 3.2.7 defines a pseudocompact space and by the fact that a compact space 

is pseudocompact, it is shown that a cofinite space 𝐶 is also pseudocompact. A cofinite space 𝐶 is 

a compact space as shown in theorem 3.3.2. The image of a compact space under any continuous 

function is compact. By Heine - Borel theorem, the compact subsets of the Euclidean space ℝ𝑛 

are precisely the closed and bounded subsets. Hence a cofinite space is pseudocompact as its image 

under any continuous function to ℝ𝑛 is compact. 

4.2.9 Theorem  

Let 𝑓 be a continuous function from a pseudocompact cofinite space 𝐶 to the Euclidean space ℝ𝑛. 

Then 𝑓(𝐶) is a pseudocompact subset of the Euclidean space ℝ𝑛. 

Proof  

To show the continuity invariance of pseudocompactness to the Euclidean ℝ𝑛 space, a continuous 

function 𝑓: 𝐶 ⟶ ℝ𝑛 is considered. Clearly 𝑓(𝐶) is a compact subset of ℝ𝑛 by continuity of 𝑓. By 

the definition in 3.2.5, 𝑓(𝐶) is bounded, that is 𝑓 is a bounded function and 𝑓(𝐶) is closed since it 

is a compact subset of ℝ𝑛.  This implies that the continuous function 𝑓 attains its bounds as the 

supremum and infimum of 𝑓(𝐶) which are either in 𝑓(𝐶) or are the limit points. Since 𝑓(𝐶) is the 

continuous image of pseudocompact space 𝐶, it follows that 𝑓(𝐶) is pseudocompact. Hence 

pseudocompactness is invariant of continuous functions from the pseudocompact cofinite space 𝐶 



25 
 

to the Euclidean ℝ𝑛 space. From the remark 4.2.1; pseudocompactness is invariant of almost 

continuous functions from the cofinite space 𝐶 to the Euclidean  ℝ𝑛 space.                                         ■                                                                                                                         

4.2.10 Limit point compactness  

The concept in 3.2.8 gives a limit point compact space and from the theorems 3.3.5 and 3.3.6, it 

can be seen that the cofinite space 𝐶 is a limit point compact space, that is any infinite subset       

𝐴 ⊂ 𝐶 contains limit point in 𝐶. 

4.2.11 Theorem  

Let 𝐶 be a limit point compact cofinite space and 𝑓 be a continuous function from 𝐶 to the 

Euclidean space ℝ𝑛, then 𝑓(𝐶) is a limit point compact space in the Euclidean space ℝ𝑛. 

Proof  

Suppose 𝐾 is a closed and bounded subset of ℝ𝑛, then it is compact since the closed and bounded 

subsets of the Euclidean ℝ𝑛 space are compact. If 𝐵 is an infinite subset of 𝐾, then 𝐵 is also 

bounded and by Bolzano - Weierstrass theorem, 𝐵 has a limit point 𝑝. Since 𝐾 is closed, the limit 

point 𝑝 of 𝐵 belongs to 𝐾, that is  𝐾 is limit point compact. A continuous function 𝑓: 𝐶 ⟶ 𝐾 is 

considered and because of continuity of 𝑓,  𝑓(𝐶) ⊂ 𝐾. Since 𝐶 contains an infinite set 𝐴 whose 

limit point is in 𝐶, then 𝑓(𝐶) ⊂ 𝐾 contains an infinite set 𝑓(𝐴) whose limit point is in 𝑓(𝐶). But 

𝑓(𝐶) is a subset of a closed and bounded set  𝐾 ⊂ ℝ𝑛 which is also limit point compact. Clearly 

the cofinite space that is limit point compact is continuous invariant to the Euclidean ℝ𝑛 space. 

Therefore limit point compactness is continuity invariant from cofinite space 𝐶 to the Euclidean 

ℝ𝑛 space. Hence from remark 4.2.1; limit point compactness is invariant with respect to almost 

continuous function from cofinite space  𝐶  to the Euclidean  ℝ𝑛  space.                                               ■                                                                                                                                           

4.3 Topological manifold based on cofinite spaces 

 A topological space 𝒲 is a topological manifold on a cofinite space if it has a countable base of 

open sets and for every neighborhoods 𝑈(𝑥0) and  𝑉(𝑥0) of a point 𝑥0 ∈ 𝒲 there exists almost 

continuous functions 𝜙 and 𝜓 such that: 

1. 𝜙(𝑈(𝑥0)) and  𝜓(𝑉(𝑥0)) maps 𝒲 to cofinite spaces. 

2. ∃ a bijective almost continuous function  ℎ: 𝜙(𝑈(𝑥0) ⋂ 𝑉(𝑥0)) ⟶ 𝜓(𝑈(𝑥0) ⋂ 𝑉(𝑥0)). 
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4.4 Pseudoderivative on almost continuous functions 

A linear operator 𝑇 is 𝐷𝛽,𝛾 pseudoderivative on an almost continuous function 𝑔 at 𝑥0 if there 

exists a 𝐷𝛽,𝛾 differentiable function 𝑓 such that (𝑇 − 𝑓ˈ)(𝑥0) ⊂ 𝑈0 for every neighborhood of 

zero,  𝑈0. 

4.4.1 Properties of pseudoderivative on almost continuous functions 

Given that 𝑔 is an almost continuous function and 𝑓 is a continuous function both defined in an 

open neighborhood 𝑈0 of a point 𝑥, then the pseudoderivative on almost continuous functions 

satisfies the following properties: 

Linearity which consists of two parts: 

a) [𝜆(𝑔 − 𝑓)](𝑥 + ℎ) − [𝜆(𝑔 − 𝑓)](𝑥) = 𝜆𝑔(𝑥 + ℎ) − 𝜆𝑔(𝑥) − 𝜆𝑓(𝑥 + ℎ) + 𝜆𝑓(𝑥) 

                                                                         =  𝜆(𝑔ˈ(𝑥) − 𝑓ˈ(𝑥)) ⊂ 𝑈0  

                                       ∴ [𝜆(𝑔(𝑥) − 𝑓(𝑥))]ˈ = 𝜆(𝑔(𝑥) − 𝑓(𝑥))ˈ ⊂ 𝑈0   

From the above, pseudoderivative of a constant times an almost continuous function can as well 

be given by (𝜆𝑔)ˈ(𝑥) = 𝜆𝑔ˈ(𝑥) 

b) Given  two almost continuous functions 𝑔1 and 𝑔2 and a continuous function 𝑓 we have 

the sum of pseudoderivatives given as  

 [(𝑔1 + 𝑔2) − 𝑓](𝑥 + ℎ) − [(𝑔1 + 𝑔2) − 𝑓](𝑥) 

                                                = 𝑔1(𝑥 + ℎ) + 𝑔2(𝑥 + ℎ) − 𝑓(𝑥 + ℎ) − 𝑔1(𝑥) − 𝑔2(𝑥) + 𝑓(𝑥) 

                                                = 𝑔1(𝑥 + ℎ) − 𝑔1(𝑥) + 𝑔2(𝑥 + ℎ) − 𝑔2(𝑥) − (𝑓(𝑥 + ℎ) − 𝑓(𝑥)) 

                                                = [(𝑔1ˈ(𝑥) + 𝑔2ˈ(𝑥)) − 𝑓ˈ(𝑥)] ⊂ 𝑈0 

                                                ∴ (𝑔1 + 𝑔2)ˈ(𝑥) = 𝑔1ˈ(𝑥) + 𝑔2ˈ(𝑥) 

The product of pseudoderivatives on almost continuous functions can as well be shown by 

considering two almost continuous functions 𝑔 and ℎ and two differentiable functions 𝑓1 and 𝑓2 as 

follows: 

 [𝑔ℎ − 𝑓1𝑓2](𝑥 + 𝛼) − [𝑔ℎ − 𝑓1𝑓2](𝑥) 

   = 𝑔ℎ(𝑥 + 𝛼) − 𝑔(𝑥)ℎ(𝑥 + 𝛼) + 𝑔(𝑥)ℎ(𝑥 + 𝛼) − 𝑔(𝑥)ℎ(𝑥) − 𝑓1𝑓2(𝑥 + 𝛼) + 𝑓1(𝑥)𝑓2(𝑥 + 𝛼) 

        − 𝑓1(𝑥)𝑓2(𝑥 + 𝛼) + 𝑓1(𝑥)𝑓2(𝑥) 
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= ℎ(𝑥 + 𝛼)[𝑔(𝑥 + 𝛼) − 𝑔(𝑥)] − 𝑓2(𝑥 + 𝛼)[𝑓1(𝑥 + 𝛼) − 𝑓1(𝑥)] + 𝑔(𝑥)[ℎ(𝑥 + 𝛼) − ℎ(𝑥)]  

−      𝑓1(𝑥)[𝑓2(𝑥 + 𝛼) − 𝑓2(𝑥)]  

    = [ℎ(𝑥 + 𝛼)𝑔ˈ(𝑥) − 𝑓2(𝑥 + 𝛼)𝑓1ˈ(𝑥)] + [𝑔(𝑥)ℎˈ(𝑥) − 𝑓1(𝑥)𝑓2ˈ(𝑥)] ⊂ 𝑈0 

From above such a product can be indicated as  (𝑔ℎ)ˈ(𝑥) = 𝑔(𝑥)ℎˈ(𝑥) + 𝑔ˈ(𝑥)ℎ(𝑥). 

4.5 Topological manifold 𝓦 on cofinite spaces 

4.5.1 Definition 

A piecewise linear map is a map composed of some number of linear segments defined over an 

equal number of neighborhoods. 

4.5.2 Theorem 

Given any compact space 𝑃 ⊂ 𝑋 and any  𝑓 ∈ 𝐶[𝑃], there exists a map Φ𝜀: 𝑋 ⟶ 𝑌 such that 

𝑓(𝑥) − Φ𝜀(𝑥) ⊂ 𝑉0 ∀𝑥 ∈ 𝑋 where 𝑉0 is a neighborhood of zero in 𝑌…………...………...… (**) 

Proof 

Since 𝑓 is uniformly continuous on the compact set 𝑃 and given any neighborhood of zero           

𝑉0 ⊂ 𝑌, there exists a neighborhood of zero 𝑈0 ⊂ 𝑋 such that, for any 𝑥, 𝑥ˈ ∈ 𝑈0 with                         

𝑥 − 𝑥ˈ ⊂ 𝑈0, we have  𝑓(𝑥) − 𝑓(𝑥ˈ) ⊂ 𝑉0. Now pick 𝑃𝑛: 𝑛 ∈ ℕ such that ⋃𝑃𝑛 = 𝑃 and          

let 𝑥𝑚 ≔ 𝑃𝑛 where  𝑚 = 0, 1, … , 𝑛. Define  Φ𝜀 as follows: Φ(𝑒) ≔ 𝑓(𝑒) ∀𝑒 ∈ 𝑃1 and           

𝜙𝑖(𝑥) ≔ 𝑓(𝑥𝑖)  ∀𝑥 ∈ 𝑃𝑖, 1 ≤ 𝑖 ≤ 𝑛 so that, the map  Φ𝑖 is constantly equal to the value of 𝑓 at 𝑃𝑖 

hence 𝑓(𝑥) − Φ𝜀(𝑥) ⊂ 𝑉0 and 𝑓(𝑥) − 𝑓(𝑥𝑖) ⊂ 𝑉0 since 𝑥 − 𝑥𝑖 ⊂ 𝑈0. Therefore, (**) is satisfied 

on 𝑃.                                                                                                                                                    ■ 

4.5.3 Theorem 

Let 𝑋 and 𝑌 be cofinite linear topological spaces without norm and 𝑓 ∈ 𝐶[𝑋], then there exists an 

almost continuous function Ψ𝜀: 𝑋 ⟶ 𝑌 such that 𝑓(𝑥) − Ψ𝜀(𝑥) ⊂ 𝑉0 ∀ 𝑥 ∈ 𝑋 where 𝑉0 is a 

neighborhood of zero in 𝑌. 

This follows from the fact that almost continuous functions are subsets of piecewise linear map 

and continuous functions are subsets of almost continuous functions. The result of this theorem 

follows from theorem 4.5.2 above. 
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4.5.4 Manifold on a Hausdorff space 

Developing a manifold on a 
2

T  space can be achieved by applying the Urysohn’s lemma on such 

a 
2

T  space. This leads to the existence of a bicontinuous bijective function. When implicit 

function theorem or partition of unity is applied on the homeomorphism, we create a manifold on 

a Hausdorff space. In the same spirit, modeling of a manifold on a 
1

T  space with cofinite topology 

requires similar steps. Almost continuous functions had been used by Gichuki (1996) in the class 

of 
1

T  spaces. Since the cofinite spaces are among the class of 
1

T  spaces, almost continuous 

functions also exist for them. The inverse function theorem is then applied to model a manifold on 

the cofinite topology existing on the 
1

T  space. In this study, it has been shown that almost 

continuous functions map cofinite space to cofinite space. This almost continuous function has a 

version of derivative called a pseudoderivative which has almost all properties as the derivative in 

calculus that can be used to state and prove the inverse function theorem. The inverse function 

theorem in turn guarantees the existence of submanifolds in the manifolds based on cofinite spaces. 

From the literature review, it is clear that the inverse function theorem implies the implicit function 

theorem in both finite and infinite dimensional spaces. Hence the inverse function theorem is valid 

for cofinite spaces which are infinite dimensional spaces.  

4.6 Differentiable manifold on cofinite space 

A topological space 𝒲 is a differentiable manifold on a cofinite space if it has a countable base of 

open sets and for every neighborhoods 𝑈(𝑥0) and  𝑉(𝑥0) of a point 𝑥0 ∈ 𝒲 there exists 

pseudodifferentiable almost continuous functions 𝜙 and 𝜓 such that: 𝜙(𝑈(𝑥0)) and 𝜓(𝑉(𝑥0)) 

maps 𝒲 to cofinite spaces and there exists a bijective pseudodifferentiable almost continuous 

function  ℎ: 𝜙(𝑈(𝑥0) ⋂ 𝑉(𝑥0)) ⟶ 𝜓(𝑈(𝑥0) ⋂ 𝑉(𝑥0)).  

4.6.1 Definition 

Let 𝑃 be an open set in  𝜙(𝑈(𝑥0)). The map 𝑓: 𝑃 ⟶ 𝜓(𝑉(𝑥0)) is 𝐷𝛽,𝛾 differentiable at 𝑥0 ∈ 𝑃, if 

there exists a linear continuous operator 𝑓 ˈ(𝑥0): 𝜙(𝑈(𝑥0))  ⟶ 𝜓(𝑉(𝑥0)), such that            

𝑅(𝑥, ℎ) ≡ 𝑓(𝑥 + ℎ) − 𝑓(𝑥) − 𝑓 ˈ(𝑥0)ℎ satisfies the condition: 

∃𝐶 ∀ 𝐵 ∃ 𝑈 ∶ (ℎ ∈ 𝐵 + 𝑈, 𝒶ℎ ∈ 𝑈, 𝑥 − 𝑥0 ∈ 𝑈)  ⟹  𝑅(𝑥, 𝒶ℎ) ∈ 𝒶𝐶 …………………….…. (i) 
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4.6.2 Theorem 

Let 𝑃 be an open set in  𝜙(𝑈(𝑥0)), 𝑓: 𝑃 ⟶ 𝜓(𝑉(𝑥0)) is strictly 𝐷𝛽𝒞, 𝛾𝒞  differentiable at 𝑥𝑜 ∈ 𝑃 

and 𝑓 ˈ(𝑥0)  a linear homeomorphism of 𝜙(𝑈(𝑥0)) onto the subspace (respectively onto a closed 

subspace) 𝜙(𝑈(𝑥0) ⋂ 𝑉(𝑥0)) ⊂ 𝜓(𝑉(𝑥0)), with induced topology. Then there exists such an open 

neighborhood 𝑁 of 𝑥0, such that  𝑓|𝑁: 𝑁 ⟶ 𝜓(𝑉(𝑥0))  is injective. 

Proof 

A case of  𝐷𝛽𝒞, 𝛾𝒞
 differentiability is looked at. Without reducing generality, assume that             

 𝑥0 = 0,  𝑦0 = 0, 𝜙(𝑥0) = 𝜙(𝑈(𝑥0) ⋂ 𝑉(𝑥0)) and  𝑓 ˈ(𝑥0) is identity operator. On the contrary 

we look at the map  𝐹: 𝜙(𝑈(𝑥0) ⋂ 𝑉(𝑥0))  ⟶ 𝜙(𝑈(𝑥0) ⋂ 𝑉(𝑥0)), defined by the formula    

𝐹(𝑦) = 𝑓 ˈ(𝑥0 + [𝑓 ˈ(𝑥0)]−1𝑦) − 𝑓(𝑥0) for  𝑦 ∈ 𝑓−1(𝑥0)(𝑃 − 𝑥0). 

Note that a linear homeomorphism takes a bounded set to a bounded set and a compact to a 

compact. In view of the above, 𝑓 can be expressed as 𝑓(𝑥 + ℎ) − 𝑓(𝑥) = ℎ + 𝑅(𝑥, ℎ) where 𝑅 

satisfies (i) for 𝑥0 = 0, 𝛾 = 𝛾𝒞 and 𝛽 = 𝛽𝒞. For 𝐵 ⊃ (2𝐶)⋂ 𝜙(𝑥0), where 𝐶 is taken from (i), we 

find such a 𝑈, that (ℎ ∈ 𝐵 + 2𝑈, 𝒶ℎ ∈ 2𝑈, 𝑥 ∈ 𝑈) ⟹ 𝑅(𝑥, 𝒶ℎ) ∈ 𝒶𝐶………..….…………...  (ii) 

We show that  𝑓|𝑈: 𝑈 ⟶ 𝜓(𝑥0)  is injective. Let 𝑥, 𝑥 + ℎ ∈ 𝑈 and  𝑓(𝑥 + ℎ) = 𝑓(𝑥). Then           

ℎ ∈ 𝑈 − 𝑥 ⊂ 2𝑈 and from (ii) follows that 𝑅(𝑥, ℎ) ∈ 𝐶.  

Further  ℎ + 𝑅(𝑥, ℎ) = 𝑓(𝑥 + ℎ) − 𝑓(𝑥) = 0  i.e. ℎ = −𝑅(𝑥, ℎ) ∈ 𝐶. Let  𝜇 > 0. Then since 𝐶 is 

closed,  ℎ ∈ (𝜇𝐶)⋂ 𝜙(𝑥0) =
1

2
𝜇[(2𝐶)⋂ 𝜙(𝑥0)] ⊂

1

2
𝜇𝐵. In this regard from (ii) follows that         

−ℎ = 𝑅(𝑥, ℎ) = 𝑅 (𝑥,
1

2
𝜇(2𝜇−1ℎ)) ∈

1

2
𝜇𝐶, since 2𝜇−1ℎ ∈ 𝐵 ⊂ 𝐵 + 2𝑈.  

If 𝐾 ⊂ 𝜓(𝑥0), 𝑦 ∈ 𝜓(𝑥0),  𝑃𝐾(𝑦) = {
∞ ,   𝑦 ∉ 𝜇𝐶(∀ 𝜇 > 0)
inf{ 𝜇 > 0 ∶ 𝑦 ∈ 𝜇𝐾}

    

Then it implies that 𝜇 = 𝑃𝑐(ℎ) ≤
1

2
𝜇 and this is impossible since 𝜇 > 0. Therefore 𝑃𝑐(ℎ) = 0   and 

hence  ℎ = 0 in view of boundedness of 𝐶. From this instead of 𝒩 in the theorem, 𝑈 can be used. 

The closure of 𝜙(𝑥0) = 𝜙(𝑈(𝑥0) ⋂ 𝑉(𝑥0)) in the case of 𝐷𝛽𝑐,𝛾𝑐
 differentiability of 𝑓 was used in 

the choice of  𝐵 ⊃ (2𝐶)⋂ 𝜙(𝑥0), since 2𝐶⋂ 𝜙(𝑥0) is compact in 𝜙(𝑥0), if 𝐶 is compact in 𝜓(𝑥0).  

                                                                                                                                                         ■ 

4.6.3 Theorem 

Assume conditions of the theorem 4.6.2 are fulfilled (except closure of 𝜙(𝑈(𝑥0) ⋂ 𝑉(𝑥0)) where 

𝑅 satisfies the condition: ∃𝐶 ∀ 𝐶ˈ ∃𝑉 ∶ 
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(ℎ ∈ (𝐶ˈ + 𝑉)⋂ 𝜙(𝑈(𝑥0)), 𝒶ℎ ∈ 𝑉⋂ 𝜙(𝑈(𝑥0)), 𝑥 − 𝑥0 ∈ 𝑉⋂ 𝜙(𝑈(𝑥0)) ⟹ 𝑅(𝑥, 𝒶ℎ) ∈ 𝒶𝐶 (iii). 

(Here 𝜙(𝑈(𝑥0)) = 𝜙(𝑈(𝑥0) ⋂ 𝑉(𝑥0)) , 𝑓 ˈ(𝑥0) = id). Then there exists such an open 

neighborhood 𝐻 of 𝑥0 such that  𝑓|𝐻: 𝐻 ⟶ 𝑓(𝐻) is bijective and uniformly continuous together 

with the inverse map. 

Proof 

Under conditions of the proof of theorem 4.6.2, for 𝐶ˈ ⊃ 2𝐶 where 𝐶 is taken from (iii) we look 

for such a  𝑉 that the following condition is fulfilled: 

(ℎ ∈ (𝐶ˈ + 𝑉)⋂𝜙(𝑥0), 𝒶ℎ ∈ (2𝑉)⋂𝜙(𝑥0), 𝑥 ∈ 𝑉⋂𝜙(𝑥0)) ⟹ 𝑅(𝑥, 𝒶ℎ) ∈ 𝒶𝐶………....…... (iv) 

Choose an arbitrary 𝑉ˈ. Then there exists such a 𝑉", that 𝑉" ⊂ 𝑉ˈ⋂𝑉 and 𝐶𝑙(𝐶ˈ + 𝑉") ⊂ 𝐶ˈ + 𝑉. 

Let 𝑥, 𝑥 + ℎ ∈ 𝑉⋂𝜙(𝑥0). Then ℎ ∈ (2𝑉)⋂𝜙(𝑥0). Let 𝜇 = 𝑃𝐶ˈ+𝑉"(ℎ) where 𝜇 > 0, then from (iv) 

follows that  𝑅(𝑥, ℎ) = 𝑅(𝑥, 𝜇(𝜇−1ℎ) ∈ 𝜇𝐶 ⊂
1

2
𝜇𝐶ˈ ⊂

1

2
𝜇(𝐶ˈ + 𝑉"). 

Since 𝜇−1ℎ ∈ 𝐶𝑙(𝐶ˈ + 𝑉")⋂𝜙(𝑥0) ⊂ (𝐶ˈ + 𝑉)⋂𝜙(𝑥0).  

In this case  𝑃𝐶ˈ+𝑉"(𝑅(𝑥, ℎ)) ≤
1

2
𝜇 =

1

2
𝑃𝐶ˈ+𝑉"(ℎ) , hence   

 𝑃𝐶ˈ+𝑉"(𝑓(𝑥 + ℎ) − 𝑓(𝑥)) = 𝑃𝐶ˈ+𝑉"(ℎ + 𝑅(𝑥, ℎ)) ≥
1

2
𝑃𝐶ˈ+𝑉"(ℎ)………….………………...… (v) 

From convexity and balancedness of the set 𝐶ˈ + 𝑉", it follows that if 𝜇 = 𝑃𝐶ˈ+𝑉"(ℎ) = 0, then (iv) 

is also fulfilled. From boundedness of 𝐶ˈ and arbitrariness of 𝑉ˈ and the definition of induced 

uniform structure on  𝐻 = 𝑉⋂𝜙(𝑥0) and (v) follows that 𝑓|𝐻: 𝐻 ⟶ 𝑓(𝐻) is bijective and uniform 

continuity of inverse mapping.                                                                                                           ■ 

4.6.4 Corollary 

If for any point 𝑥0 in a topological manifold 𝒲 on a cofinite space and any neighborhoods 𝑈(𝑥0) 

and  𝑉(𝑥0)  of 𝑥0 and almost continuous functions 𝜙 and 𝜓 are such that they map 𝒲 to cofinite 

spaces 𝜙(𝑈(𝑥0)⋂𝑉(𝑥0)) and  𝜓(𝑈(𝑥0)⋂𝑉(𝑥0)). Then ∃ a bijective almost continuous 

function  ℎ: 𝜙(𝑈(𝑥0) ⋂ 𝑉(𝑥0)) ⟶ 𝜓(𝑈(𝑥0) ⋂ 𝑉(𝑥0)).  

Proof 

Assuming that 𝜙 and 𝜓 satisfy condition 1 of definition 4.3, then definition 4.6.1 together with 

theorems 4.6.2 and 4.6.3 proves corollary 4.6.4.                                                                                 ■ 
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4.7 Application of manifolds 

Manifolds are topological space that can be equipped with differentiable structure to become 

differentiable manifolds. This makes manifold to be applicable in many areas some of which are 

indicated below. 

4.7.1 Survey   

A sphere is a manifold and the earth is spherical hence it is a manifold that can be denoted by 𝑀. 

Examples of manifolds start with open domains in the Euclidean space  ℝ𝑛. An important 

generalization of an open subset of ℝ𝑛 is that of an 𝑛 - dimensional manifold. Such an object is 

obtained by suitably gluing open subsets {𝑈𝛼}𝛼∈𝐼 of ℝ𝑛 by smooth transition maps. Surveyors 

exploring neighboring regions would get maps such that some points of map 𝑈 would appear in 

map 𝑉. These maps linked back to the manifold 𝑀 using continuous functions such as 𝜙𝛼 and 

𝜙𝛽 would overlap showing the points in common, that is the continuous functions 𝜙𝛼 and 𝜙𝛽 maps 

part of spherical manifold 𝑀 to a flat surface. To consolidate these maps to a uniform scale, a 

continuous bijective function 𝜓: 𝑈 ⟶ 𝑉 from map 𝑈 to map 𝑉 would be obtained. This would be 

done such that the transition between the maps is smooth. 

4.7.2 Physics 

a) Mechanics: we can define a differentiable manifold as a manifold together with a differentiable 

structure. A differentiable manifold is a space which looks locally like the Euclidean space but 

which globally may not. The theory of differentiable manifolds extends the ideas of calculus and 

analysis on ℝ𝑛 to these non-Euclidean spaces. From the differentiable manifold we can define 

tangent bundle and cotangent bundle. The tangent bundle is defined widely in Lagrangian 

formalism and is typically called the state space. It also describes the motion of objects in all 

classical mechanics scenarios. Differentiable manifolds naturally appear in various applications as 

configuration space in mechanics such as Hamiltonian mechanics. They are arguably the most 

general objects on which calculus can be developed. On the other hand differentiable manifolds 

provides for calculus a powerful invariant geometric language which is used in almost all areas of 

mathematics and its applications in vector fields, differential forms, integration on manifolds and 

de Rham cohomology. We consider a mechanical system whose configuration space is a 

differentiable manifold. According to Newton’s laws, the configuration of a system at some instant 

is not enough to determine the configuration at some other instant; we need also to know the 
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momenta of the system at some instant to determine the evolution of the system. This momentum 

corresponds to a covector at a point 𝑝 of the differentiable manifold 𝑀 that represents the 

configuration of the system at that instant; therefore the cotangent bundle 𝑇∗𝑀 which we call the 

phase space determines the state of the system since it encodes the positions and the momenta of 

the objects.  

b) Mesh generation: manifolds and differential geometry are frequently used in theoretical 

expositions of electromagnetics. The domain of a boundary value problem is covered with a 

coordinate system when each point of the domain is labeled with real numbers. A customary way 

to model the domain of a boundary value problem is to choose a particular coordinate system and 

use a subset of it as the domain hence the need of arithmetic to solve a boundary value problem. 

Manifolds on the other hand, reflect the principle that identification of points of the domain with 

coordinates is somewhat arbitrary. That is manifolds are point sets that can be represented with 

coordinate systems, emphasis being on the existence of coordinate systems, not on any particular 

coordinate system. Thus the primary object is the point set and the coordinate systems. In 

manifolds the coordinates are deliberately not bound to each other by distances. Mesh generation 

is an important step in numerical solution of a quasi-static electromagnetic boundary value 

problem with finite element (Raumonen et al., 2008). A boundary value problem to model 

electromagnetic phenomena is a systematization of a body of observations. The boundary value 

problem is posed to govern fields defined over a domain, a point set denoted by 𝑀. The points of 

𝑀 correspond to the points distinguishable by measurements with a rigid reference object. For 

practical purposes, 𝑀 must be parameterized, that is covered with coordinate systems making 𝑀 

be locally Euclidean. From 𝑀 to the coordinate spaces, there are continuous functions mappings 

called charts with continuous inverses. This allows charts to be local coordinate systems. If the 

charts are differentiable then we get differentiable manifolds. A collection of admissible charts 

defining the same differentiability of functions can be constructed and this allows differentiability 

not to depend on the choice of chart. The change of chart maps between any two admissible charts 

must be appropriately differentiable. Charts of this kind give an equivalent class called a 

differentiable structure. Finally such a differentiable manifold can be defined and this gives a 

possibility to pose boundary value problems.  
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

This section gives a summary of the findings of this study which has looked at invariance of some 

topological properties with respect to almost continuous functions from a 
1

T  space with cofinite 

topology (cofinite space) to the Euclidean n
R  space. It also gives some of the recommendations 

for further research in terms of invariance and on the modeled space. 

5.1 Conclusions 

Some of the topological properties such as separability, compactness, sequential compactness, 

limit point compactness and pseudocompactness have been shown to be invariant of almost 

continuous functions from cofinite space to the Euclidean space ℝn. If some topological properties 

can be described in cofinite space but not in the Euclidean space ℝn and are invariant from cofinite 

space to the Euclidean space ℝn, then through invariance these properties can be studied in cofinite 

space then inferred to the Euclidean space ℝn. This knowledge of invariance therefore is important 

since it can be used to study some of the topological properties which might not easily be studied 

in either of the spaces. Pseudoderivatives on almost continuous functions have also been defined 

and some of its properties have been stated based on the sum rule and the product rule. In the 

classical derivatives, these rules are valid and similarity can be realized with those stated for 

pseudoderivatives on almost continuous functions. Manifolds have been modeled on the cofinite 

space using almost continuous functions. This has been achieved using inverse function theorem 

as a bijection between the two cofinite spaces. 

5.2 Recommendations 

This thesis has only looked at invariance of some topological properties from the cofinite space to 

the Euclidean space ℝ𝑛. One can as well broaden up and look at other forms of compactness and 

other topological properties like connectedness and its other forms and investigate their invariance 

from the cofinite space to the Euclidean space ℝ𝑛. Pseudoderivative on almost continuous 

functions which has been defined has only been used to facilitate modeling. One can as well use it 

to solve problems in the class of 
1

T  spaces. On the modeled space one can do more analysis by 

developing some of the properties studied in the manifold modeled on Hausdorff space. 
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APPENDIX 

Derivative 

Let 𝑓 be a function defined in an open neighborhood 𝑈0 of a point 𝑥 ∈ ℝ. The function 𝑓 is called 

differentiable at 𝑥 if there exists the limit  
   

0
' lim

h

f x h f x
f x

h


 
  called the derivative of 

𝑓 at 𝑥. It follows that if  𝑓 is differentiable at 𝑥, then it must be continuous at 𝑥. 

Properties of Derivatives 

a) Linearity 

This property consists of two parts: 

i. The derivative of a constant times a function is the constant times the derivative of the  

function, that is     xf
dx

d
CxCf

dx

d
    

Proof 

Let    xCfxg  . Then  
   

h

xghxg
xg

h




 0

'
lim  

                                                 
   

h

xCfhxCf
h




 0
lim  

                                                 
   









 



h

xfhxf
C

h 0
lim  

                                                 
   

h

xfhxf
C

h




 0
lim  

                                                   'C f x  

ii. The derivative of a sum of functions is the sum of the derivatives. If 𝑓 and 𝑔 are both  

differentiable, then         xg
dx

d
xf

dx

d
xgxf

dx

d
                            

Proof 

Let      xgxfxF  . Then  
   

0
' lim

h

F x h F x
F x

h


 
  

                                                            = 
         

h

xgxfhxghxf
h


 0

lim  
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                                                             = 
       









 





h

xghxg

h

xfhxf
h 0

lim  

                                                             
       

h

xghxg

h

xfhxf
hh







 00
limlim  

                                                                 ' 'f x g x   

Note: The sum rule can be extended to the sum of any number of functions. For instance using the 

property (ii) above we get (𝑓 + 𝑔 + ℎ)ˈ = [(𝑓 + 𝑔) + ℎ]ˈ = (𝑓 + 𝑔)ˈ + ℎˈ = 𝑓ˈ + 𝑔ˈ + ℎˈ. 

Usually, the above two properties can combined into one, [𝑎𝑓(𝑥) + 𝑏𝑔(𝑥)]ˈ = 𝑎𝑓′(𝑥) + 𝑏𝑔′(𝑥) 

where 𝑎 and 𝑏 are constants, whereas 𝑓(𝑥) and 𝑔(𝑥) are functions. The expression in the brackets 

on the left hand side is referred to as linear combination. Thus the linearity can be stated as ̔ 

Derivative of a linear combination is equals to the linear combination of derivatives̕ 

b) The derivative of a product of two functions is the first function times the derivative of   

the second function plus the second function times the derivative of the first function. If  𝑓 and 𝑔 

are both differentiable, then               xf
dx

d
xgxg

dx

d
xfxgxf

dx

d
   

Proof 

 Let       xgxfxh  , then 

       
   

0
' lim

h

h x h h x
h x

h

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  

               =     
'

xgxf  

               = 
       

h

xgxfhxghxf
h


 0

lim  

               
               

h

xgxfxghxfxghxfhxghxf
h




 0
lim  

               
             

h

xgxfhxfxghxghxf
h




 0
lim  

                
             

h

xgxfhxf

h

xghxghxf
hh







 00
limlim  

                 
    

 
    

h

xfhxf
xg

h

xghxg
hxf

hhh







 000
limlimlim  



39 
 

                 
    

 
    

h

xfhxf
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
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
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Fréchet derivative 

Let {𝑈, ‖∙‖𝑈} and {𝑉, ‖∙‖𝑉} denote the real Banach spaces and 𝔄 be an open subset of 𝑈. A 

mapping 𝐹: 𝔄 ⊂ 𝑈 ⟶ 𝑉 is said to Fréchet differentiable at 𝑢 ∈ 𝔄 if there exists an operator        

𝐴 ∈ 𝐿(𝑈, 𝑉) and a mapping 𝑟(𝑢,∙): 𝑈 ⟶ 𝑉 with the following properties; for all ℎ ∈ 𝑈 such 

that  𝑢 + ℎ ∈ 𝔄, we have 𝐹(𝑢 + ℎ) = 𝐹(𝑢) + 𝐴ℎ + 𝑟(𝑢, ℎ) where the so called remainder 𝑟 

satisfies the condition  
 

0
,



U

V

h

hur
 as ‖ℎ‖𝑈 ⟶ 0. The operator 𝐴 is then called the Fréchet 

derivative of 𝐹 at 𝑢 and we write  'A F u . If 𝐴 is Fréchet differentiable at every point 𝑢 ∈ 𝔄, 

then 𝐴 is said to be Fréchet differentiable in  𝔄. Since 𝔄 is an open set, we have 𝑢 + ℎ ∈ 𝔄 for all 

ℎ ∈ 𝑈 with sufficiently small norm. Hence the relation to be satisfied by the remainder 𝑟(𝑢, ℎ) is 

meaningful at least for all ℎ ∈ 𝑈 from a small ball about the origin. 

In elementary calculus the derivative at a point 𝑥 is the local linear approximation of the given 

function in the neighborhood of 𝑥. Similarly the Fréchet derivative can be interpreted as the best 

local linear approximation. Therefore the existence of classical derivative at a point 𝑥  implies the 

existence of Fréchet derivative at a point 𝑥   

Definition 

 Let 𝑀 and 𝑁 be any two sets. A function 𝑓: 𝑀 ⟶ 𝑁 is a rule that assigns to every element          

𝑚 ∈ 𝑀 a unique element 𝑛 ∈ 𝑁. We then call 𝑛 the image of 𝑚 under 𝑓. The set 𝑀 is called the 

domain of 𝑓 while 𝑁 is called the codomain of 𝑓. The set 𝑓(𝑀) of elements of 𝑁 which are images 

of members of 𝑀 under 𝑓 is called the range of 𝑓. 

Continuity of a function  

Let 𝑋 and 𝑌 be the topological spaces. A function 𝑓: 𝑋 ⟶ 𝑌 is said to be continuous if each open 

subset 𝑉 of 𝑌, the set 𝑓−1(𝑉) is an open subset of 𝑋. Recall that 𝑓−1(𝑉) is a set of all points 𝓍 of 

𝑋 for which 𝑓(𝑥) ∈ 𝑉; it is empty if 𝑉 does not intersect the image set 𝑓(𝑥) of 𝑓. Continuity of a 

function depends not only upon the function 𝑓 itself, but also on the topologies specified for its 

domain and range. 
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Local criteria for continuity  

A map 𝑓: 𝑋 ⟶ 𝑌 between topological spaces is continuous if and only if each point of 𝑋 has a 

neighborhood on which the restriction of 𝑓 is continuous. 

Proof 

If 𝑓 is continuous, we may simply take each neighborhood to be 𝑋 itself. Conversely, suppose 𝑓 

is continuous in a neighborhood of each point, and let 𝑈 ⊂ 𝑌 be any open set, we have to show 

that 𝑓−1(𝑈) is open. Any point 𝑥 ∈ 𝑓−1(𝑈) has a neighborhood 𝑉𝑥 on which 𝑓 is continuous. 

Continuity of 𝑓|𝑉𝑥
 implies in particular that (𝑓|𝑉𝑥

)
−1

(𝑈) is open in 𝑉𝑥 and therefore also open in 𝑋. 

Unwinding the definition, we see that (𝑓|𝑉𝑥
)

−1
(𝑈) = {𝑥 ∈ 𝑉𝑥: 𝑓(𝑥) ∈ 𝑈} = 𝑓−1(𝑈)⋂𝑉𝑥 which 

contains 𝓍 and is contained in  𝑓−1(𝑈). Since 𝑓−1(𝑈) is the union of all such open sets as 𝑥 ranges 

over 𝑓−1(𝑈), it follows that 𝑓−1(𝑈) is open as desired. 

Definitions: Let 𝑓 be a function from a set 𝑋 into a set 𝑌: 

1) The function 𝑓 is said to be one-to one or injective if 𝑓(𝑥1) = 𝑓(𝑥2) implies 𝑥1 = 𝑥2 

for  𝑥1, 𝑥2 ∈ 𝑋. 

2) The function 𝑓 is said to be onto or surjective if each 𝑦 ∈ 𝑌 there exists an 𝑥 ∈ 𝑋 such 

 that 𝑓(𝑥) = 𝑦. 

3) The function 𝑓 is said to be bijective if it is both one-to-one and onto.  

Definition: consider topological spaces 𝑋, 𝑌 and a function 𝑓: 𝑋 ⟶ 𝑌. Then 𝑓 is a connectivity 

function if for every connected subset 𝐸 of 𝑋, the restriction of 𝑓 to 𝐸 has the connected graph. 

In 𝑇1- spaces some properties of continuous functions are also shared by almost continuous 

functions. These have been illustrated by the following propositions; 

Proposition 1: Let 𝑋, 𝑌  be 𝑇1 - spaces. Let 𝑓: 𝑋 ⟶ 𝑌 be an almost continuous function and     

𝑔: 𝑋 ⟶ 𝑌 be the continuous function whose graph is contained in every neighborhood of 𝐺(𝑓). If 

𝑓 is injective so is 𝑔.  

Proof 

Suppose 𝑔 is not injective. Then there exists 𝑦0 ∈ 𝑌 and 𝑥, 𝑥ˈ ∈ 𝑋 such that                        

(𝑥, 𝑦0), (𝑥ˈ, 𝑦0) ∈ 𝐺(𝑔). Clearly since 𝑓 is one-to-one either (𝑥, 𝑦0) ∉ 𝐺(𝑓) or (𝑥ˈ, 𝑦0) ∉ 𝐺(𝑓). 
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Without loss of generality, let (𝑥ˈ, 𝑦0) ∉ 𝐺(𝑓). Then 𝐺(𝑓) ⊆ 𝑋 × 𝑌 ∖ {(𝑥ˈ, 𝑦0)}. Since 𝑋 × 𝑌 is a         

𝑇1 − space, 𝑋 × 𝑌 ∖ {(𝑥ˈ, 𝑦0)} is an open neighborhood of 𝐺(𝑓)  in 𝑋 × 𝑌. But                           

𝐺(𝑔) ⊊ 𝑋 × 𝑌 ∖ {(𝑥ˈ, 𝑦0)}. This contradicts the hypothesis that 𝐺(𝑔) is contained in every 

neighborhood of 𝐺(𝑓). Thus the supposition that 𝑔 is not a one-to-one function has led to a 

contradiction and can therefore not hold. Similarly, if 𝑓 is a bijection (that is a one-to-one and onto 

function) 𝑔 is also one-to-one and we have that the Cardinality of                                                             

𝑔(𝑋) =  cardinality of  𝑓(𝑋) =  cardinality of  𝑌; that is  𝑔(𝑋) = 𝑌.                                           ■                                                                  

Proposition 2: Let 𝑓: 𝑋 ⟶ 𝑌 be an almost continuous function from a 
1

T  space 𝑋 into a            

1
T  space 𝑌. Let 𝑔 be the continuous function whose graph is contained in every neighborhood 

of  𝐺(𝑓). If 𝑓 is a bijection so is  𝑔. 

Partition of unity 

A partition of unity on a differentiable manifold 𝑀 is a collection {𝜓𝑖}𝑖∈𝐼 of smooth functions such 

that: 

1. 𝜓𝑖(𝑝) ≥ 0 for every 𝑝 ∈ 𝑀  

2. the collection of supports {𝑠𝑢𝑝𝑝 𝜓𝑖: 𝑖 ∈ 𝐼} is locally finite 

3.  ∑ 𝜓𝑖(𝑝) = 1𝑖∈𝐼  for every 𝑝 ∈ 𝑀 

The support of a smooth function is the closure of the set in its domain where it takes on nonzero 

values. The support of 𝑓 is denoted as  𝑠𝑢𝑝𝑝 𝑓 = {𝑝 ∈ 𝑀: 𝑓(𝑝) ≠ 0} . Given a collection                       

𝛽 = {𝑈𝛼: 𝛼 ∈ 𝐴} of subsets of 𝑀, we say that:  

a) 𝛽 is locally finite if for all 𝑝 ∈ 𝑀, there exists a neighborhood 𝑝 ∈ 𝑂 ⊂ 𝑀 such that 

𝑂⋂𝑈𝛼 ≠ 0 for only a finite number of 𝛼 ∈ 𝐴. 

b)  𝛽 is a cover of  𝑀 if ⋃ 𝑈𝛼𝛼∈𝐴 = 𝑀. 

c)  𝜉 = {𝔘𝜙: 𝜙 ∈ 𝐵} is a subcover if 𝜉 ∈ 𝐵 and 𝜉 still covers 𝑀. 

d)  𝛽′ = {𝑉𝑖: 𝑖 ∈ 𝐼} is a refinement of a cover 𝛽 if there exists 𝛼 = 𝛼(𝑖) ∈ 𝐴 such that           

𝑉𝑖 ⊂ 𝑈𝛼 

A partition of unity  {𝜓𝑖: 𝑖 ∈ 𝐼} is called subordinated to a cover  {𝑈𝛼: 𝛼 ∈ 𝐴} of 𝑀 if for each      

𝑖 ∈ 𝐼 there exists 𝛼 ∈ 𝐴 such that the 𝑠𝑢𝑝𝑝 𝜓𝑖 ⊂ 𝑈𝛼. 
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Bump function 

Let 𝑀 be a smooth manifold. For any closed set 𝐴 ⊂ 𝑀 and any open set 𝑈 containing 𝐴, there 

exists a smooth function 𝜑: 𝑀 ⟶ ℝ such that 𝜑 ≡ 1 on 𝐴 and the 𝑠𝑢𝑝𝑝 𝜑 ⊂ 𝑈. Let 𝑈0 = 𝑈 and 

𝑈1 = 𝑀 − 𝐴 and let {𝜑0, 𝜑1} be a partition of unity subordinate to the open cover {𝑈0, 𝑈1}. 

Because 𝜑1 ≡ 0 on 𝐴 and therefore 𝜑0 = ∑ 𝜑𝑖𝑖 = 1 there, the function 𝜑0 has the required 

properties. Any function with the properties described above is called bump function for 𝐴 

supported in 𝑈. 

Existence of partition of unity 

If 𝑀 is a smooth manifold and 𝜁 = (𝑋𝜇)
𝜇∈Α

 is any open cover of 𝑀, there exists a partition of 

unity subordinate to 𝜁. Let {𝑊𝑖} be a regular refinement of 𝜁. For each 𝑖, let 𝜓𝑖: 𝑊𝑖 ⟶ 𝐵3(𝑜) be a 

diffeomorphism whose existence is guaranteed by the definition of a regular cover and let            

𝔘𝑖 = 𝜓𝑖
−1(𝐵1(0)) and 𝐵𝑖 = 𝜓𝑖

−1(𝐵2(0)). For each 𝑖, define a function 𝑓𝑖: 𝑀 ⟶ ℝ  by               

𝑓𝑖 = {
𝐻 ∘ 𝜓𝑖  𝑜𝑛   𝑊𝑖   

𝑂 𝑜𝑛   𝑀 − 𝑉𝑖

 where 𝐻: ℝ𝑛 ⟶ ℝ is the bump function. On the set 𝑊𝑖 − 𝑉𝑖 where the two 

definitions overlap, both definitions yields the zero functions so 𝑓𝑖 is well defined and smooth and 

the 𝑠𝑢𝑝𝑝 𝑓𝑖 ⊂ 𝑊𝑖. Define a new function 𝑔𝑖: 𝑀 ⟶ ℝ  by  
 

 


j

i

i

i
xf

xf
xg . Because of local 

finiteness of the cover {𝑊𝑖}, the sum in the denominator has only finitely many nonzero terms in 

the neighborhood of each point and thus defines a smooth function. Because 𝑓𝑖 ≡ 1 on 𝔘𝑖 and 

every point of 𝑀 is in some  𝔘𝑖, the denominator is always positive, so 𝑔𝑖 is a smooth function 

on 𝑀. It is immediate from the definition that 0 ≤ 𝑔𝑖 ≤ 1 and ∑ 𝑔𝑖𝑖 ≡ 1. Re-indexing the functions 

so that they are indexed by the same set 𝐴 as the open cover. For each 𝑖, there is some index    

𝑎(𝑖) ∈ 𝐴 such that 𝑊𝑖 ⊂ 𝑋𝑎(𝑖). For each  𝛼 ∈ 𝐴, define 𝜓𝛼: 𝑀 ⟶ ℝ by 𝜓𝛼 = ∑ 𝑔𝑖𝑖:𝑎(𝑖)=𝛼 . Each 

𝜓𝛼 is smooth and satisfies 0 ≤ 𝜓𝛼 ≤ 1 and the 𝑠𝑢𝑝𝑝 𝜓𝛼 ⊂ 𝑋𝛼. Moreover the set of support  

{𝑠𝑢𝑝𝑝 𝜓𝛼}𝛼∈𝐴 is still locally finite and the ∑ 𝜓𝛼 ≡ ∑ 𝑔𝑖𝑖𝛼 ≡ 1, hence the desired partition of unity. 

Urysohn’s lemma: Let 𝑋 be a normal space. The closed subsets of 𝑋 can be separated by 

functions. For 𝐴, 𝐵 ⊆ 𝑋 closed and disjoint, there is a continuous function 𝑓: 𝑋 ⟶ [0,1] satisfying 

𝑓(𝑎) = 0 for all 𝑎 ∈ 𝐴 and 𝑓(𝑏) = 1 for all 𝑏 ∈ 𝐵. Sometimes such a function is called Urysohn 

function for 𝐴 and 𝐵. 


