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ABSTRACT 

Recently, there has been a considerable attention on modeling overdispersed binomial data that 

occur in toxicology, biology, clinical medicine, epidemiology and other related fields using a 

class of Binomial mixture distribution. Specifically, Beta-Binomial (BB) and Kumaraswamy-

Binomial distribution (KB) in this class have been extensively used to model the overdispersed 

Binomial outcomes. A new three parameter binomial mixture distribution namely, McDonald 

Generalized Beta-Binomial (McGBB) distribution which is superior to KB and BB has been 

developed. The study on Point estimation for McGBB distribution model has been done using 

Maximum Likelihood estimates (MLEs) and shown to give better fit than the KB and BB 

distribution on both real life data set and on the extended simulation study in handling over-

dispersed binomial data. However, MLEs are quite intensive in computation and not robust to 

variance misspecification. Estimating functions have for sometimes now been a key concept and 

subject of inquiry in research as a more general method of estimation which are robust to 

variance misspecification. This thesis considered estimation of parameters of the McGBB model 

using Estimating Functions based on Quasi-likelihood (QL) and Quadratic estimating equations 

(QEEs), which have not been developed and both of which are robust to variance structure 

misspecification. By varying the coefficients of the QEE’s, four sets of estimating equations, 

denoted as GL, M1, M2 and M3, were obtained. This study then compared the small sample 

relative efficiency of the four sets of estimates obtained by the QEE’s and the QL estimates with 

the MLEs based on a real life data sets arising from alcohol consumption practices and a 

simulated data. These comparisons show that estimates, using optimal QEEs and estimates of QL 

are highly efficient and are the best among all estimates investigated. Thus, this thesis has 

provided an estimation procedure based on the QL and QEEs for estimating the parameters of 

McGBB distribution which is superior to the Maximum likelihood method. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study 

Estimating functions have for sometimes been a key concept and subject of inquiry in 

research and it is known to provide a more flexible approach to estimation than ML method. 

The basis of this method is a set of simultaneous equations involving both the data and the 

unknown model parameters. Estimating functions provide more robust estimates, such as 

moment estimates, quasi-likelihood estimates (Breslow, 1990; Moore and Tsiatis, 1991), 

extended quasi-likelihood estimates (Nelder and Pregibon, 1987), the Gaussian likelihood 

estimates (Whittle, 1961; Crowder, 1985), estimates based on the pseudo-likelihood 

estimating equations (Davidian and Carrol, 1987) and estimates based on quadratic 

estimating functions (Crowder, 1987; Godambe and Thompson, 1989). The estimates were 

studied by Paul and Islam (1998) and the small and large sample efficiency and bias 

properties of these estimates were compared with the maximum likelihood estimate and 

showed that they performed better than the MLEs. 

To obtain an estimator, the estimating function is equated to zero and then solve the 

resulting equation with respect to the parameter in order to obtain parameter estimate. 

Estimating equations are not quite intensive in computation and are robust to variance 

misspecification unlike MLEs. Moreover, the MLE estimators are based on the assumption 

that the distribution is known, however an estimating equation is free of such assumptions. 

In real world applications, binomial outcome data are widely encountered like in 

toxicology, biology, clinical medicine, epidemiology and other similar fields. However, 

binomial distribution fails to model these binomial outcomes which results to over-dispersion 

because variance of the observed data is greater than the nominal variance. Use of continuous 

distribution defined on the standard unit interval is one way of handling over-dispersion to 

model the success probability  of the Binomial distribution. A class of Binomial mixture 

distribution which includes BB and KB has recently been used to model these binomial 

outcomes. A new three parameter binomial mixture distribution namely, McGBB distribution 

has been developed which is superior to KB and BB. It was developed by mixing the 

McDonald’s generated beta distribution of the first kind with the success probability of 

binomial distribution. The parameters of McGBB Distribution were then estimated by 

maximum likelihood technique. The study has shown that additional parameter in McDonald 
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Generalized Beta-Binomial distribution allows accommodating wide range of shapes 

(Chandrabose et al. 2013). 

However studies have shown that maximum likelihood estimates are quite intensive 

in computation and not robust to variance misspecification (Paul and Islam, 1994). In 

addition, study by Paul (2009) shows that MLE procedure may produce inefficient or biased 

estimates when the parametric model does not fit the data well hence MLE method is a biased 

estimate. A more serious objection to MLE approach was raised by Neyman and Scott 

(1948), who showed that when the number of nuisance parameters increases with the sample 

size, the MLE of a parameter of interest could be inefficient or even inconsistent. Thus this 

study derived the estimating equations for McGBB distribution based on QL, GL, M1, M2,  

and M3 which has not been done and are both robust to variance misspecification. 

1.2 Statement of the Problem 

Over-dispersion phenomenon occurs in binomial data when the variance of the 

observed binomial outcome exceeds variance of the nominal Binomial distribution. However, 

Binomial distribution often fails to model these binomial outcomes. A class of binomial 

mixture distribution which includes BB and KB has been used to model over-dispersed 

binomial outcomes but a new three parameter binomial mixture distribution known as 

McGBB distribution has been developed which has been found to be superior to KB and BB. 

The point estimation for parameters of McGBB distribution has been done using MLE and 

shown to give better fit than the KB and BB distribution on both real life data set and on the 

simulated data in handling over-dispersion in binomial outcome data. However, MLEs are 

quite intensive in computation and not robust to variance misspecification unlike Estimating 

functions. Thus, in this study the parameters of McGBB distribution were estimated by 

estimating functions based on Quasi-likelihood technique and Quadratic estimating equations 

which had not been done and are more efficient than the MLEs. 

1.3 Objectives 

1.3.1 General Objective  

To estimate the parameters of McDonald Generalized Beta-Binomial (McGBB) 

distribution by using the estimating functions approach. 
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1.3.2 Specific Objectives 

(i) To derive the Quasi-likelihood and Quadratic estimating equations for Mcdonald 

Generalized Beta Binomial Distribution. 

(ii) To compare the performance in terms of efficiency of estimators based on the 

maximum likelihood method and estimating functions using simulation. 

(iii) To compare the performance in terms of efficiency of estimators based on estimating 

functions and maximum likelihood method using real data. 

1.4 Assumption 

This study assumed that the data is binomial over-dispersed. 

1.5 Justification 

The proposed study drew its significance from the fact that it derives estimating equations 

based on QL and QEEs for McGBB distribution which has not been done. Studies have 

shown that estimating equations often give better estimates than MLEs by providing an 

estimator that is consistent and efficient, regardless of the true distribution. Also, it has been 

shown that when the number of nuisance parameters increases with the sample size, the MLE 

of a parameter of interest could be inefficient or even inconsistent. Thus, this study will 

provide the researchers with better estimates for the parameters of the McGBB distribution 

based on the QL, GL, M1, M2 and M3 than the MLEs.  

This work can be applied in the agricultural set-up. For example, in Kenya, bee farming can 

be improved based on the knowledge from this distribution. One may access forage 

preferences in the different kinds of bees (bees that live in hives, ant-holes and tree barks in 

forests). Someone may be interested in investigating the behavior of bees among different 

colour of flowers and modeling the pattern of visitation as a random movement. This will be 

a test that will be used to advise farmers on the colour of flowers to plant depending on the 

kinds of bees reared in their farms.  

In a medical setup, we may want to model the percentage of patients who have successfully 

undergone a particular medication procedure. One may want to assess whether the success 

probabilities are equal among a number of hospitals. Given the existence of some un-

predetermined excess variation among the different hospitals, the information obtained would 

have a lot of effect on policy implications.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction  

McGBB Distribution is a new parametric model obtained by mixing McDonald 

Generalized Beta- Binomial Distribution of the first kind and binomial success probability 

of binomial distribution. The study on Point estimation for McGBB distribution model has 

been done using MLEs and shown to give better fit than the KB and BB distribution on both 

real life data set and on the simulation study in handling over-dispersed binomial outcome 

data. However, MLEs are not robust to variance misspecification. Estimating functions have 

for sometimes been a key concept and subject of inquiry in research as a more general 

method of estimation which are robust to variance misspecification. Thus, this thesis provides 

the estimates of the parameters of McGBB distribution by estimating functions based on QL, 

GL, M1, M2 and M3. It also presents a comparison of these five methods with MLE using 

relative efficiencies which have not been done. 

2.2 McDonald Generalized Beta-Binomial distribution 

 In this section McGBB distribution is defined with some properties of the same 

distribution given. McGBB Distribution is a binomial mixture distribution. 

2.2.1 McDonald Generalized Beta-Binomial Distribution of the first kind 

Let  be a random variable following McDonald’s Generalized Beta-Binomial 

Distribution of the first kind (McDonald, 1984; McDonald and Xu, 1995) with three 

parameters, α, β and . The probability density function of  is then given by 

     (1) 

The  moment of the McDonald Generalized Beta-Binomial Distribution of the first kind is 

given by 

               (2) 

2.2.2 Definition of McGBB Distribution 

In general, a Binomial mixture is obtained through an integration approach as follows.

Suppose conditional on ,  follows a binomial distribution given by Bin (n, p), which is 
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denoted by Y/p 
 
Bin ), then unconditional Probability Mass Function of the  can be 

obtained by evaluating the integral, 

         (3) 

where  

A random variable Y is said to have McDonald Generalized Beta-Binomial (McGBB) 

Distribution with parameter n, α, β and γ if and only if it satisfies the following stochastic 

representation; Y/p ~ Bin (n, p) and p ~ GB1 (α, β, γ), where α, β and γ are positive real 

numbers. This distribution was denoted as, Y~ McGBB (n, α, β, γ). 

2.2.3 McDonald Generalized Beta-Binomial) distribution Properties 

Chandrabose et al. (2013) argues that by letting be a discrete random variable that follows a 

McDonald Generalized Beta-Binomial (McGBB) distribution as defined above then the 

following results hold: 

(i) The probability mass function of McGBB (α, β, ) distribution is given by,  

    (4) 

 where,  and   

(ii)  A rearranged probability mass function of McGBB (n, α, β, ) distribution is 

given by, 

    (5) 

   where, …,   and    

(iii) The  moment of McGBB (n, α, β, ) distribution is given by,       

.               (6)                                 

                Then the mean and variance of McGBB (n, α, β, ) distribution are given      

respectively by, 

                                                                                                                            (7) 

and 
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                                                                                    (8) 

                  where 

                                           (9) 

                 is the over-dispersed parameter of McGBB distribution given as, 

                                             (10)           

                 Chandrabose et al. (2013) showed that additional parameter in McDonald Beta-

Binomial distribution allows it to accommodate a wide range of shapes. Maximum likelihood 

technique was used to estimate the three parameters and showed that the new model provides 

a better fit to BB and KB models (Chandrabose et al. 2013). In this study the main objective 

was to obtain the estimates of the parameters of McDonald Beta-Binomial distribution via 

estimating functions and compare them with those obtained via maximum likelihood 

technique.      

2.2.4 Maximum likelihood Estimation of parameters of McGBB 

The three unknown parameters of McGBB distribution have been estimated using the 

maximum likelihood estimation technique. Let  be a random sample of 

size N from a McGBB distribution with unknown parameter vector  then the 

log-likelihood function for  can be defined as, 

 

 

The score function  is defined as the gradient of   , derived by taking the 

partial derivatives of with respect to α, β and γ. The components of the score function

, and   which are given as follows; 
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 = (  (α +β) -  (α)) +                    (12) 

= N (  (α+β) -  (β)) +                      (13) 

=      (14) 

=                                              (15) 

= ,                                       (16) 

= ,                                                           (17) 

= ,                            (18  

and  (.) is the digamma function. 

The MLEs are obtained by solving the three simultaneous equations obtained by 

equating . 

The alcohol data consumption was modeled by means of McGBB model and 

maximum likelihood method was used to obtain the estimates of parameters of McGBB 

distribution. The initial values for α and β were taken from BB model while for γ was taken 

as 1. 

2.3 Estimating Functions 

2.3.1 Introduction 

The idea of Estimating functions was first introduced by Pearson (1894) and has 

become a useful tool for constructing estimators. The most important advantage of estimating 

functions method is that it does not require knowledge of the full model, but rather of some 

functions, such as moments. The basis behind estimating functions is to have, or to find, a set 

of simultaneous equations involving both the sample data and the unknown model parameters 

which are to be solved in order to find the estimates of the parameters.  

The estimates obtained by Estimating functions, such as moment estimates, quasi-

likelihood estimates (Breslow, 1990; Moore and Tsiatis, 1991), extended quasi-likelihood 
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estimates (Nelder and Pregibon, 1987), the Gaussian likelihood estimates (Whittle, 1961; 

Crowder, 1985), estimates based on the pseudo-likelihood estimating equations (Davidian 

and Carrol, 1987) and estimates based on quadratic estimating functions (Crowder 1987; 

Godambe and Thompson 1989) provide a more robust estimates than MLEs when used in the 

estimation of parameters of distributions. 

Two independent works of Durbin (1960) and Godambe (1960) showed that if we let 

 be the probability density function for a random variable , indexed by two sets of 

parameters  of  - dimensional and  of - dimensional then, an alternative approach to 

maximum likelihood method in estimation is to focus on functions  of the data  and 

the unknown set of parameters  and to study the estimators as solutions of . 

2.3.2 Quasi-likelihood 

Quasi-likelihood function was first introduced by Nelder and Wedderburn (1972). 

The basis of the method of estimating equations is a set of simultaneous equations involving 

both the data and the unknown model parameters. These equations are then solved in order to 

obtain estimates of the parameters. To define a quasi-likelihood function we need only to 

specify a relation between the mean and variance and the quasi-likelihood can then be used 

for estimation (Wedderburn, 1974). This means that the quasi-likelihood technique is used for 

estimating regression coefficients without fully specifying the distribution of the observed 

data, hence provides a more flexible approach to estimation than MLE estimation. QL is used 

to allow for over/under dispersion relative to the Poisson or binomial distribution and to 

estimate regression coefficients when it’s not clear how to specify the distribution of the 

observed data. 

Quasi-likelihood estimation is one way of allowing for over-dispersion, that is, greater 

variability in the data than would be expected from the statistical model used. It is most often 

used with models for count data or grouped binary data, i.e. data that can otherwise be 

modeled using the Poisson or binomial distribution. 

Study by Wedderburn, (1974) presented quasi-likelihood to describe a function which 

has similar properties to the log-likelihood function, except that a quasi-likelihood function is 

not the log-likelihood corresponding to any actual probability distribution. Quasi-likelihood 

models can be fitted using a straight forward extension of the algorithms used to fit 

generalized linear models. Instead of specifying a probability distribution for the data, only a 

relationship between the mean and the variance is specified in the form of a variance function 

file://wiki/Overdispersion
file://wiki/Statistical_model
file://wiki/Count_data
file://wiki/Poisson_distribution
file://wiki/Binomial
file://wiki/Robert_Wedderburn_(statistician)
file://wiki/Likelihood_function
file://wiki/Probability_distribution
file://wiki/Generalized_linear_models
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giving the variance as a function of the mean. Generally, this function is allowed to include a 

multiplicative factor known as the over-dispersion parameter or scale parameter that is 

estimated from the data. Most commonly, the variance function is of a form such that fixing 

the over-dispersion parameter at unity results in the variance-mean relationship of a 

probability distribution such as the binomial or Poisson. 

The advantage of quasi-likelihood technique is that it doesn’t need to fully specify a 

distribution for the response variable when one is uncertain about the random mechanism by 

which the data were generated. Paul and Islam (1994) showed that for the estimation of the 

mean (regression) parameters the Quasi-likelihood procedure performs the best among all the 

estimating functions investigated, hence it was considered in this study. 

Suppose we have iid observations  with common mean vector  and 

variance   v  and  defined as;  

                                                                                                       (19)

      

Then, the quasi-likelihood function is given by  

with 

  ,                              (20) 

By following the above formulation, the QL estimating equation was obtained using 

the mean and variance in section 2.2.3 equation (7) and (8) respectively. The QL estimating 

equation;  was obtained which was then used to obtain QL estimates in chapter 

four. 

2.3.3 The Extended Quasi-likelihood 

Extended quasi-likelihood has been recommended for the estimation of dispersion 

parameters when there is no likelihood available. In the recent past there has been substantial 

interest in the joint fitting of mean and dispersion parameters. Wedderburn (1974) has argued 

that when an exact likelihood is not available, maximum likelihood (ML) estimation cannot 

be used. He showed that assuming the first two moments of responses only, estimating 

equations for the regression parameter can be given. For estimating dispersion parameters 

there are two general approaches. One can use either the extended quasi-likelihood (EQL) of 

Nelder and Pregibon (1987) or the pseudo-likelihood (PL), based on a normal likelihood. 

Davidian and Carroll (1987) adds that maximum pseudo-likelihood (MPL) are asymptotically 



  
 
 

10 

consistent as the sample size increases while maximum extended quasi-likelihood (MEQL) 

estimators are consistent in the limit for a given sample size as parameter values tend to 

certain values. 

In finite samples the mean square error (MSE) criterion seems to be the more relevant 

measure of the efficiency of estimators. Nelder and Lee (1992) showed that the sample size 

inconsistency of the MEQL estimator would often be offset by the small MSE in finite 

samples. Nelder and Lee (1992) showed that MEQL estimators work well for estimating 

dispersion parameters in models, such as negative binomial models. However, EQL for 

marginal models with over-dispersion may not be defined (McCullagh and Nelder, 1989). 

An extension of the EQL to correlated errors expressed as the sum of independent 

error distributions can maintain high efficiency, providing a better approximation. This 

approach can also be used for a wider class of hierarchical generalized linear models 

(HGLMs) characterized solely by the first two moments. 

2.3.4 Quadratic Estimating Equations 

Godambe and Thompson (1989) and Crowder (1987) developed a general class of 

optimal Quadratic Estimating equations (QEEs) for both the mean and the dispersion 

parameters. The QEEs require the knowledge of the skewness and kurtosis of the population 

distribution, which in practical situations are unlikely to be known exactly, and estimation of 

these requires much more data than are usually available in practice. The study by Davidian 

and Carrol (l987) shows that when both skewness and kurtosis are equated to zero the QEEs 

forms Gaussian estimating equations.  

Studies have found that Gaussian and quasi-likelihood estimates for count data are 

efficient compared to the maximum likelihood estimates (Dean and Lawless, 1989). They 

suggested that combining the quasi-likelihood estimating equations for the mean parameters 

and the optimal estimating equation of Crowder (1987) for dispersion parameter after setting 

the skewness and kurtosis to zero.  

Estimation of the parameters by the quadratic estimating equations overcomes the 

failure of the maximum quasi-likelihood estimation to give reasonable results (Crowder, 

1987). Study by Crowder (1987) showed that if we let  to be the number of successes in  

binomial trials and the random variable defined as  to be binomial , for i = 

1, …, :  with the binomial success probability p  being distributed as a beta distribution with 

mean  and variance , then by considering estimating functions quadratic in the QEEs 
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has general form as , where  and  are 

specified nonstochastic functions of λ.  

When finding the QEEs based on McGBB distribution suggestions by Sudhir (2001) 

of varying the coefficients of QEEs were followed. By setting both skewness and kurtosis to 

zero and finding the higher moments for McGBB Distribution, four QEEs were obtain as 

shown in section (4.2.2) which were then used to find the estimates of parameters of McGBB. 

2.3.5 Method of moments 

The general idea behind the method of moments is to equate population moments to 

the corresponding sample moments. The moment estimates for the parameters α, β, γ and 

dispersion parameter,  of the McGBB distribution is obtained by equating sample moments 

to the corresponding population moments. Lee (2003) derived expressions for the mean and 

over-dispersion parameter estimates as follows: 

                     

2

2

ˆˆ
ˆ

s 







                                                                                                 (21) 

where  

y       

ˆ y                                                                              

and y  is the sample mean                                

2.3.6 The Gaussian Likelihood 

Gaussian estimation procedure was introduced by Whittle (1961) which uses the normal log 

likelihood, without assuming that the data are normally distributed. Other studies have found 

that Gaussian and quasi-likelihood estimates for count data are more efficient than the 

maximum likelihood estimates (Dean and Lawless, 1989). On the other hand Crowder (1985) 

showed that Gaussian likelihood estimates are the estimates of choice if the interest is on 

estimation of the dispersion parameter or the joint estimation of the regression and the 

dispersion parameters. 
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CHAPTER THREE 

METHODS
 

3.1 Introduction 

This chapter describes a simulation study for assessing the performance of the estimates 

for the McGBB distribution parameters based on MLE, QL, GL, M1, M2 and M3. The 

derivation of Estimating Equations and the first derivatives of these estimating equations are 

shown in section 4.2. These equations are then integrated into the subroutines during 

simulation in order to obtain the estimates of parameters of McGBB distribution results 

shown in chapter four. 

3.2 Simulation study 

R language is truly one of the finest available software that allows for the statistical 

computation of files and graphics management. Thus, this study used this software to 

simulate data for the varying values of  and  parameters.  

McGBB distribution was used to generate over-dispersed data from McGBB 

distribution. Data simulated from the McGBB distribution was then used with the three 

estimation procedures to generate small sample results on parameters estimation based on 

the six estimation procedures under study. The relative efficiencies of the estimates 

and   obtained by the six estimation procedures using weekly (7 days) alcohol 

consumption survey data and simulated data was compared with MLEs. Along with 

estimates of the parameters, the estimated Relative efficiencies by all the methods 

including the maximum likelihood method was found. Estimated Relative efficiencies of 

is where t = QL, GL, M1, M2, M3. In the situation where relative 

efficiency is greater than one, then the procedure with its efficiency as the denominator is 

preferred than the “gold standard” ML. Taking  , several sets of combination of 

 and  parameters were chosen: ,  and , 

. For each combination of  and  parameters 5,000 samples were 

simulated from the McGBB distribution. During simulation, all the parameters  and    

were estimated for all the six procedures including maximum likelihood and their 

efficiencies and subsequently their relative efficiencies. 
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3.3 Maximum likelihood Estimation 

McGBB distribution is a new distribution obtained by mixing McDonald beta- 

binomial distribution and success probability of binomial distribution. If we let  to be the 

number of successes in  binomial trials and the random variable defined as  to be 

binomial , for i = 1, …, :  with the binomial success probability p  being distributed as 

a McDonald generalized beta distribution with mean  and variance 

, where is the dispersion parameter, then the mean structure is given by the 

logistic model 

=                                                                                                                  (22) 

where and are k explanatory variables, are the 

k regression parameters. 

The parameter is overdispersion parameter. Maximum likelihood estimate (MLE) of 

and can be obtained by solving the maximum likelihood estimating equations. A 

probability mass function of McGBB (n, α, β, ) distribution and the log-likelihood function 

for  are given by equations 5 and 9 respectively. 

 Let 
ix  be the number of successes observed in 

in clusters and 
ip  be the proportion of 

the successes, where , then the conditional variation on observed  is given by: 

                               

                              , where;  

 =
  
and  

                               

                            =  

                          
 

                            
,                                                               (23)               
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where , with , 

 

 

The parameter i  and  are not orthogonal except when . This is the extended 

McDonald generalized beta-binomial model which takes into consideration as positive or 

negative based on whether the data is over-dispersed or under-dispersed. The MLEs are 

obtained by solving the three simultaneous equations obtained by equating  in 

section 2.2.4 for parameters. This equation 9 was solved by numerical methods to 

yield estimates of  and  respectively. Taking second derivatives of this equation with 

respect to the parameters, the elements of the variance covariance matrix I was obtained. The 

efficiencies of MLE method was obtained using the asymptotic variance –covariance matrix 

of MLE’s which was obtained by inverting the expected Fisher information matrix, where, 

 

 

 

 

 

 

 

The maximum likelihood estimates are hereby denoted by   

3.4 The Inagaki results 

 By denoting the unbiased estimating equations obtained by the method of moments 

and other semi-parametric procedures by 1 2, ,..., ku u u and 1ku  , where 
ju , 1,2,...,j k  
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represent unbiased estimates for 
j  and 

1ku 
 represents the unbiased estimating equation 

for  Let ̂  be an estimate for . Using the method of moments or any 

semi-parametric procedure, the Inagaki (1973) result obtained under the usual regularity 

conditions, such as the finite dimensional parameter space, the expected values are 

continuously differentiable, while variance for Estimating Functions is given by Inagaki 1973 

as; 

    
1 1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
T

Var A B A   
  

  
                                        (24) 

where A and B are square matrices of order 1k  with entries. 

1
1,

k
k j

j

U
A E






 
         1

1, 1
k

k k

U
A E




 

  
  

 
  

,

j

j s

s

U
A E



 
  

      
, 1

j

j k

U
A E




 
  

   

 ,j s j sE U U 
    

 , 1 1, 1j k k j j kE U U    
 

 2

1, 1 1k k kE U   
 

This is for all,  

3.5 Comparison of the Estimation Methods 

 This was done through both real data and a simulation study. Several data sets were 

simulated from a parametric model; McGBB model for a specified parameter set and the 

performance of the ML with QEEs and QL methods was examined using the mean square 

error. In estimating the McGBB Parameters, data was simulated several times according to 

McGBB model to determine the efficiency of the true parameter values. A graphical 

comparison of the estimation methods was also done by plotting the graphs from a simulated 

data set for all the six procedures. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Introduction 

This chapter displays the findings on McGBB distribution parameters estimates α, β 

and γ. Detailed discussion of the results is given based on observation on the tables displayed 

for MLE, QL, GL, M1, M2 and M3 estimates. Tables 2 and 3 display results for MLE, QL, 

GL, M1, M2 and M3 estimates based on real data set while tables 4 and 6 display results for 

MLE, QL, GL, M1, M2 and M3 estimates for varied values of α and β, respectively. 

Moreover, results of point parameter estimates of the McGBB using the Rodrίguez-Avi et al. 

(2007) real data set and simulated data were obtained and are displayed in table 2 and table 5 

respectively. 

The estimates for the displayed results for various combinations of the distribution 

parameters can be replicated by running the subroutines displayed in the appendix A, B and C 

which was carried out in this study. 

4.2 Parameter Estimation  

4.2.1 The Quasi-Likelihood Estimation.    

 The quasi-likelihood (Wedderburn, 1974) is based on the knowledge of the form of 

first two moments of the random variable , defined in section 3.3.1 with, 

and while  and 

, 

The quasi-likelihood with the above mean and variance is given by, 

                                                                             (25) 

 

  This study also found out that from equation (25) two estimating equations arise; 

given any value of  the unbiased estimating equation for j   and  unbiased estimating 

equation that can be obtained by using the quasi likelihood when the k parameters are 

estimated are given in equation 26 and 27 respectively.  

                (26) 
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where and             

 In this case  is given as .                                                                                             

                (27) 

  

Given  through partial fraction and integration by parts equation 25 becomes 

                  (28) 

where,   and  

Then the partial derivatives from equation (28) for the three parameters α, β, γ given was 

also obtained as follows; 

                     (29) 

               (30) 

           (31) 

                                                                 (32) 
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                                                                      (33) 

                                                                           (34) 

                    (35) 

                         (36) 

            (37) 

  

4.2.2 The Quasi-Likelihood variance 

Based on these estimating equations (24) and (25), the Inagaki (1973) gave the expressions 

for the asymptotic variances of the quasi-likelihood estimate whose elements,  ˆA  and 

 ˆB   which are  by  matrix and are components of the Hessian matrix. The 

following expressions were obtained: 

…,  

    ,            …,                                 
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 ,   

 

 

 

 

   

 

The entries of matrices A and B are; 

1

0
A=

k

A

a a 

 
  

    
1

B=
k

A b

b b 

 
  

 

Thus, substituting the above matrices into the asymptotic variance equation (23) yields the 

expression below which is used in finding relative efficiencies given in this chapter: 

 

1 1

1 1 1

0 0
ˆvar( )

T

Qm

k k k

A A b A

a a b b a a


 

  

      
                                       (38)

 

Where A’s and B’s in this case are the first and second derivatives of the estimating equations 

respectively. 

4.2.3 Quadratic Estimating Equations 

In this section, suggestions by Sudhir (2001) were followed. By considering 

estimating functions quadratic in the QEEs have a general form given as gλ=

 Crowder (1987), where  and  are specified nonstochastic 

functions of λ. Thus, through derivation the unbiased quadratic estimating equations for 

parameters; α, β and γ of McGBB distribution was found as follows; 
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The unbiased quadratic estimating equations for α, β and γ and have the form 

= ,                                                                       

By taking       and , then a 

Gaussian estimating equations  denoted by , was obtained as, 

.  

Secondly, by taking , and  unbiased estimating equations 

(QEE’s) for McDonald Generalized Binomial Distribution was obtained. The equation below 

was denoted by  

=  

This simplifies to; 

=                                    

 

For ,and , 

where  an optimal quadratic estimating equations was obtained. It was 

noted that the forms of the skewness and the kurtosis are not known. However, this 

was taken based on the second, third and fourth moments of the McDonald generalized beta-

binomial distribution, which are: 

, 

,  

and  

The estimates obtained by solving these optimal quadratic estimating equations was denoted 

by . Further, the estimates obtained by solving the optimal quadratic estimating 

equations with  was denoted by . Note the estimate is also obtained 

by using the pseudo-likelihood estimating equations of Davidian and Carrol (1987). 
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=

.                                                                                

 

4.3 Small Sample Relative Efficiency 

This study compares the small sample relative efficiency of the estimates  obtained 

by the six estimation procedures; ML, QL, GL, M1, M2 and M3. The estimating equations for 

all the five estimates given in this thesis (section 4.2.2) have the general form of equation 

(39) with specific expressions for  and  for each method.  

A simulation study was conducted taking  reasonably small. For each sample 

McGBB parameters were estimated by the six procedures including the MLE procedure and 

small efficiency are calculated as follows.  

 Relative Efficiency where t = QL, GL, M1, M2, M3 

The relative efficiency results for McGBB parameters are given in tables 4 and 6 and plotted 

in figure 1, 2, 3 and 4 for simulated data. 
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4.4 Estimation Results 

4.4.1  Real Data Results 

Table 1: Alcohol consumption data 

 0 1 2 3 4 5 6 7 

 47 54 43 40 40 41 39 95 

The data set above was used by Alanko and Lemmens (1996), Rodrίguez-Avi et al. 

(2007), and Chandrabose et al. (2013) in the study of handling over-dispersion. It shows the 

number of days an individual consumes alcohol y, out of  days in N=399, where y= 

Number of days. For this data sets, the estimates for and  by different methods and 

estimated relative efficiencies are given in tables 2 and 3 respectively. 

Table 2: The McGBB parameter estimates by MLE, QL, GL, M1, M2 and M3 for real data 

Parameters             Α   

  0.0333 0.1797 26.7312 

 0.0281 0.1502 25.5541 

 0.0301 0.1671 25.8127 

 0.0287 0.1655 24.8421 

 0.0312 0.1671 25.4523 

 

 

0.0282 0.1611 24.6746 

 

Table 3: Relative efficiencies of McGBB parameters by MLE, QL, GL, M1, M2 and M3 for  

   real data 

Parameters                                         

 

 

 1.000 1.000 1.000 

 1.0912 0.9085 0.9010 

 1.0424 0.9831 0.8742 

 0.6121 0.5192 0.5320 

 0.9352 0.9811 0.9381 

 0.3292 0.3615 0.3510 



  
 
 

23 
  

The table 3 presents the relative efficiencies of the real data given in table 1. It shows that 

 and  have higher efficiency in comparison with the other four methods for parameter 

α. 

4.4.2 Simulation Results  

Table 4: The estimated Relative efficiencies of McGBB parameters by MLE, QL, GL, M1,   

              M2 and M3 methods for ,  and varied 

 Estimated Relative Efficiencies 

varied              λ M1    

 0.0 0.980 0.950 0.591 0.933 0.454 

0.1 0.990 0.967 0.638 0.938 0.519 

0.2 0.998 0.985 0.490 0.859 0.586 

0.3 1.014 1.000 0.592 0.928 0.609 

0.4 1.052 1.053 0.617 1.247 0.425 

0.5 1.095 1.025 0.706 0.990 0.438 

0.6 1.148 1.135 0.669 1.552 0.411 

0.7 1.131 1.021 0.655 0.839 0.415 

0.8 1.035 1.010 0.592 0.982 0.298 

0.9 1.001 0.989 0.529 0.952 0.216 

1.0 0.998 0.993 0.389 0.941 0.201 

 

The table 6 presents the relative efficiencies of the simulated data with varied beta. It 

shows that  and  have higher efficiency in comparison with the other four methods 

followed by   and least being .  performs better between 0 to 0.9  showing 

higher relative efficiencies. These results are plotted in figure 1 and 3. 
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Figure 1: Plot of relative efficiencies comparison for various estimators relative to that of the         

              MLE under McGBB model for varied when  and  for all procedures. 

 

Figure 2: Plot of relative efficiencies comparison for estimators relative to that of the MLE      

     under McGBB model for varied when for GL and QL procedures. 
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Table 5: The parameter estimates of McGBB by MLE, QL, GL, M1, M2 and M3 methods for   

                and  

Parameters                                         

 

 

 0.0399 0.1795 26.7311 

 0.0331 0.1695 25.9599 

 0.0310 0.1678 25.8135 

 0.0291 0.1390 23.8428 

 0.0302 0.1659 25.4519 

 0.0254 0.1215 23.6751 

 

The table 5 presents the parameter estimates for the simulated data using the real data 

initials estimates as the initial values in table 2. From this table it’s clear that the simulated 

data estimates are near the real data estimate. This shows that the simulation predicts the real 

data well.  

Table 6: The estimated Relative efficiencies of McGBB parameters by MLE, QL, GL, M1,   

               M2 and M3 methods for ,  and varied  

 Estimated Relative Efficiencies 

 varied       

 0.0 1.000 1.080 0.950 0.431 0.946 0.589 

0.1 1.000 1.109 0.997 0.488 0.908 0.429 

0.2 1.000 1.210 0.989 0.549 0.885 0.348 

0.3 1.000 1.214 1.130 0.627 0.941 0.411 

0.4 1.000 1.252 1.289 0.717 1.493 0.495 

0.5 1.000 1.350 1.325 0.796 0.898 0.517 

0.6 1.000 1.348 1.305 0.739 1.541 0.524 

0.7 1.000 1.343 1.216 0.715 0.953 0.459 

0.8 1.000 1.235 1.101 0.69 0.894 0.398 

0.9 1.000 1.191 0.995 0.652 0.958 0.306 

1.0 1.000 0.908 0.985 0.479 0.902 0.297 
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The table 6 presents the relative efficiencies of the simulated data with varied beta. It 

shows that  and  have higher efficiency in comparison with the other four methods 

followed by  and  and the least being . Between the values 0 to 0.9   performs 

better while   performs better between the values 0.3 to 0.8 since they have higher relative 

efficiencies in respect to other methods. These results are plotted in figure 1 and 3. 

 

 

Figure 3: Plot of relative efficiencies comparison for various estimators relative to that of the   

               MLE under McGBB model for varied when  and for all procedures. 
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Figure 4: Plot of relative efficiencies comparison for estimators relative to that of the MLE   

         under McGBB model for varied when for GL and QL procedures. 

 

4.5 Discussion 

Maximum likelihood procedure relative efficiency comparison with the five 

procedures; QL, GL, M1, M2 and M3 was done as shown in respective tables and figures. 

Figure 1, shows relative efficiencies comparison when   and  and   is 

varied for all procedures. These results present QL and GL as the best methods. While 

figure 3 shows varied when   and fix for all procedures and figure 4;  

varied when   and fix  for GL and QL procedures under simulated data.  

The relative efficiency results for the parameters are summarized in table 3 for the 

real data and those for simulated data are summarized in tables 4 and 6. Tables 3, 4 and 6 

shows that the methods QL; GL; M2; all consistently provide high efficiency (never below 

0.83) and method QL is consistently the best. The next best appears to be the GL method 

followed by M2 and the least being M3. Estimates of parameters by all methods have high 

efficiencies. The good behaviour of the Gaussian likelihood estimator may be due to the fact 

that the Gaussian likelihood is a proper likelihood and the distribution of the data does not 

depend on a specific departure from the binomial distribution. 
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.  In this thesis it is clear that the estimates based on the Gaussian likelihood estimates 

(the GL method); the estimates based on the combination of the quasi-likelihood estimates for 

the regression parameters and the optimal quadratic estimating equation for parameters after 

setting the skewness and kurtosis to zero (the M1 method) and the estimates based on the 

pseudo-likelihood estimating equations of Davidian and Carrol (1987) (the M3 method) are 

all special cases of the quadratic estimating equations while M2 is a QEE. It is noted that GL 

combine the good behaviour of Quasi- likelihood estimating Equation which has proved to 

provide consistent estimates in this thesis research. Many studies carried out on Estimating 

functions for example the study by Paul and Islam (1998) has proved superiority in parameter 

estimation as compared to MLE in Beta-Binomial Distribution. The present study echo this 

findings and shows that the estimates based on GL and QL provide best estimates through 

small sample Relative efficiency. Neither of these two methods requires the knowledge of 

third and the fourth moments of the McGBB distribution. The third best was optimal 

quadratic estimating equations using the third and the fourth moments of the McGBB 

distribution (the M2 method).The above three procedures have proved to be consistent. The 

least methods at the cost of some loss of efficiency are the M1 and M3 which have proved to 

be inconsistent. Generally when data follow a McGBB distribution QL, GL and M2 methods 

are expected to have high efficiency. 
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CHAPTER FIVE 

SUMMARY, CONCLUSION AND RECOMMENDATION 

 5.1 Introduction 

This section gives the summary of the findings of research, conclusion of the study. 

The conclusion is given based on each specific objective given in this study. 

Recommendations for further study and areas of application of study based on the results are 

also given. 

 5.2 Summary and Conclusion 

In this thesis the interest was in the analysis of the estimation of the McGBB 

distribution parameters. The dispersion parameter in this thesis plays the role of a nuisance 

parameter. However, in some instances like Toxicology and other similar fields, the 

dispersion parameter or the intraclass correlation parameter is of primary interest. The three 

objectives were achieved as follows; 

 In this work, the estimate based on MLE and the estimating equations for QL, GL, 

M1, M2 and M3 procedures have been derived. The estimation was done using Quasi- 

likelihood and quadratic estimating equations (QEEs). By varying the coefficients of 

the QEEs four sets of estimating equations was obtained. 

  A comparison of small sample relative efficiency of the five sets of estimates 

obtained by the QL, GL, M1, M2 and M3 estimates with the maximum likelihood 

estimates was done. Estimated small sample relative efficiencies of these estimates 

were also compared for a real life data sets arising from alcohol consumption 

practices.  

 The performance of the estimates using R (2.13.0) software simulation technique was 

also examined. These comparisons results show that estimates, using optimal 

quadratic estimating equations are highly efficient and are the best among all 

estimates investigated. 

 5.3 Recommendation and Further Research 

This study has investigated the Efficiency of the Maximum Likelihood estimators 

with QL, GL, M1, M2 and M3 through the construction of estimates for the parameters of 

McGBB Distribution. Future research may consider the construction of estimates on 

estimating functions based on method of moments, Gaussian likelihood for the McGBB 
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Distribution and a comparison be done with the MLEs. Secondly, further studies may use 

large sample in estimation of McGBB distribution parameters. A comparison of the large 

sample relative efficiencies based on estimating functions and Maximum Likelihood 

estimates can also be considered. The idea of Estimation equations can also be applied to 

other distributions apart from the McGBB distribution so as to construct better parameter 

estimates. 

Thirdly, further study may consider interval estimation for McCBB dispersion 

parameter and researcher may also consider a robustness study for the efficiency property of 

these methods which is necessary when data come from other over/under-dispersed binomial 

distribution such as the probit normal binomial and the logit normal binomial distribution. 
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APPENDIX 

Appendix A: Simulation of the McGBB Distribution 

dMcGBB<-function(x){ 

                  n<-7 

                  a<-0.722 

                  b<-0.581 

                  c<-1 

 j<-0:(n-x)    

                  term<-sum(((-1)^j)*(choose(n-x,j))*(beta(((x/c)+a+(j/c)),b))) 

                  return(choose(n,x)*(1/beta(a,b))*term)} 

pj<-rep(0,8) 

for (k in 1:8)  pj[k]<-dMcGBB(k-1) 

qj<-c(1/8,1/8,1/8,1/8,1/8,1/8,1/8,1/8) 

N<-400 

Xobs<-rep(0,N) 

for (i in 1:N){  

        u2<-4; d<-2 

        while(u2>d){           u1<-runif(1);  

u2<-runif(1) 

 

                 y<-trunc(8*u1)+1                d<-pj[y]/0.22} 

 

                 Xobs[i]<-y-1                } 

table(Xobs) 

 

Appendix B:  Maximum Likelihood Estimates of parameters of McGBB Distribution 

library(bbmle) 

###### MGeneralized Beta- binomial Negative Log Likelihood declaration 

MGenBetaBinNLL<-function(x,a,b,c,fre,n){ 

  density<-c() 
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  for( i in 0:n){ 

    j <- 0:(n-i) 

    term<-sum(((-1)**j)*(choose(n-i,j))*(beta(((i/c)+a+(j/c)),b))) 

    vector.density<-choose(n,i)*(1/beta(a,b))*term 

    density[i+1]<-vector.density  } 

  MGBBLL<-sum(fre*log(density)) 

  return(-GBKBLL)} 

 

Appendix C: Relative Efficiencies 

##FInal Graph - Simulation 

xlab.names<-expression(hat(beta)) 

main.names<-expression(paste("(c) Simulation: Estimated Relative Efficiencies of QL and GL 

vs ", hat(beta) , ",  " , alpha,"=0.7", " using McGBB distribution")) 

win.graph() 

par(mfrow=c(1,2)) 

ylim1<-seq(0,1.5,0.1) 

values<-c(0.0, 0.1,  0.2,  0.3,  0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) 

REFS1<-c(1.080, 1.109, 1.210, 1.214, 1.252, 1.350, 1.348, 1.343, 1.235, 1.191, 0.908) 

REFS2<-c(0.95,  0.997, 0.989,  1.130, 1.289, 1.325, 1.305, 1.216, 1.101, 0.995, 0.985) 

plot(values,REFS1,lwd=2,lty=1,type="l",pch=15,xlim=c(0,1),ylim=c(0,1.5),font.main=3, 

cex.main=0.8,xlab=xlab.names,ylab="Relative Efficiency", main=main.names) 

lines(values,REFS2,lwd=2,lty=2,type="l",pch=16,xlim=c(0,1),ylim=c(0,1.5),xlab=xlab.names,yl

ab="Relative Efficiency")legend("topleft",inset=.05,lwd=2,pch=c(15,16),lty=c(1,2),cex=0.8, 

title="", c("QL","GL"),horiz=F) 

REFS3<-c(0.431,  0.488, 0.549, 0.627, 0.717, 0.796, 0.739, 0.715, 0.690, 0.652, 0.479) 

REFS4<-c(0.946,  0.908, 0.885, 0.942, 1.493, 0.898, 1.541, 0.953, 0.894, 0.958, 0.902) 

REFS5<-c(0.589,  0.429, 0.348, 0.411, 0.495, 0.517, 0.524, 0.459, 0.398, 0.306, 0.297) 

main.names1<-expression(paste("(d) Simulation: Estimated Relative Efficiencies of QL, GL, 

M1, M2 and M3 vs ", hat(beta), ",  ", alpha,"=0.7", " using McGBB distribution")) 
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plot(values,REFS1,lwd=2,lty=1,type="l",pch=15,xlim=c(0,1),ylim=c(0,1.5),font.main=3, 

cex.main=0.8,xlab=xlab.names,ylab="Relative Efficiency", main=main.names1) 

lines(values,REFS2,lwd=2,lty=2,type="l",pch=16,xlim=c(0,1),ylim=c(0,1.5),xlab=xlab.names,yl

ab="Relative Efficiency") 

lines(values,REFS3,lwd=2,lty=3,type="l",pch=17,xlim=c(0,1),ylim=c(0,1.5),xlab=xlab.names,yl

ab="Relative Efficiency") 

lines(values,REFS4,lwd=2,lty=4,type="l",pch=18,xlim=c(0,1),ylim=c(0,1.5),xlab=xlab.names,yl

ab="Relative Efficiency") 

lines(values,REFS5,lwd=2,lty=5,type="l",pch=24,xlim=c(0,1),ylim=c(0,1.5),xlab=xlab.names,yl

ab="Relative Efficiency") 

legend("topleft",inset=.05,lwd=2,pch=c(15,16,17,18,24),lty=c(1,2,3,4,5), cex=0.8,title="", 

c("QL","GL","M1","M2","M3"),horiz=F) 

 




