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ABSTRACT

The Nairobi Stock Exchange (NSE) founded in 1954, as a
voluntary organisation of the stockbrokers is now one of the most

ctive capital markets in African where investors buy and sell

W

shares and other securities. The sgshare prices in the stock market
usually vary with time and this can be attributed to factors such
as changes in the economic growth of the region, threat of war or
strikes, government policies or political changes. These factors
are non deterministic in nature and highly autocorrelated.

Share prices movements in the NSE market are measured by an
index based on 20 representative companies and is calculated on a
daily basis. The index is a general price movement indicator based
on a sample or upon all the stock market companies and the sale and
;urchaée decisions are based on its movements.

The forecasts of future trends of share prices are often based
on subjective factors, thus in this study appropriate forecasting
models for determining the future share prices trends on the market
are developed. The models are based on the stock market index as
well as the share prices for Barclays Bank of Kenya Ltd, ICDC
Investment Company Ltd, Kenya Commercial Bank Ltd, Standard

Chartered Bank Kenya Ltd, BAT Kenya Ltd and Kenya Breweries Ltd.
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CHAPTER ONE

INTRODUCTION AND LITERATURE REVIEW

1.1 Background

A stock exchange is a market which deals with the exchange
between publicly quoted companies, ' government and municipal
securities for money. The Nairobi stock exchange which was formed
in 1954 as a voluntary organisation of stock brokers is now one of
the most active capital markets in Africa.

The administration of Nairobi stock exchange limited is now
under fully operational secretariat, located on the first floor of
Nation centre, Kimathi street, Nairobi. As a capital market
institution, the stock exchange plays a vital role in the process
of economic development. It helps mobilize domestic savings thereby
bringing about the reallocation of financial resources from dormant
to active investors. Long te?m investments are made liquid as the
transfer of securities betwesn share holders is facilitated. The
exchange has also enabled companies to engage local participation
in the equity,lthereby giving kenyans an cpportunity to own shares.

The Nairobi stock exchange deals in both variables income
securities and fixed securities. The former are the srdinary sharen
which have a fixed rate of dividend payable, ag the dividend in
dependent upon both proficability of the company and what the board
of directors decide. The latter includes the preference shares,
debentures stock, municipal and government stock and thése have a
fixed rate of interest (dividend) whichl is not dépbndent on

1



profitability.

A share is a unit of ownership and representg the money which
a shareholder originally put into building up a company. When
investors invest in a company by buying shares, they become
shareholders and they are entitled to vote on company policies,
appoint and dismiss plant directors and if the company makes a
profit, they are entitled to a share of it in form of dividend.

The share prices in the stock market usually vary with time.
This can be attributed to factors such as changes in the economic
growth of the region, government policies, threats of war and
strikes within the region or in companies, political changes or the
stability of companies. These factors are non deterministic in
nature and are highly autocorrelated.

Share price movement in the Nairobi stock exchange market is
measured by an index based on 20 representative companies and is
calculated on a daily basis. The index is a general price movement
indicator based upon a sample of the stock market companies or upon
all of them and thus the sale and purchase decisions are based on
its movement.

The forecast of future trends of the share prices is often
based on subjective factors and it is therefore possible that any
two people particularly stockbrokers may arrive at different
subjective forecasts 1if presented with information that a
particular share has reached a historically high value. Therefore
it is for this particular reason that we wish to apply quantitative

forecasting techniques to develop appropriate forecasting models



for determining the future trends of the share prices in the market
based on the past information of the share prices and hence this is
what entitles this dissertation. The models developed are based on
the stock market index as well as the share prices for Barclays
Bank of Kenya Ltd, ICDC Investment Company Ltd, Kenya Commercial
Bank Ltd, Standard Chartered Bank Kenya Ltd, BAT Kenya Ltd and

Kenya Breweries Limited.

1:2 Stochastic Time Series Models
1.2.1 Linear Models

A set of observations obtained sequentially in time is known
as a time series. An observed time series (Z2,,Z,,...,2,) can be
thought of as a particular realization of a stochastic process
which can either be linear or non linear. When such observations
are represented as a linear function of a sequence of mutually
independent and identically distributed (iid) random variables, it
is referred to as a linear process, otherwise it is a nonlinear
process. Stochastic processes in general can be described by an n-
dimensional probability digstribution P&, Ba v 38 «

The autoregressive moving average processes abbrevited as
(ARIMA (p,q)) are the most frequently and widely applied class of
models in time series modelling. These types of models have
provided the basis for much of the traditional model fitting
methodology. A general autoregressive moving average model is a

linear process given by the general equation



®(B) X, = ©(8) e,
where B is the backshift operator such that
kat = xt-k

for some integer k. The set (e,) 1s a sequence of uncorrelated

random variables with mean zero and constant variance. The
polynomials
p ]
®(B) =1+ Y ¢,B?
i=1
and
q .
@(B) =1+ Y 6,8
i1

are the autoregressive and the moving average operators of order p
and g respectively and with all the roots of the polynomial
equations
&(B) = 0 and 6(B) =0

being outside the unit circle if the process is both stationary and
invertible respectively.

The autoregressive moving average process 1is a
composition of the autoregressive (AR(p)) and moving average
(MA (q)) processes. The p* order autoregressive process components

1s expressed as
X =X, + OXp + ... Py + By

where ¢.’s are the model parameters and e, is as defined earlier.

The autoregressive models date back to Yule (1921, 1927) when



he developed the first order autoregressive (AR(1)) process written

ds

XC = d)XC*l i et

following his observation that any successive values which are
autocorrelated can be represented as a linear combination of a
sequence of uncorrelated random variables. The first autoregressive
process is also called a Markov process because the observation b8
at time t only depends on the previous observation X1 &t time
T

The moving average process developed by slutzky (1937) has a
general functional form similar to the linear filter representation

though with a finite order g. Thus its functional form is given by
Xy = By v BBy v R

while the first order moving average (MA(1l)) process is expressed

as

£, =08, + =

where 0.,’s are the model parameters and {e.,} are as defined
earlier.

A stochastic process which is not constant in its first and
second order properties is said to be nonstationary. In particular,
processes whose second order properties vary with time
(heterogenous nonstationary) are appropriately transformed to
attain stationarity (see for example Priestley, 1988). A more
general method which leads to standard statistical inference about
the choice of transformation was analysed by Box and Cox (1964) who

5



considered the parametric family of power transformations given by

— if A =1

in%, iF A=

The values of the index A can either be chosen before hand
using the mean and the variance or the range and the median plots
(see Mili, T.C (1990) pg 49) or estimated with other parameters
(#,0,0) (see Nelson and Granger, 1979).

A nonstationary series in mean is typically characteristed by
occasional increasing or decreasing trends in mean level. Since
power transformations preserve order, they cannot by themselves
stabilise a time varying mean. Thus time varying first order
processes are usually differenced to attain stationarity (Box and
Jenkins (1970)). Polynomial trends of order d, can be removed by
taking the d*® difference

VX, = (1-B)9X,.

Seasonal nonstationary can also be removed by seascnal

differencing. The s*® difference is defined as

VX, = X.-X,., =(1-B")X,
where s is the seasonal period and it is equal to 4 or 12 for
quarterly or monthly data respectively.

Differencing of a stationary series still yields another
stationary series, but overdifferencing can lead to serious
difficulties. For one, it leads to complicated models with more
parameters than the previous stationary models and it also has a
larger variance than the previous differenced stationary process.

6



Thus the behaviour of the sample variance associated with different
values of d can provide a useful means of deciding on the
appropriate degree  of differencing. Infact Anderson (1976)
indicated that the sample variance tends to decrease until a
stationary sequence has been attained but tends to increase on
':ve;differencing. However, this is not always the case but the idea
can be employed as an auxilliary method of determining the
appropriate values of d.

A nonstationary ARMA (p,q) process differenced d times is said
to follow an autoregressive integrated moving average process

abbreviated as ARIMA(p,d,q) and is expressed as
® (B)ViX, = @(B) e,
where the difference operator V is such that
Vd = (1-B)¢

nd &(B), 6(B) and e, are as earlier defined. The simplest

0

ARIMA process is the ARIMA(0,1,0) usually called the random walk

process and is expressed as

1.2.2 Nonlinear Models

Not all time series data can be adequately modelled using
linear models and this has led to a search for alternative models
o the linear models where one possible direction has been to
assume nonlinearity while retaining the normally assumption on the
innovation sequence. A considerable number of nonlinear models have

7



been developed as a result of this assumption. They include the
Bilinear models (see Granger and Anderson, 1978) abbreviated as
B(p,q,r,s) and which are a generalization of the univariate
ARMA (p,q) models with the genaral form

QIBIX, = B(Be,+ Y ¥ a.-X, e

=3 P

where the term

is a bilinear form in e, ; and accounts for the non-linear character
of the model. However, if the o0,, are zeros (i.e 0;;=0 for all i and
j) then the bilinear model reduces to a linear ARMA model.
Threshold autoregresssive models (TAR) (see Tong and Lim
(1980), Tong (1983)) represent another set of nonlinear models
which are widely utilized. These were developed by Tong and Lim
(1980) to facilitate the modelling of series that exhibit limit
cycles. The first order threshold autoregressive model denoted as

TAR (1) has a functional form given by

% = GVx, . + &P, if X, . <d

DX rE s iF Bl
and this can be extended to a 'k-threshold’ model of the form

X =%, v I1f R, 151,2,...,%

where R,,...,R, are given subsets of the real line R'. Looked at in



this way, the k-threshold model may be regarded as a ’‘piecewise

linear’ approximation to the general nonlinear first order model
X = A(Xpy) + ey

The higher order threshold autoregressive models are similarly
defined. Thus the p™® order threshold autoregressive (TAR (p)) model

has the form

e BR80T R ¢ B,
if (X ,,.-:%,) ER®, i=1,..,k where R® is a given region of the
p-dimensional Euclidean space RP. Correspondingly, this model may
be viewed as a piecewise linear approximation to
Xe = EM&Eoqr Rogr oscX) * &

Other nonlinear models include, the state dependent models (SDM) of
Priestley (1980), the exponential autoregressive (EAR) models
developed by Ozaki and Haggan (1981), the Random coefficient
autoregressive models by Nicolls and Quinn (1982) and the Doubly

stochastic models by Tjostein (1986).

1.2.3 Intervention Models

Economic time series measurements as 1is the case with share
prices at the Nairobi stock exchange are highly affected by policy
changes and other events that are known to occur at a particular
point of time. As an example, the end of year dividends given by
firms registered at the Nairobi stock exchange can in one way or
other affect the prices of the shares. Events of this type whose

timing are known are referred to as interventions (see Box and



Tiao, 1975). Interventions can affect a time series data in several
ways. They can change the mean level either abruptly or after some
decay, change the trend, or lead to a more complicated response
pattern. It is obvious that ignoring tﬁese factors can lead to an
inadequate model being fitted and consequently, poor forecasts
being made. Interventions can be incorporated into a univariate
model by extending it to include a deterministic or dummy input
variable. For example if we consider a single intervention known to
occur at time T, and X, is generated by an ARMA(p,q) process, then
2n intervention model may be postulated as
X, = V(B)I, + U,

where

is the ‘noise’ model, V(B) is a (possibly infinite) polynomial

which may admit a rational form, such as

i =2
where
wiB = ®; =~ W,B - =
and
PiE] =1 = BB = ¢~ B

where b measures the delay in effect (or dead time) and I, is an
intervention variable usually a dummy or an indicator sequence

taking the wvalues 1 and 0 to denote the occurrence or non

10



occurrence of the external (exocgenous) intervention. The commonly
used dummy variables in representing various forms of interventions
include:

(i) a pulse variable, which models an intervention lasting only for

the observation T,

(ii) a step wvariable, which models step changes in X, beginning at

T,

{l L4 T
0 L2 P

1:3 Statistical Modelling

The analysis of data that has been observed at different
points in time leads to a new and unique problem in statistical
modelling and inference. Statistical modelling in time series is an
iterative process as shown in the algorithm £fig 1.1 which
encompasses the model identification, parameter estimation,
diagnostic checking and forecasting.

Process specification involves various steps, the most basic
being the determination of the class of parsimonious models to
which a given time series belongs. In particular, this requires
determining whether a given time series is generated by a linear or
a nonlinear gaussian processes, finite or an infinite variance non

gaussian processes or a combination of some of these processes.

11



Data

-

STEP1: Model identification

STEP2: Model parameter
estimation: Are all the parameters
significant?

NO

YES

STEP3: Model diagnostic
checking : Is the model adequate?

NO

YES

v

STEP4: Forecasts generation

New
observation

Stability checking: Is the model
stable?

NO

YES

Forecast updating

Fig. 1.1 Time series modelling algorithm
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This initial identification stage is either based on past data and
any prior information about the generating process or on subjective
deductions from the timeplots of a series followed by some
confirmatory objective tests. Once the form of the process is
established, the next important step is to determine the specific
subclass in the selected class to which the series belongs. This is
followed by the determination of the orders of the model in the
selected subclass where the objective techniques of Akaike
(1970,1974), Schwarz (1978) and Hannan (1980) as well as simple
graphical tools for the identification such as those developed by
Box and Jenkins (1970) play a key role.

The second step 1in statistical modelling is parameter
estimation. This is a crucial step in attaining some of the major
goals in modelling and this is due to the fact that efficient
estimation of the parameters leads to efficient forecasts. Several
techniques on parameter estimation have been discussed in the time
series literature. These include the maximum likelihood estimatocrs,
moment estimators, the conditional and unconditicnal estimators
(see Klimko and Nelson, 1978), the optimal estimating function
criteria (see Godambe, 1985) and nonlinear estimators.

After the parameters in the model have been estimated, it is
necessary to check whether the mcdel assumptions are satisfied. If
the assumptions are not met, the model must be respecified. This
step in statistical modelling is the third and is usually referred
to as diagnostic checking. This phase, helps in selecting a

parsimonious model among several competing models for the same

13



frocess. The tests are based on the analysis of the residuals and
= model is considered adequate if the residuals form a white noise
S=quence with zero mean and as small variance as possible (see Box

=nd Pierce, 1970).

Finally, in the fourth and last step, the adequate model is

2sed for control and forecasting. The commonest forecasting
triteria is based on minimizing the mean square error, where for a

process X., we aim to obtain the forecast X, such that

s minimized.

1:5 Literature Review and Work Layout

The quest for an explanation on the kind of process that
Zetermines the prices of the common stbck dates back to (1900) when
2achelier indicated that the common stock prices follow a random
walk. However the burgeoning of modern work in this subject did not
Segin until 1959 when Robert suggested that stock prices appeared
to follow a random process. Similarly, Osborne a distinguished
physicist in the same year pointed out that there was a very high
degree of conformity between movement of stock prices and the law
governing Brownian motion.

Granger and Morgenstern (1963,1970) in their work on
Predictability of stock market prices presented evidence that stock
price returns are normally distributed in terms of transaction

i.e. per transaction) rather than per unit calendar time e.g. per
day. Cootner (1964) in his work on the random character of stock

14




market prices traced the development of the theory of random walk
of stock prices from 1900, while Fama (1965,1976) sEudied the.
behavior of stock market prices and gave various types of evidence
in support of the random walk theory and published studies
suggesting that the rate of returns were distributed according to
a stable symmetric distribution with infinite variance or Paretian
tail and suggested the use of a normal dist?ibution in analyzing
stock prices.

Clark (1973) developed a subordinate stochastic model with
finite variance for speculative prices. Westerfield (1977) in his
work on the distribution of common stock price changes showed that
the stock prices fit the subordinate normal generating process
better than they fit Fama’s paretian distribution.

Taylor (1986) examined the possibility of forecasting
financial series through the use of time series models. In the case
of the stock market prices, he examined the behavior of the daily
prices of 15 individual US shares over the period 1966 to 1976 so
that the number of the observations in each series was 2750. He
found out that the daily prices follow a first order moving average
process.

Chapter two of this dissertation explores the various
theoretical concepts on model order specification and parameter
estimation criteria and this is followed by the identification and
parameter estimation of the models that fit the share price data
for various firms.

In chapter three, various tests for checking the adequacy of

15



the fitted models and forecasts techniques are disscussed. Moreover
these tests are used to determine the appropriate models for the
share prices data for the various firms. Chapter four gives a brief

conclusion and suggestions for further study.
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CHAPTER TWO

MODEL IDENTIFICATION AND PARAMETER ESTIMATION PROCEDURES

2.1 Introduction

Univariate ARIMA (p,d,q) processes are widely used to analyse
stochastic properties of time series. In order to estimate the
parameters of a fitted model, a decision must be made on the
dimensions of the autoregressive moving average structure and the
order of differencing (d) or any other appropriate transformation
required to achieve stationarity.

Specification of a model requires finding estimates of the
order (p,g) of the process. The true order of the process is rarely
if ever known, and therefore a most difficult part of time series
modelling is the specification of the order (p,q) of the process to
be fitted based on a finite set of observations. It often happens
that the selected model is a simplified form of the true model
which is usually complicated. However, what is assumed 1is that the
model choosen eventually adequately describes the underlying
process and that it may be potentially useful for some purpose (i.e
forecasting and control). Once the order has been specified, the
parameters of the model and the variance (¢?) of the error
component can then be estimated.

Since there exists no universal paradigm to the question of
determining the order of a time series model from empirical data,
a large number of procedures have been put forth to help in

choosing the most appropriate model structure. However, the Box

17



#nd Jenkins approach to time series modelling remains the most
w:dely used technique.

In this chapter the underlying theoretical concepts of model
“dentification and parameter estimation are discussed in section
2.2. In section 2.3 interest is centred on the specification and
. parameter estimation of the appropriate models for the quoted
companies of the Nairobi stock exchange. To achieves this, we will
follow the Box and Jenkin approach to order specification. The
2kaike information criteria (AIC) and Bayesian information criteria

BIC) are also used to place the proposed models in order of their

preferrence.



.2 Theoretical concepts of model identification and parameter
timation
2.2.1 Order determination

The determination of the order of a model requires finding the
Bstimates of p and g of the process. The traditional method of
choosing the best model has been the 1likelihood ratio test
statistic. The test of the null hypothesis that the oraer 18 (Byrls)
=gainst the alternative that (p, q,) is suitable. However, this is
Frue only when (p,d,) and (p, q,) have been specified a prior. If
these are unknown, as usually is the case, then the testing
procedure has to be applied repeatedly for different wvalues of

P, d9,) and (p,q,) (Hannan (1970); Potscher (1982)) with the
consequent difficulty of determining the appropriate 1level of
significance (Akaike, 1978).
In the traditional Box and Jenkins approach (see Box and
Jenkins, 1970) this is done by matching the properties of the
sample autocorrelation (r(h)) and sample partial autocorrelation
(p(h)) functions with those of the theoretical autocorrelation
(p(h)) and partial autocorrelation (¢ (h)) functions with the hope
* of finding similar patterns. It is seldom in practice that the mean
(n) and the variance (¢?) of the sampled data are known. However,
with the stationarity assumptions, u and ¢® can be estimated by the
sample mean and the sample variance

n

PIRS

ii =_X= t=1
a n

12



respectively. Consequently an estimate of the r(h) and p(h) can be

cbtained from the lag h sample autoccorrelation

and lag h sample partial autocorrelation

=,

1 p(1) - p(h-2) p(1)
p(1) p{2) - p(h-3) p(2)
h) = lp(h-1) p(h-2) p(1) p(h)
B 1 p(1) - plh-1)
p(1) 1 p (h-2)
plb-1}) p{h=2) = i

If there is no correlation among observations that are more
than g steps apart (p(h)=0 for h>qg), the variance of r(h) 1is

approximated by (Bartlett, 1946)

Var{r(h)) =

sl

h=g
(1 =2% p*(n) forhv g
st

and in the special case when all observation are uncorrelated
(p(h)= 0 for all h # 0) then this equation reduces to

Yar(z(h)) = o+
If n is large and p(h)=0, r{(h) will be approzimately normally

20



distributed with mean zero and var(r(h))= n* (Bartlett (1946) and
Anderson (1971) pg.478). Therefore the absolute wvalue of r(h) in
excess of twice the standard error (s.e) may be regarded as
significantly different from zerc i.e
lz(h)| > 2s.e(r(h)) = 2var(r(h))>.

The properties of the autocorrelation and partial
autocorrelation functions serve as a guide in identifying the type
of process that 1is behind the generation of a particular set of

emperical data. For an AR(p) model

[(A=8B = ;0 W E7E = By
its autocorrelation function (ACF) is given by

(h) ={¢1p(h”l)+¢zp(h“2)+-n-+¢pp(b‘p) h>0
d 0 otherwise.

which decays exponentially (or sine wave decay), while its partial

autocorrelation function (PACF) has the form

1 p Ly p (B=-2} pi(l)
P (1) plg) = plo=3) piz)
. = pih-l) plh-2) p (1) p(h)
e 1 p (1) p(h-2) p(h-1)
p(1) 1 p{h-3) p(h-2)
p -1} plh=-2) » pll) ;3
for b =1,2;...,p 2t 2Zero for b = p gnd it cute off at lag p.

The MA(g) process

gTc-gf

has its ACF

EBEQ?Q%fuﬁwtpapﬁw
21
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6, + 0,,,0, + ... +0,0,

=i Y P o
p(h) =1 1+67+...+07 .

0 h >qg.

cutting off at lag g i.e the memory of the process extends only g
steps with the observations more than g steps being uncorrelated
whereas its PACF has a combination of exponential decay or damped
sine wave decay for real and complex roots of 6(B)=0 respectively.

Thus iﬁdeed, an important duality between the AR and the MA
process is that, while the ACF of the AR(p) process is infinite in
extent, its PACF cuts off after lag p. The ACF of the MA(g) process
on the other hand cuts off after lag g, while the PACF is infinite
in extent.

However, unlike the pure AR or MA models, the mixed
ARMA model is characterised by both an ACF and PACF that tail off
to infinity rather than cut off at a particular lag. For h>g-p, the
ACF is determined from the AR part of the model, while for h<p-q,
the PACF 1is determined from the MA part of the model. The
theoretical properties of the AR(p), MA(g) and ARMA (p,q) processes
are summarized in table 2.1.

Seasonal ARIMA(p,d,q)*(P,D,Q) processes tend to generate
autocorrection and partial autocorrection functions that mimic the
behaviour observed in the ordinary ARMA (p,d,q) process, except that
there are peaks at multiples of the seasonal period s.

A Seasonal AR process of order P given as

®.(B*)X, = e,

has a PACF which takes nonzero values at m = s, 2s,...,Ps and zero

22



m >Ps, while the MA process of order Q
X, = 8,(B)e,
an ACF with nonzero values at m = s, 28,...,08 and is zero for

>0S.

el ACF lag (h). PACF lag (h).

White noise. aAll Zero. All zero.

AR (p) . Exponential or sine | 6, = 0

wave decay.

0,d,q) MA(g). ACEF = 0 Egr Hsl. Dominated by
damped exponential

or sine wave.

' ([p,d,q) ARMA(p,q). | Tail off after Tail off (p-q)

(g-p) lags. lags. Dominated by
Exponential and/or damped exponential
sine wave decay and/or sine wave

after (g-p) lags. after (p-gq) lags.

Table 2.1 The ACF and PACF properties for ARIMA(p,d,q) models.

While an informal inspection of the sample autocorrelation
SACF) and partial autocorrelation (SPACF) functions plays a
crucial part in model identification, it cannot stand by itself,
since no standards of comparison are provided against which the
observed descrepancies can be measured (Newbold and Granger, 1974;

Chatfield and Prothero, 1973; Bhansali, 1983).

23



A number of model selection criteria have been proposed in the

Zerature (see Abraham, et al., 1985). However, among them, the
t commonly employed criteria includes the Akaike information
iteria (AIC), Bayesian information criteria (BIC) and the &

nan) criteria, given by

2
e

AIC(p.,q) lno? + 2(p+g)n™

2

BIC(p, q) lnoc? + (P+g)n*ln(n)

and

®(p,q) = lno.? + (p+g)enln{ln(n)} for c=2
=spectively. Where 0.> is the estimate of the error
=riance ¢? and (p,q) are the number of parameters in the

itoregressive and moving average components respectively of the
itted model. These criteria are used in the following way. The
per bound, say P={0,1,...,P) and Q={0,1,...,Q) are fixed for the
lynomial ¢(B) and 6(B), and order p; and g; are selected if they
fve the minimim value of AIC(p,,q;), BIC(p;,q;) and @(p;,q,) . For

ample, the order p; and g, are selected through the BIC if
BIC(p;,q;) = min[BIC(p;,q;), p.EP,q,€Q]

The application of this strategy has one possible drawback
Eince no specific guidelines on how to determine P and Q seem to
2e available. However, they are tacitly assumed to be sufficiently

farge for the range of models to contain the true model which we
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denote as having orders (p,,q,), and which will not necessarily
the same as (p,,q,), the orders chosen by the criterion under
ideration. The BIC and & afe strongly consistent in that they
rmine the model asymptotically, whereas for the AIC, an

arameterised model will always emerge no matter how long the

ilable realization (Mill, 1990)}.

a5



.2.2 Parameter estimation

Identification procedures are approximate methods applied to
set of empirical data to indicate the kind of model which warrant
urther investigation. The specific aim 6f these procedures is to
Dtain some idea of the values of p,d and g needed in the general
IMA model. The tentative ARIMA (or AR, MA or ARMA) model so

btained by the identification method provides a starting point for

e model parameter estimation procedure.

Various techniques of parameter estimation of time series have
en proposed in the literature (Abraham and Ledolter, 1980), but
‘nce the theory of estimation per se is not our primary aim in
is dissertation, we will only apply the techniques to estimate

parameters of the proposed model. However, among the commonly
sed estimation criteria, the maximum likelihood (ML) estimation
iterion gives parameter estimates which are consistent,
ptotically efficient and normally distributed. The criterion is
sually preferred in small samples and particularly so when the
rameter values approach the invertibility boundaries. The
nditional least squares (CLS) method is comparable to the ML
iterion when the parameter values are away from the invertibility
undaries. In estimating the error variance (o¢?) the CLS method
=nds to overestimate it, while the use of the unconditional least

uares (ULS) method leads to underestimation. Once the parameters

Z the fitted model have been estimated, it is necessary to test

nether the individual parameters are significantly different from
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zero. This 1s done by testing the hypothesis

H, : B; =0 Vs H, ¢+ g, # 0

using the standard Z-test or t-test. For the t-test, the statistic

_ Pg=0D

8/C;;

is used. This statistic has a t-distribution with (n-p-g-1) degree

of freedom if an ARMA(p,q) process was fitted, with s(c;;)*? being

the standard error of the estimate. If
| £ | > t,(n-p-q-1),

the null hypothesis that =0 1is rejected in favour of the
altenative hypothesis B; # 0 at level a. For an acceptable model,
the parameters should all be significantly different from zero, i.e
8.2 0. If they are not, then the parameters concerned should be set
o zero and the model re-estimated without them as indicated in the
algorithm in figure 1.1. The stability of the parameters can be
tested by re-estimating them using a sub-set of the data to see if

. they change.
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Model Specification for the q&oted Firm’s share prices data
.1 Barclays Bank Kenya Ltd.

Barclays bank (K) whose registered head office in Kenya is at

clays plaza, Loita street, Nairobi was incorporated in Kenya in
8 to provides an extensive range of banking, financial and
ated services. The company has a foreign holding of 68.51% and
among the 20 NSE index representative companies with 31.5%
pated shares at the NSE.

A timeplot of the Barclays bank share prices‘'for the years
Bs> to 1996 is given in fig 2.1(a). The increasing and decreasing
=nd in the timeplot of the share prices and the slow decline of

SACF for the original series reveals that the series is mean

BARCLAYS SHARE PRICES

180
“rices

120

60 T

0 60 120 180 240 300
Time in weeks

ig 2.1(a) Timeplot for BARCLAYS BANK (K) share prices.

The stationarity in mean of -the timeplot for the £first

Bifference (vX,) displayed in fig 2.1(b) indicates that the first
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ifference is adequate. This is further confirmed by the minimum

ariance (minV(v?X.)) criterion since the sample variance of the
original series (X,) and those associated with the series ik, Vi
end v’X, are 2375.778, 49.119, 113.901 and 170.520 respectively,

Bmplying that d=1 is an appropriate degree of differencing.

BARCLAYS BANK SHARE PRICES
25 T
Prices

O A,
-25 71

=50 T ‘ . . . ‘
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Time in Weeks

Fig 2.1(b) Timeplot for the first difference for the BARCLAYS share prices.

However, there are fluctuation; between the 160" and the 225
week which can be attributed to the high share prices realized by
the company between February 1994 and February 1995. This was as a
Fesult of the unstable high rates of inflation in the country’s
=conomy in that period, the increasing bank interest rates and the
reforms and liberalization of the financial sector which relaxated
Ehe restrictions on foreign investors at the Nairobi Stock Exchange
@s well as the attractive dividends declared by the company at the
=nd of 1993 financial year.

The significant peaks at lag 1, 3, 7, 10 and 13 of the SACF

Suggests seasonal nonstationarity of the series with seasonal
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riod approximately equal to 3, but the SPACF with significant
ks at lag 1, 7 and 10 is rather difficult to interpret since
ere is no particular striking pattern. Closer examinination of
P SACF, suggests that ARIMA(1,1,0)(1,1,0); or ARIMA(D,1,1) (0,1,1),
cesses could be possibilities. Ignoring the seasonality aspect
the series, the ARIMA(10,1,13), ARIMA(10,1,0) .and ARIMA(0,1,13)
cesses could be best alternatives. |

Estimating the parameters using the ML procedures, the
llowing models were obtained
ARTMA(L, 1, 0)%(1,1,0),

(1 - 0.230B) (B*)vX, = e, with ¢* = 107.078
(0.058)

i) ARIMA(0,1,1)*(0,1,1),

(1L - B)X, = (1 + 0.250B) (B*)e, with o® = 105.826
(0.057)

ii) ARIMA(13,1,0)

(L - 0.133B” + 0.536B - 0.122B*?*)vX, = e,
(0.059) (0.059) (0.059)

“h ¢® = 46.457
W) ARIMA(0,1,10)

vX, = (1 + 0.117B” - 0.210B*)e, with o? = 46.615
(0.059) (0.058)

ARIMA(3,1,10)

(1 + 0.726B + 0.163B°)vX, = (1 + 0.893B - 0.147BY)e,
(0.089) (0.065) (0.061) (0.061)

th ¢ = 44.785

parameters not included in the final models were found to be
-significant. The significance of the peaks in the SACF and
CF were ignored and a random walk model fitted. The variance of
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the data based on the ARIMA(0,1,0) model was 49.012. The AIC and

the BIC values for the above models are given in table 2.1 below.

Model ATIC BIC
ARIMA(3,1,10) 1930.017 |[1944.697
ARIMA(0,1,10) 1939.685 [1947.025
ARIMA(13,1,0) 1939.697 |1930.707

| BRI (0,1, A0 % (6,1.,1) [2153.470 |[Z157.130 |
| =+ - .
|21856.860 |[2160.520 |

|
|ARIMA(1,1,0)*(1,1,0),

ARIMA(0,1,0) 1951 :683 |1895L.683

Table 2.1 The AIC and BIC wvalues.
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2.3.2 ICDC Investment Company Ltd.

The ICDC investment company limited with its registered head
office in Uchumi house, Aga Khan walk, Nairobi was incorporated in
Kenya in 1955. As a locally controlled investment company and
parastatal body with foreign holding of 0.03%, the ICDC investment
company limited enables its members to acquire interest in the
existing projects including certain investments held by the
corporation. The company has 100% floated share in the NSE.

From the timeplot for the ICDC share prices data for the years
1992 to 1996 shown in fig 2.2(a) it is clear that the mean level is

changing with time which 1is an indication of homogeneous

nonstationarity.
ICDC SHARE PRICES
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Fig 2.2(a) Timeplot for ICDC share prices.

The nonstationarity in mean of the data is further confirmed
by the slow decay of the correlogram of the original series. The

sample variance of the original series is 159.069 while those
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associated with the first, second and third differences are 4.075,

10.990 and 18.601 respectively, hence the first difference is

suggested by the minV(v®X.)" criterion and its appropriateness is

seen in the timeplot for vX, series fig 2.2 (b) which shows a fairly

stationary series in mean.

ICDC SHARE PRICES
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10 +
0 60 12a - 180 240 300
Time in weeks

Fig 2.2(b) Timeplot for the first difference for the ICDC share prices.
- The fluctuations between the 160" and the 225 week are due

to the high share prices realized by the company between February

1994 and March 1995. This can mainly be attributed to the high

rates of inflation in the country’s economy in that time, the

increasing bank interest rates and the 1liberalisation of the

} financial sector which relaxated the restriction on the foreign

investors at the Nairobili Stock Exchange market.

The sharp cut-off at lag 1 in the SACF for the vX, series

point towards the ARIMA(0,1,1) process, whereas the corresponding

SPACF has significant peaks at lag 1 and 3 suggesting that the

2ARTMA(1,1,0) or ARIMA(3,1,0) models could be tentatively
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entertained but on the grounds of parsimony we choose the
ARIMA(1,1,0) process.

The Ml estimation technique applied on the ARIMA(0,1,1) and

' the ARIMA(1,1,0) processes showed that the constants for both

processes were not significant. Estimating the models without the
constants gave the following models
(i) ARIMA(1,1,0)

(1 - 0.343B)vX, = e, with o* = 3.605
(0.055)

(ii) ARIMA(O0,1,1)

(1L - B)X, = (1 + 0.310B)e, with o® = 3.648
(0.056)

The estimates obtained through the CLS method are almost the
same as those given by the MLE criterion. The AIC and the BIC

values for the two models are given in table 2.2 below.

Model AIC BIC
ARIMA(1,1,0) 1196.018 1199.688
ARIMA(0,1,1) 1199.363 1203033

Table 2.2 The AIC and the BIC values.



2.2.3 Kenya Commercial Bank Ltd.

The Kenya Commercial bank limited was incoporated‘in Kenya in
1970 to provided provision of corporation and retail banking
services. The locally controlled bank with a foreign holding of
0.05% has its registered head office at the 8™ floor, Kencom house,
Moi Avenue, Nairobi. The company 1is among the 20 NSE index
representative companies and has 40% floated share in the NSE.

The timeplot of the original series of the Commercial bank of
Kenya limited share prices data for the years 1992 to 1996 shown in
fig 2.3(a) exhibits a fluctuating trend that suggests a changing
mean level. The nonstationarity in mean is further confirmed by the

consequant slow decline of the SACF for the same series.

KENYA COMMERCIAL BANK SHARE PRICES
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Fig 2.3(a) Timeplot for KENYA COMMERCIAL BANK share prices.

The sample variances for the series X., vX., v*X, and v3X, are
508.480, 20.762, 45.736 and 65.132 respectively, implying that by

the minV(v®X.) criterion the first difference is adequate as seen

as



in the timeplot for the first difference fig 2.3(b).
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Fig 2.3 (b) Timeplot for the first difference of the KCB share prices.

However, there are fluctuations between the 160 and the 220
week which can be attributed to the high share prices realized by
the bank between February 1995 and February 1995. The high share
prices were as a result of the high rates of inflation in the
country’s economy at that period, reforms and the liberalisation of
the financial sector which allowed foreign investors to invest in
the Nairobi Stock Exchange without much restriction and the
increasing bank interest rates as well as the attractive dividends
declared by the bank at the end of the 1993 financial year.

The significance of lags 2, 3, 8 and 12 for the SACF and of
lags 2, 8 and 12 for the SPACF of the first difference suggests
that an ARIMA(0,1,12) and ARIMA(12,1,0) with parameters at lag 2,
3, 8, 12, and at 2, 8 and 12 respectively or a combination of the
two models i.e ARIMA(12,1,12) could be tentatively entertained.

Through the maximum 1likelihood estimation criterion the
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constants for all the models were not significant while the
estimates of the rest of the parameters for the ARIMA&O,l,lZ) and
ARIMA(12,1,0) processes were all significant and the models
obtained are given below

(i) ARIMA(0,1,12)

(1L - B)X, = (1 - 0.132B® - 0.104B* - 0.130B® + 0.228B*)e,
(0.059) (0.059) (0.059) (0.059)

with o* = 9.008
(11) ARIMA(12,1,0)

(L + 0.130B® + 0.122B° - 0.196B¥?)vXt = e,
(0.059) (0.059) (0.058)

with o¢* = 19.396.

When the ARIMA(12,1,12) model was fitted, the parameters at
lag 2 for the autoregressive and at lags 2 and 8 for the moving
average components were not significant. Re-estimating the model
without these paramters gave the process
(i1i) ARIMA(12,1,12)

(1 + 0.133B% + 0.280B*)vX, = (1 - 0.111B*® + 0.503B?)e,
(0.059) (0.231) (0.059) (0.211)

with ¢ = 18.177.

The significance of all the lags of the SPACF and SACF were
_ ignored and a random walk model (ARIMA(0,1,0)) was also fitted. The
variance of the data based on this model was 39.951. The AIC and

the BIC values for the models are given in table 2.3
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below.

Model ALE BIC

ARIMA(0,1,12) |1681.828 |1696.507
ARIMA(12,1,12) [1684.232 [1699.230
ARIMA(12,1,0) |1686.460 [1697.470
ARIMA(0,1,0) |1702.587 [1702.587

Table 2.3 The AIC and BIC wvalues.
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2.3.4 Standard Chartered Bank (K).

Standard Chartered bank of Kenya limited which has a majority
foreign control and with foreign holding of 78.30% was incorporated
in Kenya in 1953 to offer banking and provision of related
services. The bank which has its registered head office in Stanbank
house, Mol Avenue, Naircbi has 25.5% floated share in the NSE and
it is among the 20 NSE index representative companies.

The slow cut-off of the SACF for the original series X,
clearly reveals nonstationary behaviour and this is also apparent
from the timeplot for standard bank share prices for the years 1992
to 1996 as seen in fig 2.4(a) which show an increasing and

decreasing mean levels.
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Fig 2.4(a) Timeplot for STANDARD BANK (K) share prices.

The sample variance for the original series is 669.082 and
those associated with the first, second and third differences are

37.450, 82.632 and 124.745 respectively. Thus by the minVv(v%¥,)
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criterion, the first difference is appropriate. The timeplot for
the first difference given in fig 2.4 (b) shows a fairly stationary

series in mean.
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Fig 2.4 (b) Timeplot for the first difference of the STANDARD share prices.

However, there are fluctuations between the 160 and the 200t
week which can be attributed to the high share prices realized by
the bank between February 1994 and January 1995. The high share
prices were as a result of the high rates of inflation in the
country’s economy at that period, the reforms and liberalisation of
the financial sector which allowed the foreign investors to invest
in the Nairobi Stock Exchange market without much restriction and
the increasing bank interest rates as well as the attractive
dividends declared by the bank at the end of the 1993 financial
year.

The SACF and SPACF for the vX, series has both marginally

significant values at lag 1 and prominent peaks at lag 7 and 14.
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This suggests that an ARIMA (14,1,0), ARIMA(Q,1,14) and
ARIMA(14,1,14) could be possible models for the data.‘

The estimation of the parameters for the ARIMA(0,1,14) and the
ARIMA (14,1,0) models using the maximum likelihood method revealed
that the constant and the parameters at lag 14 for both procesess
were not significant. Re-estimating the model excluding these
parameters gave tﬁe following results
(i) ARIMA(O0,1,14)

(L - B)X,. (1 + 0.131B - 0.200B")e, with o¢? = 36.122
(0.058) (0.058)

and
(ii) ARIMA(14,1,0)

(L - 0.13128 % 0. 1478} (1 - B)%, = &,
(0.058) (0.058)

with o? = 36.494.

For the ARIMA(14,1,14) model, none of the parameters were
significant suggesting that a random walk model (ARIMA(0,1,0))
could be tentatively entertained. The variance data based on the
ARIMA(0,1,0) process was 37.45. The AIC and the BIC values for

these models are given in table 2.4 below.

Model AIC BIC

ARIMA(0,1,14) |1865.485 1872 .828

ARIMA (14,1,0) [1868.315 1875650

ARIMA(0,1,0) |1873.660 1873.660

Table 2.4 The AIC and RBRIC wvalues.
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2.3.5 BAT Kenya Limited.

BAT Kenya limited is an industrial company which deals mainly
with the manufacturing and importation of cigarettes and allied
products. The foreign controlled company with 60.24% foreign
holding was incorporated in Kenya in 1952 and its registered head
office is along Likoni road, Nairobi. BAT Kenya limited is among
the 20 NSE index representative companies with 39.76% floated share
in the NSE.

The shape of the timeplot of the BAT share prices for the
years 1992 to 1996 fig 2.5(a) makes it rather hard to make any

subjective deductions on the stationarity of the series from it.
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Fig 2.5(a) Timeplot for BAT (K) share prices.

However, from the timeplot for the first difference shown in
fig 2.5(b) and by the minv(v'X,) criterion, it is clear that the
first difference is appropriate. The sample variances associated

with series X., vX., v?X. and vX, are 6894.401, 1050.116, 2580.782
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and 3947.934 respectively.
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Fig 2.5(b) Timeplot for the first difference of the BAT (K) share prices.

The sharp fluctuations seen in fig 2.b(b) between the 160" and
the 200" week can be attributed to the high share prices realized
by the company between December 1993 and November 1994. This was as
a result of the high rates of inflation in the country’s economy,
liberalisation of the financial sector, the increasing bank
interest rates and the attractive dividends declared by the company
at the end of the 1993 financial year. The dumping of cheap
imported cigarrettes onto the Kenyan market especially during 1995
adversely affected the company’s trading environment and this led
to the sharp drop on it’s share prices from November 1994 as seen
in fig 2.5(a).

The significance of lags 1, 3, and 13 for the SACF and 1, 3,
12 and 13 of the SPACF for the first differenced series suggest

that the ARIMA(O0,1,13), ARIMA(13,1,0) or ARIMA(13,1,13) models
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uld be fitted.
The parameters for the process ARIMA(13,1,13) were estimated
ing the ML method and the constant together with the parameters
lag 1 and 13 for both the MA and AR component were not
‘gnificant. These parameters were set to zero and the model re-
tted. The following model was obtained
:) ARIMA(12,1,3) '

(1 - 0.287B* + 0.115B¥)vX, = (1 - 0.287B%e,
{0.170) (0.063) (0.147)

tth o® = 950.56.

The ARIMA(13,1,0) and the ARIMA(0,1,13) processess were also
tted. All the parameters except the constant for the
MA(13,1,0) were significantly different from zero and the model
ven below was obtained.

i) ARIMA(13,1,0)

(1 - 0.205B + 0.238B° + 0.115B* + 0.163B") (1 - B)X, = e,
(0.059) (0.057) (0.059) (0.058)

th ¢ = 918.052.

The ARIMA(0,1,13) had its constant and the lag 1 parameter
ing non-significant. Re-estimating the model without these
rameters produced the model
ii) ARIMA(0,1,13)

(1 - B)X, = (1 - 0.342B° - 0.198B%)e,
(0.055) (0.058)

th ¢ = 933.975.

AIC and BIC values for the above models are given in table 2.5
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below.

Model AIC BIC

ARIMA(13,1,0) 2806.133 2820.813
ARIMA(0,1,13) 2809 .312 2816.652
ARIMA(12,1,3) 2815 .39 2826.149

Table 2.5 The AIC and BIC values.
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2.3.6 Kenya Breweries Ltd.

Kenya breweries limited incorporated in Kenya in 1922 is a
locally controlled company with its registered head office in
Tusker house, Thika road, Nairobi. As an industrial company the
Kenya breweries limited main objective 1is to brew and malt. The
company is among the 20 NSE index representative with 93% floated
shares at the NSE.

The timeplot for Kenya breweries share prices for the years
1992 to 1996 shows a fluctuating trend in mean level as seen in fig
2.6 (a) indicating nonstationarity in the data. The nonstationarity
of the data 1is also confirmed by the slow decay of the

correllogram.
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Fig 2.6 (a) Timeplot for KENYA BREWERIES share prices.

The nonstationarity of the data suggests that the series
should be transformed to attain stationarity. The minV(v®X.)

criterion point at d=1 as the appropriate degree of difference
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since the sample variances for the original data and those of the
first, second and third differences are 1151.284, 40.750, 107.818
and 179.226 respectively. The appropriateness of this order of
differencing is revealed in the timeplot fig 2.6 (b) which shows a
fairly stationary series 1in mean although with spontaneous
fluctuation between the 160%™ and the 220 which can be attributed
to the high share prices realized by the company between February
1994 and February 1995. The high share prices were as a result of
the high rates of inflation in the country’s economy in that
period, the government reforms and liberalisation of the financial

sector and the dropping of interest rates by the banks.
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Fig 2.6 (b) Timeplot for the first difference of the KENYA BREWERIES share prices.

The SACF and the SPACF for the first difference has
significant peaks at lag 1, 9 and 1, 4, 9 and 12 respectively,
suggesting that the ARIMA(0,1,9), ARIMA(12,1,0) or ARIMA(12,1,9)

processes could be fitted.
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The Ml estimation technique was used to fit the ARIMA(12,1,0)

del and the constant together with the lags 4 and 12 parameters

pre not significant. The fitted model without these parameters

(1 - 0.334B + 0.149B°)vX, = e, with o® =34.620.
(0.055) (0.058)

All the parameters of the ARIMA(O0,1,9) model were

ignificantly different from zero except for the constant and the

del
ii) ARIMA(0,1,9)

vX, = (1 + 0.313B - 0.173B%e,
(0.056) (0.058)

ith 0? = 34.616 was obtained using the ML method.

When the ARIMA(12,1,12) model was fitted, all the parameters
re not significant suggesting a random walk model. The variance
£ the data based on the ARIMA(0,1,0) was 39.95. The AIC and BIC

lues for the fitted model are given in table 2.6 (a) below.

Model AIC BIC

ARIMA(9,1,0) |1853.184 |1860.520

ARIMA(0,1,9) [1853.208 1860.548

ARIMA(0,1,0) |1892.402 [1892.402

Table 2.6 (a) The AIC and BIC value.
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2.3.7 Nairobi Stock Exchange (NSE) Index.

An index generally represents a measure of the relative change,
from one point to another. Stock indices are constructed to measure
the general price movement in the listed shares of the stock
exchange. The NSE 20 share index has its base year as 1966 at 100.
It was based on 17 companies and calculated on weekly' basis.
However, in 1992, the sample companies were increased to the
current 20 to represent nearly 90% of the NSE market capitalization
and the computation changed from weekly to daily basis.

Fig 2.7(a) of the original series for the NSE index for the
years 1992 to 1996 shows a increasing and decreasing trend in mean

level, revealing nonstationarity in the index data.

NSE INDEX
4500 t
Index
3000 1
1500 T
0 60 120 180 240 300
Time in weeks

Fig 2.7(a) Timeplot for the NSE INDEX.

The minV (v¥X,) criterion suggests that the first difference is
appropriate owing to the fact that the sample variances associated

with the series X., vX., v?X, and v’X, are 1,268,245.30, 12,146.91,
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38,495.62 and 72645.29 respectively.

NAIROB! STOCK EXCHANGE INDEX
800 1
Index

400 1
0 1

—400 L ) - : N X =

0 60 120 180 240 300

Time in Weeks

Fig 2.7(b) Timeplot for vX, of NSE index.

The sharp fluctuations between the 160 and the 220" week can
be attributed to the high share prices realized by the 20 NSE index
representative companies between December 1993 and March 1995. This
was as a result-of the high rates of inflation in the country’s
sconomy, the increasing bank interest rates and the government
reforms and liberalisation of the financial sector.

The SACF for the first differenced series tail-off at lag 2
ointing at the ARIMA(0,1,2) process while the corresponding SPACF
as a sharp cut-off at lag 1 suggesting an ARIMA(1,1,0) process.
he significance of the first two lags and lag 1 of the SACF and
PACF respectively suggests that an ARIMA(1,1,2) process could also
e a possible model to fit.

All constants for the suggested models were not significant.

=-estimating the models without the constants wusing the ML
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procedures gave the following models
(i) ARIMA(1,1,0)

(1 - 0.577B) (1 - B)X, = e, with o¢? = 8100.726
(0.048)

(1ii) ARIMA(0,1,2)

vX, = (1 + 0.617B + 0.344B%)e, with ¢* = 7957.508
(0.055) (0.055)

The lag 1 parameters for both the AR and MA components of the

ARIMA(1,1,2) model were not significant.

The model
(1 - BYX,. = {1 + 0.305B%) e,
(0.056)
with ¢® = 11025.000 was obtained when the process was re-fitted

without the nonsignificant parameters. The AIC and BIC for the

three models are given in table 2.7 below.

Model AIC BIC

ARIMA(0,1,2) |3430.209 |3437.549

ARIMA(1,1,0) |[2434.303 [3437.970

ARIMA(0,1,2) 3523 .494 3571.1634J

Table 2.7 The AIC and BIC values.

The large variance of the index data and the large spontanecus
fluctuations in the timeplot for the first difference of the NSE
index fig 2.7 (b) reveals the possibility of unstable variance. A
transformation to stabilise the variance was the logarithmic
transformation which was found the most appropriate. However, there
was not much difference in timeplot for the first difference and

that of the first difference of the transformed serieg as seen in
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fig 2.7(c) and for this reason no model was fitted for the

transformed data.

NAIROB! STOCK EXCHANGE INDEX
Q.24 F
Index
012 T
0.00 T
-0.12 4'. . . . . )
0 60 120 _ 180 240 300
Time in Weeks

Fig 2.7(c) Timeplot for LogvX, for the NSEIndex.

b2



CHAPTER THREE

DIAGNOSTIC CHECKING AND FORECASTING

3:1 Introduction
The ultimate goal in model building is to be able to utilize

it for prediction purposes. Forecasts are required for two basic

reasons. First, the future is uncertain and two, the full impact of
many decisions taken now is not felt until later. Consequently,
accurate prediction of the future improves the efficiency of the
ecision making process. However, before the fitted model is used
tor forecasting, it should be diagnosed to ascertain its adequacy.

Section 3.2 of this chapter discusses the various diagnostic
ests and forecasting techniques whereas section 3.3 employs these
echniques to choose the best model among a group of competing
dels. The models eventually chosen for each firm are used to

=nerate the forecasts.
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3.2 Diagnostic Tests and Forecasts Evaluation
3.2.1 Diagnostic tests

After fitting a provisional ARMA model, it is procedural to
diagonise the model before it is eventually used for forecasting as
suggested in the algorithm in fig 1.1. The wusual approach in
diagnostic checking is to extract from the data a sequence to
correspond to the underlying, but uncbservable, white noise
sequence, and check whether the statistical properties of these
residuals {a.} are indeed consistent with the white noise. The
basic assumption in ARIMA models is that the residuals form a white
noise process implying that {a.} are uncorrected random variables
with mean zero and constant variance. Thus the goal in time series
modelling (Box et al. (1978)) is to transform the presumably
autocorrelated observed series to a structuréless white noise

process i.e
e, = II(B) Vix,

where

Therefore a check on whether a particular model is adequate or not

revolves around ascertaining whether the calculated residuals,

a, = 0 (B) Vix,
mimic to a reasonable degree, the assumed properties of the

error process e.. This implies that

(i) the mean of the residual should be close to zero
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Ef{a,) = E{X, - %) =
(ii) the variance of the residual should be approximately constant
var(a,) = var(X, - X,) = @?

and (iii) the autocorrelations

of the residuals should be negligible compared to their standard
errors. The standard errors depend on the form of the fitted model,
the true parameter values and the lag h.

Test statistics such as the Box and Pierce (1970) statistic
and the Ljung and Box (1978) statistic can also be used to test the
adegquacy of the fitted model. The Box and Pierce portnmanteaus

statdstie

is asysmptoticaly distributed as chi-square with (m-p-d-q) degrees
of freedom if the stationary series X.=(1-B)%, was correctly

generated by an ARIMA(p,d,q) process, where T=(n-d) represents the
total number of observation after differencing 4 times, m is the
maximum number of the lags checked and is approximately egual to
T*? (see poskitt and Tremayna (1981)), 1r; 1s the sample
autocorrelation function of the j* residual term and j represents

the j" autocorrelation being checked. If a constant is included in
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the fitted model, the degree of freedom reduces by one to (m-p-d-g-
1) . The test of the null hypothesis (H,: model is adequate) 1is
rejected if the statistic Q excesds the chi-square tabular values

of degree (m-p-d-g) or (m-p-d-g-1) if a constant is included in the
model i.e reject H, 1if Q > x ?*(m-p-d-q) or if Q > ¥ *(m-p-d-g-1).
A modified portmanteaus statistic

m

g = F(0+g) Y, (T=7) 222

=

y Ljung and Box (1978) is a much better approximation to the

x *(m-p-d-q) distribution and a model is considered adequate if

he statistic Q* is less than the tabulated value x,° (m-p-d-g) at

level of significance.

If the fitted model is found to be inadequate, a new model
ust be specified, its parameters estimated and then diagonised as
uggested in fig 1:1. However, a model may fail the diagnostic
heck but yet it gives better forecasts (see for example Giorgio C.
nd Poltard S. (1985)). Therefore to some extend, we will evaluate

he selected models on the basis of their forecasting ability.

.2.2 Forecasting

Most decisions are made with a view to influencing where one
ill be in the future. For example, workers decide to gave part of
heir incomes in order to make provision for their future, while a
tock market investor buys some shares now in the hope of receiving
worthwhile return in dividends in future. All these activities
equire some prior idea or forecasts of the future behaviour of the

ey environmental variables so that an assessment can be made of
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what will happen i1f nothing is done now and what is likely to
happen if certain steps are taken. As a consequence, reliable
forecasts enable timely decisions to be made which are based on
sound plans. For ekample in most countries, weather forecasts and
daily stock exchange are published by the media daily. These are of
interest to the general public, farmers, travellers and investors.

To forecast is to declare beforehand or to predict. Forecast
methods may be Dbroadly classified 1into two: subjective or
objective. Subjective forecasts are based on guesses, experience or
intuition. They do not follow clear rules and rely on processing
information 1n an informal way. These forecasts cannot be
reproduced by someone else and thus it is possible for two people
when given the same information to end up with different subjective
forecasts. For example, two stockbrokers may reach different
conclusions when presented with the information that a particular
share has reached a historically high value. While one expects
further increases, the other may expect decreases since each of
stockbroker is forecasting the future trend after the historically
| high value using the available information and in the light of
their experiences and their intuitive feel for the market, but no
formal structure or method is being used.

Models based on objective forecasts on the other hand arise
from mathematical rules or statistiacal models which formalise the
relationships between the variables of 1interest. It 1s a more
uniform and accurate method if the right model for the underlying

data 1s used.
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In evaluating the forecasts, suppose that our observed series

(X,,%,,...,X,) 1s regarded as a realization from the general

n

ARIMA (p,d,q) process

®(B)(1L -B)9%, =60, + B(B) e,

and we wish to forecast a future value X,,,. This implies that

Koo = Pifina * Palaneg #ess® Bofagog + U
+ e, - B8i€.4.4 = coo- qumh_p
where
g(B) = @(B) (1 -B)“

(L = BB = BB = 90 = B 87
such that the h-step ahead forecast f_ (h) is given by

£(h) = E[X., /X, v weel

where
g ; <0
TRt By Hosps sl & { ’
4 G R
and
e .., J<0
E(en"'j/X‘f.l’Xn“l"") = i
0o ' j>0
Hence to evaluate £,(h), we only need to replace the past

expectations (j=0) by the known values, X and e and future

n+j n+Jj

expectations (j>0) by forecast values, f,(h) and 0. Forecasts often
have a tendency to lie either wholly above or below the values of
the series when they eventually become available (see for example
Mill, (1990} Pg 106) .
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The h-step ahead forecast error e (h) for the forecast X_, is

en(h) = Xn+h = fn(h)

nd its associated variance V(e (h)] is

Vie,(h)1 = VIX

n+h

-£.(h)]

The reliability of the forecasts get smaller and smaller as
he forecasts are projected further and further into the future,
ith the corresponing confidence interval becoming larger and
arger. Hencé for the forecasts to be relied upon, they should be
pdated as new observations become available.

Suppose that we are at time n and we are predicting (h+1)
teps ahead (i.e forecasting X,,,.,) . If an ARIMA(p,d,q)

®(B) (1 -B)°X, = 6(B)e,

as fitted and used also to generate forecasts, then if
n(B) = 8(B)2*(B) (1 -B)™
he linear filter representation of the above model is given by

Xoer = €n1 + MiChng oot Mua€ay

+ Mu€n + Mu1€p.p +

d the h-step ahead forecasts is

£.(h+l) = n.e, + Mu1€n1 +
ith the availability of the (n+1)® observation, the prediction of
L.y 18 updated to
£f.(h+1l) = X (h+1l) + n.e..,
ich can be generally written as

f..a(h) = £(h+1l) + n,[X,,, - £.(h)].
nce the updated forecast is a linear combination of the previous

recasts of X,,;,, made at time n and the most recent one step ahead
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forecast error

en(l) ={xn+1

fn(l) }=eu+1'
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3.3 DIAGNOSTIC CHECK FOR THE FORECAST MODELS
3.3.1 Barclays Bank Kenya Ltd.

The ARIMA(1,1,0) (1,1,0),, ARIMA(0,1,1) (0,1,1),, ARIMA(13,1,0),
ARIMA(0,1,10), ARIMA(3,1,10) and ARIMA(0,1,0) models were proposed
for the Barclays bank (K) share prices in section 2.3.1. To verify
their validity, their respective sample residual autocorrelations
were examined. Both the sample autocorrelation and partial
autocorrelation of the residuals for all the models except the
ARIMA(3,1,10) had large values compared to their respective
standard errors implying that the residuals are autocorrelated.
This suggests that the considered models were inadequate. The
inadequacy of the models was also confirmed by the Box and Pierce
Q statistic since all the calculated vwvalues exceeded the
corresponing chi-square tabular values. However, the ARIMA(3,1,10)
model proved adequate in both diagnostic tests.

The forecasts generated through the use of the ARIMA(13,1,0)
and ARIMA(0,1,10) models were bad and therefore not given whereas
those obtained from the ARIMA(1;1,0) (11,0}, and
ARTMA (0,1,1) (0,%,1);, ARIMA(3,1,10) and ARIMA(0,1,0) processes are

given below.

Obs Forecast Std Error Lower 85% Upper 95% Actual Residual
284 115.0728 10.3483 94 .7905 135.3581 118.2500 3.1772
285 114.0271 16.4016 81.880¢6 146.1737 116.5000 2.4729
286 114.2617 21.0981 72,9102 155.6131 114.6000 0.3383
287 11.8:: 8959 3. 7637 49.8203 174 .3315 114.6000 2.5241
288 111, 0233 4114531 30.3845 191..6622 112.6000 1.5767
289 1112513 45.0488 L5 1177 207.3849 113.2500 L9987
290 109, 0591 61.5464 “4.1..56894 22%.6876 111.2500 2 5 1908
29t 108.0001 73 L7685 =35, 4731 251 42494 110.7500 2 . 7499
252 108.2216 83.4609 ~55 2584 271.8016 110.0000 1.7784
2923 106.0230 97.6075 =85, 2838 297.3298 113.8000 ey
254 104.8575 111.0767 -112.7484 3226634 1¥2.2000 7.2425
295 105.3%26 '123.3197 =136 52891 346.8743 111.4000 6.2274
296 102.9675 138.9586 =16%,.3858 3753208 111.3000 8.3325
297 101.8956 154.0299 -199, 9968 403.7879 110.8000 8.9044
298 102.1042 167.9721 =227, 1144 431.3229 108.4000 6.2958
259 99.8927 184.3799 -262.6605 462.4458 103.8000 3.90%73
Table 3.1(a) ARIMA(1,1,0)(1,1,0),
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he mean square of the residuals the ARIMA(0,1,0) process had the
est forecasts and thus it the most appropriate model to use in
redicting the Barclays bank (K) share prices in the Nairobi Stock

xchange market.
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3.3.2 ICDC Investment Company Ltd

From section 2.3.2, the ARIMA(1,1,0) and the ARIMA(0,1,1)
processes were provisionally identified as possible models for the
ICDC share prices data, and basing on the AIC and BIC criteria, the
ARIMA(1,1,0) model was seen as the better model.

To ascertalin the adequacy cf the two models, their sample
residual autocorrelations were compared with their respective
standard errors. Approximately all their sample autocorrelations
were less than twice their standard errors, hence both models were
adequate. Further, the calculated values for the two models using
the Box and Pierce Q test statistic were compared with the tabular
values at wvaricus lags and they were all less than their
corresponing chi-sgquare tabular values confirming that both models
adequately fit the data. The forecasts for the two models are given

in table 3.2 (a) and (b) below.

Obs Forecast Std Error Lower 55% Upper S55% Actual Residual
284 33.6665 1.8B988 29.9449 37.3881 34.00 0.3335
285 33.7702 3 w90 27.5396 40.0008 32.00 =1.7702
286 33.8523 4.2182 25.5848 42:1197 32.20 =1 . 6523
2830 33..9290 5.0802 23.9504 43,9035 32.45 =1..4770
288 33.9992 5.8461 2254171 45.4573 32.80 =1.19582
289 34.0705 6.5189 21.2938 46.8472 32.80 W e
290 34.1415 7.1296 20 167 T 48,1153 33.05 =i . 0815
291 34.2124 T 6925 191 RbE 49,5894 34 95 -0.9624
292 34 .2833 8.2170 18 1782 B, A88d BE 95 ~1..5333
283 34 R 8.7100 172829 51.4254 33.00 ~1.3542
294 34 .4250 91768 16.4393 52.4108 33.10 =1 . 3250
295 34.4959 9.6206 15.6400 53 .3518 3395 -0.74589
296 34.5668 10.0449 14.8791 54.2544 33,70 -0.8668
297 34.6376 10.4521 14,1519 B 1233 34.70 -1..3876
298 34.7085 10.8440 13.4547 55.9622 33.25 -3.7085
299 34.7793 11.2222 12.7843 56.7744 30.20 -4.,5793
able 3.2(a) ARIMA(1,1,0)
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Lower 95% Upper 95% Actual Residual

Forecast Std Error

Obs
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Table 3.2(b) ARIMA(O,1,1)

on the basis

I

Although the two models performed equally well

of the mean square of the residuals the ARIMA(1,1,0) process with

a mean square of the residuals of 3.5764 gave the best forecasts as

process with a mean square of the

compared to the ARIMA(0,1,1)

Therefore the ARIMA(1,1,0) model is the most

regiduals of 3.9515.

appripriate model to use in predicting the ICDC share prices in the

Nairobi Stock Exchange market.
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3.3.3 Kenya Commercial Bank Ltd.

and

ARIMA (12,1,12)

ARIMA(12,1,0),

ARIMA(0,1,12),

The

models were provisionally identified as the possible

ARIMA(0,1,0)

A diagnostic

models for the Kenya commercial bank share prices.

check using both the Box and Pierce Q statistic and the sample

residual autocorrelation and partial autocorrelation revealed that

random walk model

except the

models were adequate

the

all

The forecasts for the accepted models are shown

(ARIMA(0,1,0)) .

below.

Actual Residual

Upper 95%
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Forecast Std Error
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Table 3.3 (a)

Actual Residual

Upper 95%

95%

Lower

Error
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Table 3.3 (b) ARIMA(0,1,12)
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Actual Residual

Upper 95%

95%

Lower

Forecast Std Error

Obs
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Table 3

process with a

the ARIMA(12,1,0)

Among the accepted models,

mean square of the residuals of 6.6710 gave better forecasts as

processes with

and ARIMA(12,1,12)

compared toc the ARIMA(0,1,12)

mean square of residuals of 9.213 and 14.106 respectively. Thus the

model 1s the best model to use in predicting the

ARIMA{12,1,0)

in Nairobi Stock Exchange

share prices

Kenya Commercial bank

market.
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3.3.4 Standard Chartered Bank Kenya Ltd.

and

ARTMAE(0,1,7)

ARIMA(7,1,0),

the

2.3.4.

section

In

_the standard bank share

models were proposed for

ARIMA(0,1,0)

The diagnostic check on all the models revealed that they

prices.

residual

i the sample

all adequate for the data since

were

autocorrelations and the partial autocorrelations for each model

The values obtained using the Box and Pierce

had negligible values.

than the corresponding chi-square

were also less

Q statistic

The

that the models are all adequate.

irming

tabular wvalues conf

forecasts generated from each model are given below.

Actual Residual

Upper 95%

95%
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Forecast Std Error
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Table 3.4 (a)
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Actual Residual

95% Upper 95%

Lower

Forecast Std Error
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Table 3.4 (b)

Actual Residual

95% Upper 95%

Lower

Forecast Std Error

Obs
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ARIMA(14,1,0)

Table 3.4 (c)

To determine the best model the mean square of the residuals

the

resuduals for

the

of

mean sguare

calculated. The

pere

ARTIMA (0,1,14), ARIMAS0,1,14) and ARIMA(Q,1,0) processes were 3.617,

.621 and 4.853 respectively. On the basis of the mean square of

1
b

he residuals the forecasts obtained from the ARIMA(0,1,14) process

the most appropriate mcdel to use in

1s

therefore it

jere the best,

redicting the standard Chartered bank share prices in the NSE

-

arket.
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3.5 BAT Kenya Limited.

The models proposed for the BAT(K) share prices in section
2.3.5 were the ARIMA(lB,l,B), ARIMA(0,1,13) and ARIMA({(13,1,0)
models. To discriminate between the adequate and inadequate models,
both the Box and Pierce test statistic and sample residual
autocorrelation check were used. Approximately all the sample
residual autocorrelations and partial autocorrelations for each
model were less than their corresponding standard errors revealing
that all the models are adequate. On the other hand the p-values
calculated from the Box and Pierce Q statistic (i.e PBP(X?(4f)s Q)
for each model were greater than the o-values (i.e 0.05) confirming
the adeguacy of each model. The forecasts given by the models are

shown in table 3.5(a), (b) and (c¢) below.

Forecast Std Error Lower 95% Upper 95% Actual Residuai}

(o]
o
1)

284 58 . 7018 40.8318 8.2740 129.1296 693000 L1988
285 76.0703 43.6018 =15 . 3876 155.5281 74.5000 4.4297
286 70:.4395 53.4011 -34.224¢ 175.1036 72.7000 2.2605
287 70.1787 570883 -42.8881 183.2454 70.4000 D.2213
288 70.4739 61.6782 -50 8129 191.3606 70.6000 @.1261
289 70.5534 65.4252 -57.6774 1987841 70.7000 0.1466
290 70.4160 68,1943 -63.24271 204.0741 70.2500 -0.1660
251 70.5087 70, B554 -68.3648 205.3822 70.8000 0.2913
292 70.5387 73.4199 =73 3613 214.4387 70.5000 0.0387
293 70, 5607 75.7128 -7 7.8325 218.9558 70.4000 -0.1617
294 70:.5650 77.9384 ~B2 1912 223.3211 70.3000 =0:.2650
295 705610 80.1021 -86.4360 227.5580 69.4000 -0.1610
296 70.5925 81.4453 =88 D371 230,.2222 70,0000 =0.5925
299 70.4399 82.7668 =9 ST 232.6594 70.8000 0.3601
298 70.3984 84.0674 94 .3703 23518672 '§2.2000 <=1.1984
299 70.4266 85.5219 -97.15930 238.0461 6B.2000 -2.2266
Table 3.5(a) ARIMA(13,1,3)
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Actual Residual

5% Upper 95%

Lower

Forecast Std Error

Obs

NOOANUNNONNO MM
(olTplialepYerto of nell e aa¥agon Roblo e g Kin fund
A=W AN A A AN O U
HMOHFDODONNHOOMNHNO WL
OHOACOACO A AN AANM
] DO I OO I I B A B R B G

[oleislelelslelslelelelals]
ecleloleis]alesialslalale]
[slslelslslalitlslalslelals]
AN OG-NONHEM PO
AHNOOOOoOCOOMO
Lol st el et ind rot i it el T ¥ )

WNHONWN O A= MOy
FOAFAAAOHDONCI
A A MO0 O IO NN D
DN OEIO- MO HFOOO MU
AHINNAN AT MO MO HOD DO
AN OONOO A AN MM Mt
HeA A AN IO IO N NN

—HONMNOME-O0O0ONO0O0OAO0HOO
OSOINOWNT-OMOVoMNMNO WO
O™ 0N MM -0 r-\0
O HANWO-OMWOONIINOM
OHADOMNOPHONONONH
Ao NN T OOy

{ N N Y A R A RO NS RN N S O S |

oMM -A-OmM st o
HOMONWN-ooOmM@-woor--m
WrHmMmNoOnOtam>mdAow
NI VLOoOMPHNOWOWN-NOMN
CMNYVOMOWONN-OMNMLNW
M H NN \O D [ [~ [~ 00 00 00 M @

N AN OO NI W0
WO < OV T~ 010 H TV o -
QO QN HAD O DT DY
O @@ H NN OO @ -
OO H A A A H e A
L N N N L e e o o

O~ ONO ANM PO~ 0N
[oeloslvellsslvefostarYertoaepteayerteiNepyeptent
(e fe el ialale o leia ia e e laie e

Table 3.5(b) ARIMA(0,1,13)

Residual

Actual

Upper 95%

95%

Lower

Forecast Std Error

Obs
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Table 3.5(c) ARIMA(13,1,0).

=

Since the three models performed equally well to determine the

he residuals for the models were

the mean square of

best model,

MEA{L3,1,3) .

calculated. The mean square of the residuals for the AR

2.244 and

2.085;

and ARIMA(0,1,13) processes were

ARIMA(13,1,0)

3.623 respectively. Thus on the basis of the mean square of the

residuals the ARIMA(13,1,3) process had the best forecasts and thus

it is the most appropriate model to use in predicting the BAT Kenya

Limited share prices in the Nairobi Stock Exchange market.
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3.3.6 Kenya Breweries Ltd.

and ARIMA(0,1,0) processes

ARIMA(0,1,9)

The ARIMA(9,1,0),

were proposed for the Kenya breweries share prices. On diagnostic

The forecasts obtained

checking, none of the models was adequate.

Actual Residual

95% Upper 95%
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Forecast Std Error

Obs
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from each model are given below.

Table 3.6 (a) ARIMA(9,1,0)

Actual Residual

95% Upper 95%
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Forecast Std Error
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ARIMA (0,1, 9)

Table 3.5(b)

72



Actual Residual

95% Upper 95%

Lower

Forecast Std Error

Obs
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Table 3.6(c) ARIMA(0,1,0)

Among the three processes, the ARIMA(0,1,9) model with a mean

orecasts as

£
-

square of the residuals of 6.725 gave the best

with mean square of

and ARIMA(0,1,0)

compared to the ARIMA(9,1,0)

the

Therefore

respectively.

and 9.908

regiduals 7.955

the

ARIMA(0,1,9) is the most appropriate model to use in predicting the

the NSE market.

ady

Kenya breweries share prices
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3.3.7 Nairobi Stock Exchange (NSE) Index.

The ARIMA(1,1,0) and ARIMA(0,1,2) models were proposed for the

'The sample residual autocorrelations

NSE index in section 2.3.7.

and the partial autocorrelations for both models were all less than

twice their corresponding standard errors while the calculated

values using the Box and pierce Q statistic were alsc less than

their corresponding chi-square tabular values revealing that both

The forecasts generated by

models adequately describe the data.

(b) below.

and

each model are given in table 3.7(a)
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To choose the best model the mean square of the residuals of
the two models were evaluated. The ARIMA(1,1,0) process with a mean
square of the residuals 3622.680 give the best forecasts as
compared to the ARIMA(0,1,2) process with a mean square of the
residual of 7.183.535 and thus it 1is the best model to use

predicting the NSE share index.
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CHAPTER FOUR

CONCLUSIONS AND RECOMMEDATIONS

In this dissertation, we applied the time series modelling
techniques to the Nairobi Stock Exchange share prices data to
develop appropriate forecasting models. In choosing the best
models, emphasis was laid on their forecasting ability and
adequacy. Therefore in some cases, 1lnadegquate models were used to
generate the forecasts for some of the quoted firms. The best

models selected for each firm are given in the table 4.1 below.

Firm Model
Barclays bank (K) ARIMA(O0,1,0)
ICDC Investment (K) ARIMA(1,1,0)

Kenya Commercial bank ARIMA (12,1,0)

Standard Bank (K) ARIMA(0,1,14)
1BaT (®) ARIMA(13,1,3)
Kenya Breweries Ltd ARIMA(0Q,1,9)

NSE index ARIMA(1,1,0)

Table 4.1 Selected models
All the selected models for the quoted firms gave reliable
8-weeks ahead forecasts which may be used to help a stock investor
to arrive at a sale or purchase decision of his stock securities.
The forecasts obtained from the models had reasonable confidence
intervals (C.I) with the exception of Barclays Bank (K), BAT (K)

and the NSE Index which had forecasts with large confidence
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intervals due to the their dispersed share prices data. Although
the forecasts were generally good for all the firms, they were
affected by the high share prices betweén December 1993 and March
1995 which were as a result of the high rates of inflation in the

country’s economy at that period, the reforms and liberalisation of
the financial sector which relaxated the restriction on foreign
invesﬁors at the Nairobi Stock Exchange market and the increasing
bank interest rates.

Thus we can conclude that time series modelling techniques can
effectively be used to model the stock prices data and the
forecasts generated from the selected models used to guide the
stock investors on when to sell or purchase the stock securities.

In building the stock models, we maintained the Gaussian
assumption on the innovation sequence and only fitted the linear
ARMA models. However, the continued realization that for many
practical situation the Gaussian laws are inadegquate and that the
stable laws may be more appropriate (see for example Fama, 1965;
Granger and Orr, 1972; Stuck and Kleiner, 1965) may help to explain
why for example the fitted linear models with Gaussian assumption
on the innovation sequence for some firms like Barclays bank (X),
Kenya Breweries and NSE Index performed poorly.

This implies that alternative models to linear ARMA processes
.ike the Linear ARMA processes with infinite variance, Nonlinear

1wdels and the Intervention models could be possible alternatives.
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