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ABSTRACT 

The idea of pool testing originated from Dorfman during the World War II as an economical 

method of testing blood samples of army inductees in order to detect the presence of 

infection. Dorfman proposed that rather than testing each blood sample individually, portions 

of each of the samples can be pooled and the pooled sample tested first. If the pooled sample 

is free of infection, all inductees in the pooled sample are passed with no further tests 

otherwise the remaining portions of each of the blood samples are tested individually. Apart 

from classification problem, pool testing can also be used in estimating the prevalence rate of 

a trait in a population which was the focus of our study. In approximating the prevalence rate, 

one-at-a-time testing is time consuming, non-cost effective and is bound to errors hence pool 

testing procedures have been proposed to address these problems. Despite these procedures, 

when pool testing strategies are used using imperfect kits, there tend to be loss of sensitivity. 

Lost sensitivity of a test is recovered by retesting pools classified positive in the initial test. 

This study has developed statistical models which are used to sequentially select some 

combination of two or three experiments when the sensitivity and specificity of the test kits is 

less than 100%. The experiments are selected sequentially at each stage so that the 

information obtained at a given stage is used to determine the experiment to be carried out in 

the subsequent stage. To accomplish this, the study has employed the method of maximum 

likelihood estimation in obtaining the estimators. The Fisher information of different 

experiments is compared and the cut off values where both experiments have the same Fisher 

information is calculated. The joint experiment models while choosing between two 

experiments and joint experiment model while choosing between three experiments obtained 

in this study are found to be more superior to the existing one–at-a-time, pooled and pooled 

with retesting experiments. Furthermore, asymptotic relative efficiency (ARE) of the joint 

two and three experiment models are computed and the joint three experiment model found to 

perform better.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background information 

Under minimum cost, large population say N, can be classified as either defective or non-

defective. A minimum cost effective method that one can use for classifying such a 

population was suggested by Dorfman (1943) and herein referred to as pool-testing or group-

testing. Pool testing refers to the simultaneous testing of more than one unit by one test and is 

mostly used when the trait under investigation is rare. In Pool-testing, pools are tested and  

pools that test negative on the test are dropped from further investigation, while those that test 

positive, individual constituents are tested. Pool-testing can provide substantial savings as 

compared to individual testing. More testing strategies have been suggested in pool-testing 

literature. Recently pool-testing with retesting have been proposed by Nyongesa (2005).  

Instead of testing the constituents’ members of pools that tested positive on the first test, 

smaller pools can be constructed and tested with the view of reducing the number of tests, 

however the ultimate aim will be accomplished with minimal cost. This will lower the errors 

associated with the procedure as it has been widely discussed in pool-testing literature. 

Pool-testing has two objectives:  

i) To test the pools followed by individual testing in the pools that test positive with the aim 

of identifying the infected individuals as discussed above and this is known as classification 

problem. (Dorfman, 1943, Johnson et al., 1991 and Nyongesa, 2004) 

ii) The second objective is to estimate the prevalence rate of a trait in a population as 

advocated by Thomson (1962).  

More research work, of recent, are focused on the second objective for estimating the 

prevalence rate of the characteristic of interest. Thomson (1962) studied estimation problem 

using pool testing. The model was later considered by Brookmayer (1999) but with 

sensitivity and specificity less than 100%. By sensitivity we mean the probability of correctly 

classifying a pool or individual that contains the trait of interest and by specificity we mean 

the probability of correctly classifying a pool or individual without the trait. Sufficiently 

accurate estimate of the prevalence can be obtained from testing pooled samples as 

demonstrated by Hammick and Gastwirth (1994). Xie et al., (2001) demonstrated how pool 

testing can reduce costs in early stages of drug discovery. Hardwick et al.,(1998) considered 

sequentially deciding between two experiments for estimating a common success prevalence 

rate. Matiri et al., (2017) introduced the element of errors in combined experiments. 

Nyongesa (2012) dealt with dual estimation in estimating prevalence rate.  
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However, in a field experiment, a mixture of experiments can yield worthwhile and more 

accurate results than the Dorfman (1943) procedure. Hence the main objective of this 

research work is to present optimal estimation of prevalence rate of a trait and its properties 

when using a mixture of experiments with imperfect tests.   

 

1.2 Statement of the Problem 

If individuals of a large population say N  are subjected to testing with the aim of 

estimating the prevalence rate of a trait or characteristic of importance, one-at-a-time testing 

is time consuming and non-cost effective and is bound to errors. To overcome this problem, 

pool testing has been suggested in statistical literature. However it has been shown that this 

procedure is only viable when the prevalence rate is small, in most cases when the prevalence 

rate is less than 25%. Thus this procedure is not applicable when the prevalence rate is more 

than 25%. In such case it calls for one at a time testing and this is a drawback to the 

procedure. Again if the test kits accuracy is not 100%, when applied in the above procedure, 

there tend to be loss in sensitivity. To recover lost sensitivity some model has been suggested 

of retesting. Therefore several procedures have been outlined for estimating the prevalence 

rate of a rare trait. In practice, application of a mixture of experiments gives better results and 

this is the gap in the literature. Therefore there is need to develop a model of a mixture of 

experiments namely: one-at-a-time testing, pool testing and pool testing with retesting of the 

positive pools when the accuracy of the test kits is less than 100%. This is the focus of this 

study.  

  

1.3 Objectives  

1.3.1 General objective 

To develop a model of choosing between two and three experiments based on available 

information in order to estimate the prevalence rate of trait in a population when imperfect 

tests are used. 

 

1.3.2 Specific objectives 

The study will address the following specific objectives: 

 i) To develop statistical models for estimating prevalence rate.  

ii) To derive the Maximum Likelihood Estimator and the Fisher information based on 

each testing strategy. 

iii) To determine the properties of the derived estimators. 
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iv) To analyze Asymptotic Relative Efficiencies (ARE) of the experiments. 

 

1.4 Justification  

To assess the effectiveness of public health measures introduced in Kenya and the wor ld to 

halt the spread of HIV virus, other rare diseases and the use of drugs in the population, 

reliable estimates of the prevalence rate of a trait of these characteristics are needed. Due to 

possible adverse social and economic consequences the degree of voluntary participation by 

the public in Kenya and the world at large in surveys that screen blood or urine is lower than 

normal hence pooling comes in since it conceal stigmatization and hence greater voluntary 

participation of the targeted groups or individuals. Screening individual sample for a 

particular disease in a large population is not cost effective and is time consuming. To 

minimize cost and save time taken for the experiments pooling comes in handy and this goes 

also in drug testing and testing of industrial product. The advantages of pooling go beyond 

reducing the cost and time, if done properly, it produces more accurate tests. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Pool Testing 

The idea of pool testing was suggested by Dorfman(1943) during the world war II as an 

economical method of testing blood samples of army inductees in order to detect the presence 

of infection. Pool testing involve putting together item or blood samples to form a pool and 

then testing the pool rather than testing each item or blood sample for evidence of infection or 

characteristic of interest. A negative reading indicates that the pool contains no defective item 

or infected blood sample while a positive reading indicates the presence of at least one 

defective item or infected blood sample. Considering a population of size N pooled into n 

pools each of size k, Dorfman(1943) considered using pool testing as follows: 

If p is the prevalence rate of infection of each unit then: 

i) p1 is the probability of selecting at random a unit free of infection,  

ii) kp)1(  is the probability of selecting at random a pool of size k units free from infection, 

iii) kp)1(1  is the probability of selecting at random a pool of size k units that contain at 

least one unit infected.  

If X pools out of n test positive on the test, then X has a Binomial distribution model with 

parameters n and   

( )( , ) (1 )x n x
n

f x
x

    
  
 

                                                                                                  (2.1) 

where 1 (1 p)k    . In this model, if T is the number of tests, then T n kX  and the 

expected number of tests is ( )E T n kn N   for small values of p. This implies that the 

number of pools plus the number of individuals in pools that tested positive which require 

individual testing is less than the total number of items or individuals under consideration 

hence pool testing can lead to substantial savings.  

 

Behets et al., (1990), Cahoon-Young et al.,(1989) and Kline et al.,(1989) presented pooling 

strategies that creates pools of at most 15 samples. If a pool tests negative, then all the 

individual samples in that pool are declared as negative. On the other hand, if pool tests 

positive, then each constituent sample of the pool is subsequently tested individually. For 

populations with relatively small prevalence rates, such a procedure reduces cost and saves 

time even with the extra cost incurred due to pooling because it substantially reduces the 

number of tests that need to be performed. As reported by these authors, in their particular 
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situations pooling resulted in a cost reduction of up to 80%. The cost reduction is an 

important issue, especially in light of the recent surge in requests for HIV testing especially in 

developing countries. Johnson et al.,(1991) studied also the cost effectiveness of pooling 

algorithm whose objective was identifying individuals with characteristic of interest. In their 

procedure each pool that tested positive was divided into two equal pools, which were tested, 

pools that tested positive were further subdivided and tested again and so on. Litvak et 

al.,(1994) extended this work by considering pooling algorithms when sensitivity and 

specificity of the tests was less than 100%. They showed that some of these algorithms can 

reduce the error rates of the screening procedures compared to individual testing. Nyongesa 

(2004) generalized a common pooling strategy with retesting and discussed its characteristics. 

He considered hierarchical pooling strategy that involved testing pools and then sequentially 

subdividing and retesting the positive pools. Nyongesa (2005) further studied pool testing 

with retesting in which pools classified as positive and negative are retested. He observed that 

retesting improves the sensitivity and specificity of the testing procedure.  Nyongesa (2012) 

proposed pool testing where members that form the population under investigation are pooled 

together in pools and these pools are given a test. Further testing are discontinued for the 

pools that test negative but if the test is positive the pool is divided into blocks of equal sizes. 

The blocks are further tested and for those that test positive the constituent members are 

tested individually for the presence or absence of the trait under investigation.  

 

More research work, of recent, has focused on estimating the prevalence rate of a trait using 

pool testing without necessarily identifying the individuals or items with characteristic of 

interest. This is known as estimation. The estimation problem using pool testing was initially 

investigated by Thomson (1962). The maximum likelihood estimator (MLE) of p, using 

Equation (2.1) is: 

1

1ˆ 1 1

n k

ii
x

p
n


 
   
 
 


.                                                                                                                                                                   

Thomson (1962) further examined the behavior of the MLE by computing bias and the mean 

squared error. He found out that it is positively biased estimator of the prevalence rate (p). 

The idea of errors in the Thomson (1962) model was introduced by Brookmeyer (1999) 

where he modified Equation (2.1) and obtained;   

( )( , ) { (1 (1 ) (1 )(1 ) )} {(1 )(1 (1 ) (1 ) )}k k x k k n x
n

f x p p p p p
x

     
           
 

          (2.2) 
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where    and   are sensitivity and specificity of the test kits respectively.  

The likelihood function of Equation (2.2) is  

( )

1

( / , ,n, ) { (1 (1 ) (1 )(1 ) )} {(1 )(1 (1 ) (1 ) )}i i

n
x n xk k k k

i

L p x p p p p       



          .     

                                                                                                                                              (2.3)                     

The maximum likelihood estimator (MLE) based on Equation (2.3) is 

1

1

ˆ 1
1

n k

ii
x

np



 


 
 
  
  
 
 



.                                                                                                                                                             

Sufficiently, accurate estimate of the prevalence can be obtained from testing pooled samples 

as demonstrated by Hammick and Gastwirth (1994). Their procedure provides greater 

protection of respondent’s anonymity which can lead to greater participation in the survey. 

They also extended the range of applicability to higher levels of prevalence rate (up to about 

30%). They did this by taking two samples of individuals and formed two independent sets of 

pools which were then tested. The results of the tests were averaged to yield new estimates. 

Wein and Zenios (1996) developed a hierarchical statistical model that relates the HIV test 

output to the antibody concentration in the pool, thereby observing the effect of pooling 

together different samples. Their model was validated using data from a variety of field 

studies. The simulation results showed that significant cost savings can be achieved without 

compromising the accuracy of the test in pool testing. However, the efficiency of pool testing 

depends upon the use of a classification rule that is dependent on pool size, a characteristic 

that was lacking in the pooled testing procedures implemented at that time. Gastwirth and 

Johnson (1994) used pool testing to estimate HIV prevalence cost-effectively. Xie et al., 

(2001) demonstrated how pool testing can reduce costs in early stages of drug discovery. 

Juan and Wenjun (2015) provided algorithms for the computations of pool sizes.  

 

Nyongesa and Syaywa (2011) used moment method to estimate the prevalence rate. They 

obtained the following distribution  

1 2 1 2

1 2 1 2

1 2

( , ) (1 )
,

x x n x x
n

f p x p p p p
x x

  
   
 

.                                                                                                                              
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where 
1x  are pools classified as positive on the first test, 

2x  are pools classified as negative 

on  retest, n is the total number of pools, 
1 2{ , }x x x , 

1p  is the probability of declaring a pool 

as positive on the first test and is given by; 

2 2

1 (1 (1 ) ) (1 ) (1 )k kp p p                                                     (2.4)                                                          

and 
2p  is the probability of declaring a pool as positive on the first test and negative on retest 

and is given by;  

2 (1 (1 ) ) (1 ) (1 ) (1 )k kp p p          .                                             (2.5)                                                   

The moment estimates of p  obtained from Equations (2.4) and (2.5) are 

1
2

1
1 2 2

ˆ 1
(1 )

kp
p



 

 
  

  
                                                                                                                                                                             

and 

1

2
2

(1 )
ˆ 1

(1 ) (1 )

kp
p

 

   

  
  

   
                                                                                                                          

respectively where   and   are known constants. 

 

 Wanyonyi et al., (2015) developed a model for estimating unknown proportion of a trait in 

batch testing based on a quality control process. The model developed was found to be 

superior to the existing models when the proportion of a trait is relatively high.  

Computational statistics has been used in pool testing to compute the statistical measures 

when perfect and imperfect tests are used (Syaywa and Nyongesa, 2010, Tamba et al., 2012).  

 

Hardwick et al., (1998) considered sequentially deciding between two experiments for 

estimating a common success prevalence rate by considering the individual Bernoulli(p) trials 

or the product of k individual independent Bernoulli )( kp  trials. Their goal was to compare 

the accuracy of their adaptive cut-point estimator for prevalence with those obtained from 

individual testing and fixed group size testing. The model developed was superior to 

individual testing and to fixed group size testing. Matiri et al., (2017) introduced errors in 

Hardwick et al., (1998) model with the same goal of comparing accuracy of the estimator 

with those obtained from individual testing and pool testing with test errors.  
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2.2 Applications of Pool Testing 

Pool testing can be applied in many areas as outlined by Sobel and Groll (1966). Pool testing 

is used in pooling blood samples in order to classify each individual of a large population as 

to whether or not they have a particular disease. Group testing can be applied in industries for 

example, in making a "leak test" on a large number of gas-filled electrical devices. One can 

test any number of units in a single test and the result of test on m units is that either all m are 

good or at least one of the m is defective (Mundel, 1984).  

 

Another application is in testing various electrical devices such as condensers, resistors, etc. 

If one assumes that the m bulbs for the Christmas tree are all in series so that when he 

switches on the lights he will know by the result that either all the m bulbs are good or at least 

one of the m is defective but he does not know as a result of this test alone how many or 

which ones are defective. Suppose he had shorter wires (of various sizes) for fewer bulbs he 

can use these to find out exactly which ones are defective.  

 

Pool testing has been applied in screening the population for the presence of HIV antibody 

(Kline et al., 1989 and Manzon et al., 1992). Litvak et al., (1994) applied pool testing in 

screening HIV antibody to help in curbing the further spread of the virus. Litvak et al., (1994) 

showed that pooling offers a feasible way to lower the error rates associated with labeling 

samples when screening low risk HIV population. For instance, given the limited precision of 

the available test kits, it has been shown that screening pooled sera can be used to reduce the 

probability that a sample labeled negative in fact has antibodies since each test has a certain 

sensitivity and specificity. 

 

Other pool testing scenarios arise in environmental monitoring where sample units of soil or 

plant matter are combined and tested for toxins. Partly because of its use  in different areas of 

study, pool testing has appeared under other names, such as, batch sampling (Chaubey and  

Li, 1993), composite sampling (Lovison et. al., 1994) and batch testing (Phatarfod and 

Sudbury, 1994).  

 

2.3 Methods  

In this study the following methods have been employed: 

a) Maximum Likelihood Estimator (MLE) 
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For a fixed set of data and underlying statistical model, the method of maximum likelihood 

selects values of the model parameters that produce a distribution that gives the observed data 

the greatest probability or parameters that maximize the likelihood function. Maximum-

likelihood estimation gives a unified approach to estimation, which is well defined in many 

distributions. However, in some complex distributions, difficulties do occur and in such 

problems, maximum-likelihood estimators are unsuitable or do not exist at all. For many 

models, a maximum likelihood estimator can be found as an explicit function of the observed 

data or generated data. For some, however, no closed-form solution to the maximization 

problem is known or available, and a MLE has to be found numerically using optimization 

methods. In practice it is more often convenient when working with the natural logarithm of 

the likelihood function, called the log- likelihood:  

1 2 1
ln ( ;x ,x ,..., x ) ln (x | )

n

n ii
L f 


 .  

The method of maximum likelihood estimates 
0  by finding a value of   that maximizes  

1 2ln ( ;x ,x ,..., x )nL  . If a maximum exists, is MLE estimate and it is the same regardless of 

whether we maximize the likelihood or the log-likelihood function since log is a 

monotonically increasing. 

 

b) Fisher Information 

In mathematical statistics, Fisher information (FI) sometimes simply called information is a 

way of measuring the amount of information that an observable random variable X carries 

about an unknown parameter   of a distribution that models X. Formally, it is the variance of 

the score or the expected value of the observed information. Uses of FI include: 

i) Describing the asymptotic behavior of maximum likelihood estimates.  

ii) Calculating the variance of an estimator.  

iii) Finding priors in Bayesian inference.  

The amount of information contained in a random variable X is given by  

 
2

2
( ) E log (x | )I f 



 
   

 
 

If X and Y are independent and jointly distributed random variables, then their total FI is  

( ) ( ) ( )X YI I I    . 
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Consequently, the information in a random sample of n independent and identically 

distributed observations is n times the information in a sample of size 1.   

 

c) Statistical Software 

MATLAB is a high-performance language for technical computing. It integrates 

computation, visualization, and programming in an easy-to-use environment where problems 

and solutions are expressed in familiar mathematical notation. Typical uses of MATLAB 

include: 

i) Math and computation, 

ii) Algorithm development, 

iii) Modeling, simulation and prototyping, 

iv) Data analysis, exploration and visualization, 

v) Scientific and engineering graphics  

vi) Application development, including Graphical User interface building.  

In the study solutions to some of the equations were computed using MATLAB  R2012b 

codes developed and presented in the appendices. Graphical representation was also done 

using  MATLAB  R2012b codes developed.  

 

d) Simulation 

Simulation is a numerical technique for conducting experiments on the computer. It involves 

random sampling from probability distribution. Usually, when statisticians talk about 

“simulation” they mean “Monte Carlo Simulation”. They are often used in simulating 

physical and mathematical systems. A typical Monte Carlo simulation involves the following: 

i) Generate S independent data sets under the conditions of interest. 

ii) Compute the numerical value of the estimator/test statistic T (data) for each data set 

1,... , sT T . 

iii) If S is large enough, summary statistics 1,... , sT T  should be good approximations to the 

true sampling properties of the estimator/test statistic under the conditions of interest.  

These methods are most suitable to calculation by R version 3.1.2 computer software which 

was used to simulate data using the formulated models.  
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CHAPTER THREE 

SEQUENTIALLY SELECTING BETWEEN TWO EXPERIMENTS FOR 

ESTIMATING PREVALENCE RATE WITH IMPERFECT TESTS 

3.1 Indicator functions  

The indicator function of an event is a random variable that takes values 1 when the event 

happens and value 0 when the event does not happen. Indicator functions are often used in 

statistics to simplify notation and to prove theorems.  

 

In construction of the joint experiment model, the following indicator functions are required: 

 
1,

0,

th

i

if thei individual is positive

otherwise



 


 

 
1,

0,

th

i

if thei individual is declared positive by thetest

otherwise



 


 

 
1,

0,

th

j

if the j pool is declared positiveby thetest
T

otherwise


 


 

 
1,

0,

th

j

if the j pool is positive
D

otherwise


 


 

The parameters, sensitivity and specificity will be assumed remain constant throughout the 

study where sensitivity, denoted by  , means the probability of correctly classifying a 

defective pool or defective individual, and is given by  

 ( 1| 1) (T 1| D 1)i i j jProb Prob         

and specificity, denoted by  , means the probability of correctly classifying a non-defective 

pool or non-defective individual, and is given by 

    ( 0 | 0) (T 0 | D 0)i i j jProb Prob        . 

These parameters have been used in subsequent development and are assumed to be based on 

the manufacturers’ specifications.  

 

3.2 The models 

The models have been split into two that is PI-experiment and PG-experiment. The PI-

experiment  means estimating the prevalence rate of the characteristic of interest with testing 

each individual under study while the PG-experiment means estimating the prevalence rate of 

the characteristic of interest by putting together items or individuals to form a pool and 
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testing the pool rather than testing each item. Throughout the study m  and n  have been 

assumed to be the number of observations from the PI-experiment and the PG-experiment 

respectively with N m n   being the total number of observations from both experiments.  

 

3.2.1 Computation of Fisher information from PI-experiment 

If the PI-experiment is used to estimate the prevalence rate p  of interest and 
1iX  for 

1, ,i m  is a sequence of identically independent distributed random variable, then 

1 1~ B ( )iX ernouli   where 
1  is the probability of declaring an individual as positive i.e. 

 
1 (declaringan individualpositive)

( 1)i

Prob

Prob







 
 

by the law of total probability 

 
1 ( 1, 1 or 0)i i iProb        

thus 

 

1 ( 1, 1 or 1, 0)

( 1, 1) ( 1, 0)

(1 )(1 p)

i i i i

i i i i

Prob

Prob Prob

p

    

   

 

    

     

   

 

hence 

 1 (1 )(1 p)p      .                  

For a single experiment, the probability density function is  

1 11

1( , / , ) { (1 )(1 p)} {(1 )p (1 )}i ix x

if x p p p      
       .                                (3.1) 

The Fisher information on the prevalence rate p  contained in a single observation denoted 

by 
1
(P )I

xI  is 

1

2

1 1

( 1)
(P )

(1 )

I

xI
 

 

 



                              (3.2) 

which is easily obtained from Equation(3.1). 

 

3.2.2 Computation of Fisher information from PG-experiment 

The PG-experiment involves putting together items to form a pool and testing the pool rather 

than testing each individual for the evidence of a characteristic of inte rest.  A negative reading 

indicates that the pool contains no defective item and a positive reading indicates that there is 

at least one defective item in the pool. Pooling procedures have proved to reduce the cost of 

testing when the prevalence rate is low. In this experiment, the probability of declaring a pool 
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of size k  positive will be denoted by 
2  where 

2 (T 1)jProb    and for analysis purposes, 

the constituent members of a pool are assumed to act independent of each other and therefore 

( 0) (1 )k

jProb D p   .  Therefore 

 
2 (T 1, 1 or 0)j j jProb D D      

by total probability law, whence 

 

2 (T 1, 1 or T 1, 0)

(T 1, 1) (T 1, 0)

(1 (1 p) ) (1 )(1 p)

j j j j

j j j j

k k

Prob D D

Prob D Prob D



 

    

     

     

 

and upon rearranging, we get 

2 (1 (1 p) ) (1 )(1 p)k k        .                       (3.3) 

Let 2 jX  denote a sequence of identically and independent distributed random variable 

for 1,...,j n , then the outcome which takes positive or negative has a Bernoulli distribution 

i.e. 2 2~ ( )jX Bernouli  . For a single experiment equivalently the probability density function 

is 

2 21

2( , | , , ) { (1 (1 ) ) (1 )(1 ) } {1 (1 (1 ) ) (1 )(1 ) }j jx xk k k k

jf x p k p p p p     


             

                                           (3.4) 

from which the Fisher information is obtained as follows: 

 Taking log on both sides of Equation (3.4) yields: 

2 2

2

log (x ,p | , , ) x log{ (1 (1 p) ) (1 )(1 p) }

(1 x ) log{1 (1 (1 p) ) (1 )(1 p) }.

k k

j j

k k

j

f k   

 

      

      
            (3.5) 

Taking the second partial derivative of Equation (3.5) with respect to p leads to 

 

 

2
22 2 1

2 2 2

2 2

2 2 2 2

2 2

1logf( )
(1 p) (1 )(1 p)

p (1 )

1
(k 1)(1 p) (k 1)(1 )(1 p) .

(1 )

j j k k

j j k k

x x
k k

x x
k k

 
 

 
 



 

   
       

  

  
        

 

                        (3.6) 

Thus, the expected value of Equation (3.6) is 

 
2

2
1

2

2 2

logf( ) 1 1
(1 p) (1 )(1 p) .

p (1 )

k kE k k 
 

    
       

    
 

Hence the Fisher information denoted by 
2
(P )G

xI  contained in a single observation of the PG-

experiment is 
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2

2 2 2 2

2 2

(1 p) ( 1)
(P ) .

(1 )

k
G

x

k
I

 

 

  



                    (3.7) 

 

3.3 Comparison of ( )xI  of PI- and PG-experiments  

In this section the graphs of ( )xI   of PI- and PG-experiments for values of 

 0.99, 0.95, 0.80   and 2, 5, 10k   versus p  are plotted. 
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5k   

 

 

10k   

 

         Figure 3.1(a): Plots of (.)xI  versus P for 0.99   and 2, 5, 10k   
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graph of PG-experiment that the relationship between the Fisher information and the 

parameter p is sensitive to k as the slope of the curve changes with varying k. The curve 

become steeper as k increases but the slope become less steep and almost levelises as p 

approaches one. It is also noted that as k increases the curve of the Fisher information of the 

PG-experiment shift to the left meaning that the region for which PG-experiment is better than 

the PI-experiment shrinks.  
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0.95    

 

 

0.99    

 

                 Figure 3.1(b): Plots of (.)xI  versus P for 5k  and 0.80, 0.95, 0.99    
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Figure 3.1(b) shows that as sensitivity and specificity of the tests increases, holding k 

constant, the Fisher information for both PI- and PG-experiments  increases. The curve for the 

PG-experiment shifts to the right as sensitivity and specificity of the tests increases hence the 

region in which the Fisher information of PG-experiment is higher than for the PI-experiment 

increases.  

 

In general, as seen from Figure 3.1(a) and 3.1(b), the plot of the Fisher information of the PI-

experiment is concave upwards. The graph of Fisher information of the PG-experiment is 

strictly decreasing as the value of p increases. It is also observed that pool testing is only 

viable and better than individual testing strategy where the prevalence rate is small as 

observed by (Dorman, 1943), otherwise individual testing is preferred. Thus, the graphs 

obtained provide empirical evidence of the pool testing scheme for small values of p  but for 

high values, the use of PI-experiment is recommended. 

 

3.4 Computation of cut off values  

The cut off value for the PI- and PG-experiment is the value of p  at which the Fisher 

information for the PI-experiment and the PG-experiment are equal or the value of p at the 

point of intersection of the graphs of (P )I

xI  and (P )G

xI  . 

By letting ' 'a  be the cut off value, then ' 'a  is a unique root in an open interval (0,1)  of the 

equation (P ) (P )I G

x xI I   i.e
  

 
2 2 2 2 2

1 1 2 2

( 1) (1 ) ( 1)

(1 ) (1 )

kk p   

   

    


 
 

2 2 2 2 2

1 1 2 2

( 1) (1 ) ( 1)
0

(1 ) (1 )

kk p   

   

    
 

 
 

2 2 2

1 1 2 2

1 (1 )
0

(1 ) (1 )

kk p

   


 

 
 

2 2 2

2 2 1 1(1 ) k (1 p) (1 ) 0k       

 
2 2 2

2 2 1 1(1 )(1 p) k (1 p) (1 ) 0k                                                (3.8) 

since ,k   and   are known constants, then Equation (3.8) is a function of p , of which the 

value of p  can be solved iteratively using Newton-Raphson method as follows: 
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Let  

2 2 2

2 2 1 1(p) (1 )(1 p) k (1 p) (1 )kf          , 

 then the function (p)f  is continuous in the interval  0,1  and from Figures 3.1(a) and 3.1(b) 

of the graphs of Fisher information, there exist a value p, such that (p) 0f  which is the 

point of intersection of the two curves. Consider a tangent line of (p)f  that passes through 

the point 
0 0(p , f(p ))  and 

1(p , 0)  where 
0p  is the initial approximation of the root of (p)f , 

then the gradient of the tangent line at the point 
0 0(p , f(p ))  denoted by 

0'(p )f  is given by 

0
0

0 1

(p )
'(p )

f
f

p p


   and solving for 
1p  yields 0

1 0

0

(p )

'(p )

f
p p

f
  . Similarly 1

2 1

1

(p )

'(p )

f
p p

f
  ,  

2
3 2

2

(p )

'(p )

f
p p

f
  . In general 

1

(p )

'(p )

i
i i

i

f
p p

f
    where '(p )if  is the derivative of the function  

(p)f  which is not equal to zero for any value of 
ip  for 0, 1, 2,i  . The iteration stops if 

1i ip p     for some arbitrary value  . If the series converges, 1ip   is taken as an 

approximate value of ' 'a  which is the solution of Equation (3.8). A MATLAB code for the 

iteration is given in Appendix A.  

 

For various values of ,k   and   the values of the roots of Equation (3.8) or the cut off 

values ‘a’ are given in Table 3.1: 

 

Table 3.1: Cut off values ‘a’ of PI- and PG-experiments for various values of ,k   and   

k  99.0   95.0   90.0   0.85    0.80    

2 0.646 0.596 0.563 0.542 0.528 

3 0.555 0.507 0.477 0.458 0.446 

5 0.439 0.395 0.371 0.357 0.348 

10 0.296 0.263 0.248 0.239 0.234 

15 0.227 0.201 0.190 0.185 0.181 

20 0.185 0.164 0.156 0.152 0.150 

50 0.092 0.082 0.080 0.079 0.078 

 

From Table 3.1 it is observed that as the pool size (k) increases, the cut-off point value 

decreases for various values of   and   i.e. the region in which the PG-experiment is better 
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shrinks. This concurs with the conclusion that pool testing is only feasible when the pool size 

is reasonably small (Nyongesa, 2004). It can also be observed that as sensitivity and 

specificity of the test kits increases the region in which the PG-experiment is better increases. 

Thus pool-testing is most feasible when the test kits are of high accuracy. 

For example at 0.90   , k = 5 and if N tests are available, the maximum information 

about p is obtained when 
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In general, if N tests are available, then the allocation that maximizes the information 

about p is 
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Note that the region where one experiment is better than the other depends on the unknown 

parameter p . Thus the obvious adaptive rule is suggested where p  is estimated at each stage 

and the next observation is allocated depending on the relationship between the estimated p  

and the cut off value. As k  increases to infinity, the cut off values decreases and the region 

over which the PG-experiment is better shrinks as shown in Table 3.1 and Figures 3.1(a) and 

3.1(b). 

 

3.5 Estimation of p 

In this section the maximum likelihood estimation method is used to estimate the value of 

p using the PI-experiment, PG-experiment and the joint experiment model separately. The 

number of observations from PI- and PG-experiment are m  and n  respectively and the fixed 

total number of observations from both experiments (N) is given by the sum of m and n. 

 

3.5.1 Estimation of p from the PI-experiment  

If m  observations from the PI-experiment are used to estimate p , then a random variable 

1 1~ ( )iX Bernouli  .i e  

1 11

1 1 1(x ,p / , ) (1 )i ix x

if     
                                                       (3.9)                   

The joint probability density function or likelihood function for the m observations is 
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1 1
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
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
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. 

Upon taking logs on both sides, we get  

1 1 1 11 1
log ( ) log( ) (m )log(1 )

m m

i ii i
L x x 

 
      .                                                            (3.10) 

Differentiating Equation (3.10) with respect to q  where 1q p  , leads to 

1 11 1
(1 ) (m )( 1)log ( )

(1 q) (1 )q (1 )(1 q) q
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     

 
.                                                 (3.11) 

To find the maximum likelihood estimator of q , denoted by ˆ I

mq , Equation (3.11) is equated 

to zero and solved for q . 

1 11 1
(1 ) (m )( 1)

0
(1 q) (1 )q (1 )(1 q) q

m m

i ii i
x x   

   
 

    
 

     

 
 

11

m

ii
x m m q mq m q  


     

11

m

ii
x

q q q
m

      


 

11

ˆ
1

m

ii

I

m

x

mq



 




 


. 

Therefore 
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1

m

ii

I
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x
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
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
 



                                                       (3.12)  

 
where ˆ I

mp  is maximum likelihood estimator of p , the same result obtained by Brookmeyer 

(1999). It should be noted that if 1   the maximum likelihood estimator reduces to the 

sample mean.
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3.5.2 Estimation of p from the PG-experiment 

Suppose that there are n  pools for the PG-experiment, each of size k, available for estimating 

p and 
2 jX  pool test positive on the test, then: 

 
2 2~ ( )jX Bernouli  .i e  

2 21

2 2 2(x ,p / , ) (1 )j jx x

jf    


  .                                                       (3.13)                   

The likelihood function is 

2 2
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Working similarly as above we have   

2 2 2 21 1
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 
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Thus upon differentiating with respect to q we get 
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From which the maximum likelihood estimator is obtained by  
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With similar augment as before  
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and making q the subject  
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whence  

1

21

ˆ 1
1

n k

jj

G

n

x

np



 


 
 
  
  
 
 
 



                                                  (3.15) 

where ˆ G

np  is the maximum likelihood estimate of p . This is the result obtained by Nyongesa 

(2012). When 1   , it leads to the results obtained by Thompson (1962) as 

1

21ˆ 1 1 .

n k

jj
x

p
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
 
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 


 

 

3.5.3 Joint experiment model for estimating p  

 If m  is the number of observations of the PI-experiment and n  is the number of 

observations of the PG-experiment and assuming independence, then the joint probability 

density function of the random variables  1iX  and 2 jX  from the PI-experiment and PG-

experiment respectively is a multinomial probability density function given by the product of 

their respective density functions  

2 21 1
11

1 1 2 2( ,p / , , ) (1 ) (1 )j ji i
x xx x

f x k      


    .             (3.16) 

with joint likelihood function given as  
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        .                           (3.17) 

Taking logarithm on both sides of Equation (3.17) and differentiating with respect to q yields
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with   1 1
d

dq


       and    12 1kd

kq
dq


    . 

Equating Equation (3.18) to zero leads to 
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Since ,k and   are known constants, then Equation (3.19) is a continuous function of q  

and a unique root exist. We solve for q iteratively as follows: 
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Let 
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then iterative solution can be obtained by Newton-Raphson method:  

1

(q )

'(q )

i
i i

i

f
q q

f
   .  

The MATLAB code is provided in Appendix B. 

 

3.6 Variance of the Estimators  

In this section, the asymptotic variance of the maximum likelihood estimators (MLE) of p are 

discussed. 

 

3.6.1 Variance of 1ˆ
mp

 
of the PI-experiment 

The asymptotic variance of 1ˆ
mp  is obtained from the Fisher information and is given by 
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The asymptotic variance of 1ˆ
mp  of the PI-experiment is  
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3.6.2 Variance of ˆ G

np
 
of the PG-experiment 

As in Section 3.7.1, finding the logarithm and the second derivative with respect to p  of 

Equation (3.11) and working through the process yields 
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Therefore, the variance is  
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3.6.3 Variance of ˆ
mlep

 
of the joint experiment model            

The joint probability density function of the random variables 1iX  and 2 jX  of IP - and  PG-

experiments respectively is provided by Equation (3.16).  

The negative expectation of second derivative with respect to p  of the logarithm of the joint 

probability density function Equation (3.16) is 
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Assuming there are m  observations from the PI-experiment and n  observations from the PG-

experiment then asymptotic variance of ˆ
mlep  from the joint experiment model is  
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3.7 Comparing the Variances for PI, PG-experiments and the joint experiment model 

In this section the graphs of the variance for PI-, PG-experiments and the joint experiment 

model for values of 0.99, 0.95, 0.80   and 2, 5, 10k   versus p  are plotted. 
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10k   

 

                   Figure 3.2(a): Plots of ˆ(p)var  versus p  with 0.99   and 2, 5, 10k  . 

 

As seen from Figure 3.2(a), ˆvar(p )I

m
 is unaffected by the changes in k since the model is 

independent of k. As k increases holding sensitivity and specificity constant: 

 i) Both ˆvar(p )G

n  and ˆvar(p )mle  increases.  

 ii) The graph of ˆvar(p )G

n shifts to the left meaning that the region in which ˆvar(p )G

n  is 

       higher than ˆvar(p )I

m  decreases. 

 iii) The region in which the plots of ˆvar(p )mle  and ˆvar(p )I

m  against the prevalence          

       rate (p) overlaps increases.  
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0.80    
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0.99    

 

Figure 3.2(b): Plots of ˆ(p)var  versus p  with 5k   and 0.80, 0.95, 0.99   . 

 

As seen from Figure 3.2(b), as the specificity and sensitivity of the tests increases:  

 i) ˆVar(p )I

m
, ˆvar(p )G

n
 and ˆvar(p )mle  decreases. 

 ii) Area in which ˆvar(p )G

n  is higher than ˆvar(p )I

m  increases.  

 

In general, as seen from Figures 3.2(a) and 3.2(b), the plot of ˆvar(p )I

m is concave downwards 

and symmetric with the maximum at a value of p about 0.5. ˆVar(p )G

n  increases exponentially 

as the value of parameter p increase. The variance of p̂mle  of the joint experiment model 

increases exponentially for small values of p but thereafter it starts decreasing as p gets closer 

to 1. For small values of the parameter p,  ˆvar(p )mle  is smaller than ˆvar(p )I

m  and ˆvar(p )G

n  but 

is equal to ˆvar(p )I

m  for the values of p close to 1. The region in which ˆvar(p )mle  is higher than 

ˆvar(p )G

n  increases exponentially as the value of p increases. However, the region in which 

ˆvar(p )mle  is better than ˆvar(p )I

m  increases then it starts decreasing and the two variances are 

equal for the values of p close to 1. It is observed that the variance of the joint experiment is 

smaller than the variance of the PI- or PG-experiments for relatively low values of the 

prevalence rate.  
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3.8 Asymptotic Relative Efficiency 

In this section, ˆvar(p )mle
, ˆvar(p )I

m
 and ˆvar(p )G

n
 have been compared. This is accomplished 

by computing asymptotic relative efficiency (ARE). If 1 ˆvar(p )

ˆvar(p )

mle

I

m

ARE   and 

2 ˆvar(p )

ˆvar(p )

mle

G

n

ARE   respectively, the results are tabulated in the tables 3.2 – 3.4. The 

1.0ARE   in all computed values in tables, implying that the joint experiment model is 

superior.  

 

Table 3.2: The ARE’s of the joint experiment relative to PI- and PG-experiments with   

       0.99    

p  2k   3k   5k   10k   

0.01 1ARE  0.273 0.183 0.109 0.054 

2ARE  0.727 0.817 0.891 0.946 

0.05 1ARE  0.320 0.238 0.162 0.098 

2ARE  0.680 0.762 0.838 0.902 

0.10 1ARE  0.336 0.260 0.189 0.136 

2ARE  0.664 0.740 0.810 0.864 

0.15 1ARE  0.346 0.276 0.215 0.186 

2ARE  0.654 0.724 0.785 0.814 

0.20 1ARE  0.356 0.293 0.244 0.257 

2ARE  0.644 0.707 0.756 0.743 

0.30 1ARE  0.376 0.331 0.321 0.513 

2ARE  0.623 0.669 0.679 0.487 

 

Table 3.3: The ARE’s of the joint experiment relative to PI- and PG-experiments with  

       0.95    

p  2k   3k   5k   10k   

0.01 1ARE  0.225 0.129 0.062 0.025 

2ARE  0.775 0.871 0.938 0.938 

0.05 1ARE  0.277 0.189 0.117 0.066 
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2ARE  0.723 0.811 0.883 0.934 

0.10 1ARE  0.306 0.226 0.158 0.114 

2ARE  0.694 0.774 0.842 0.886 

0.15 1ARE  0.325 0.253 0.194 0.178 

2ARE  0.675 0.747 0.806 0.822 

0.20 1ARE  0.341 0.277 0.233 0.283 

2ARE  0.659 0.723 0.767 0.718 

0.30 1ARE  0.369 0.329 0.339 0.663 

2ARE  0.631 0.671 0.661 0.337 

 

Table 3.4: The ARE’s of the joint experiment relative to PI- and PG-experiments with  

       0.80    

p  2k   3k   5k   10k   

0.01 1ARE  0.207 0.108 0.045 0.014 

2ARE  0.493 0.892 0.955 0.986 

0.05 1ARE  0.231 0.136 0.071 0.034 

2ARE  0.769 0.864 0.929 0.966 

0.10 1ARE  0.257 0.169 0.107 0.077 

2ARE  0.743 0.831 0.893 0.923 

0.15 1ARE  0.281 0.202 0.151 0.164 

2ARE  0.719 0.798 0.849 0.836 

0.20 1ARE  0.304 0.238 0.208 0.332 

2ARE  0.696 0.762 0.792 0.668 

0.30 1ARE  0.351 0.321 0.383 0.816 

2ARE  0.649 0.679 0.617 0.184 

 

Tables 3.2 to 3.4 of the results of AREs of the joint experiment relative to PI- and PG-

experiments reveal the same trend whereby if   and   are held constant, it is observed that 

as the value of k increases from 2 to 10, ARE1 decreases for small values of p but as p 

increases where (0, 0.3]p , the ARE1 decrease and then it starts increasing. ARE2 increases 

as the value of k increases from 2 to 10 for small values of p but also as p increases where 
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(0, 0.3]p  it starts decreasing. It can also be observed that holding k constant and increasing 

the value of p increases ARE1 while ARE2 decreases. As sensitivity and specificity of the 

tests decreases ARE1 decreases while ARE2 increases.  

 

3.9 Estimates of prevalence rate, variance and confidence interval 

In this section, the maximum likelihood estimates( p̂ ) of the prevalence rate, the variance and 

95% Wald-type confidence intervals are computed for various values of sensitivity, 

specificity and pool size. The parameters used in the simulations are for illustration purposes 

but for optimal results, generated pool-sizes can be used as suggested by Juan and Wenjun 

(2015). 

 

Table 3.5: Maximum likelihood estimates, variance and confidence interval for different  

      values of p for 99%   and 5, 10k   

 p  p̂  ˆvar(p) 410  95% CI  

5k   

0.01 0.0160 0.3266 0.0000, 0.0407 

0.05 0.0465 0.8728 0.0052, 0.0878 

0.10 0.1190 2.291 0.0556, 0.1825 

0.20 0.2027 4.226 0.1239, 0.2815 

10k   

0.01 0.0113 0.1224 0.0000, 0.0319 

0.05 0.0567 0.6592 0.01138, 0.1021 

0.10 0.1119 1.605 0.0501, 0.1736 

0.20 0.2337 6.136 0.1500, 0.3168 

 

Table 3.6: Maximum likelihood estimates, variance and confidence interval for different   

      values of p for 90%   and 5, 10k   

 p  p̂  ˆvar(p) 410  95% CI  

5k   

0.01 0.0034 0.6200 0.0000, 0.0150 

0.05 0.0561 1.9000 0.0110, 0.1013 

0.10 0.0831 2.6000 0.0290, 0.1373 

0.20 0.1634 5.1800 0.0909, 0.2359 

10k   

0.01 0.0073 0.2310 0.0000, 0.0238 

0.05 0.0597 1.1100 0.0133,0.1061 

0.10 0.1106 2.6000 0.0491, 0.1720 

0.20 0.2039 9.6000 0.1249, 0.2828 
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Table 3.7: Maximum likelihood estimates, variance and confidence interval for different    

       values of p for 80%    and 5, 10k   

 p  p̂  ˆvar(p) 410  95% CI  

5k   

0.01 0.0148 2.1900 0.0000, 0.0385 

0.05 0.0542 3.6400 0.0098, 0.0986 

0.10 0.1164 6.5640 0.0535, 0.1793 

0.20 0.1789 10.748 0.1038, 0.2547 

10k   

0.01 0.0172 0.0780 0.0000, 0.0428 

0.05 0.0306 0.0940 0.0000, 0.0644 

0.10 0.1000 4.120 0.0412, 0.1588 

0.20 0.2767 4.128 0.1890, 0.3644 

 

From Tables 3.5 to 3.7 it can be noted that the maximum likelihood estimates of the 

prevalence rate are very close to the actual values which were used to simulate the estimates. 

The population estimates resulting from the experiments are used to evaluate the (1 )100%  

confidence limits of the confidence interval of the simulated estimates where   is the level 

of significance and it can be noted from Tables 3.5 to 3.7 that the actual values are within the 

upper and the lower limits. Therefore, we can ascertain that our estimates are within the 

acceptable range with confidence.  
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CHAPTER FOUR 

SEQUENTIALLY SELECTING BETWEEN THREE EXPERIMENTS FOR 

ESTIMATING PREVALENCE RATE WITH IMPERFECT TESTS 

4.1 Sequentially selecting between three experiments 

In construction of the model for sequentially selecting between three experiments, apart from 

the indicator functions defined in Section 3.1, the indicator function 

1,

0,

th

R

z

if the z pool is declared positiveby retest
T

otherwise


 


 

is also required. The model will be split into three, that is PI-experiment, PG-experiment and 

PR-experiment whereby PI- and PG-experiments are as discussed in Chapter 3 while PR-

experiment means estimating the prevalence rate of the characteristic of interest by retesting 

the pools declared positive in the first test. Throughout the chapter m , n  and r  have been 

assumed to be the number of observations from the PI-, PG- and PR-experiments respectively 

with N m n r   , the total number of observations from the three experiments.  

 

4.1.1 Computation of Fisher information from the PR-experiment 

In this experiment the probability of declaring a pool positive after retesting the pools 

declared positive in the first test denoted by 3  is 
3 Prob(T 1)R

z   .  

By the law of total probability 

 3 (T 1, 1, 1 or 0),R

z j j jProb T D D       

which implies that 

 

3

2 2

(T 1,T 1, 1 or T 1, 1, 0)

(T 1,T 1, 1) (T 1,T 1, 0)

(1 (1 p) ) (1 ) (1 p)

R R

z j j z j j

R R

z j j z j j

k k

Prob D T D

Prob D Prob D



 

      

       

     

 

therefore 

2 2

3 (1 (1 p) ) (1 ) (1 p)k k        .                         (4.1) 

Let 3zX  denote a sequence of identically independent distributed random variables for 

1,...,z r , then 3 3~ ( )zX Bernouli  . For a single experiment the probability density function 

is 

3 31

3 3 3( , | , , ) ( ) (1 )z zx x

zf x p k    
   .                                        (4.2)  

Taking logs on both sides of Equation (4.2) yields 
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3 3 3 3log ( ) x log( ) (1 x )log(1 )z zf       .                (4.3) 

The second derivative of Equation (4.3) with respect to p  is 

 

 

2
2

2 1 2 13 3

2 2 2

3 3

2 2 2 23 3

3 3

1logf( )
(1 p) (1 ) (1 p)

p (1 )

1
(k 1)(1 p) (k 1)(1 ) (1 p) .

(1 )

k kz z

k kz z

x xd
k k

d

x x
k k

 
 

 
 

 

 

  
       

 

 
        

 

 

Thus for a single observation in PR-experiment, the Fisher information is 

2 2 2 2 2 2

3 3

(1 p) ( (1 ) )
(P )

(1 )

k
R

x

k
I

 

 

  



 .                 (4.4) 

 

4.2 Comparison of ( )xI   of PI-, PG- and PR-experiments 

In this section ( )xI   of PI-, PG- and PR-experiments are compared by plotting the graphs of 

( )xI   of PI-, PG- and PR-experiments for various values of , and k    

2k   
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5k   

 

 

10k   

 

 Figure 4.1(a): Plots of (.)xI  versus p  with 0.99   and 2, 5, 10k   

 

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

20 

40 

60 

80 

100 

120 

140 

160 

180 

200 

P 

F
is

h
e

r 
In

fo
rm

a
ti
o

n
 

  

  
P

I 

P
G 

P
R 

0.04 0.05 0.06 0.07 0.08 0.09 0.1 

20 

40 

60 

80 

100 

120 

140 

160 

180 

200 

220 

P 

F
is

h
e

r 
In

fo
rm

a
ti
o

n
 

  

  
P

I 

P
G 

P
R 



37 
 

From Figure 4.1(a), increasing the value of k, and upon holding the sensitivity and specificity 

constant there is a decrease in Fisher information of PR-experiment and the plot becomes 

steeper for small values of p but less steep as p increases. It is also observed that the plot of 

the PR-experiment shifts to the left meaning the region for which the Fisher information of 

PR-experiment is higher than the other two models shrinks. Also noted is that as the value of 

k increases from 2 to 10 the area in which the Fisher information of PR-experiment is higher 

than the PG-experiment decreases while the area in which the Fisher Information of PI-

experiment is higher than Fisher information of PR-experiment increases.  
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0.95    

 

 

0.99    

 

 Figure 4.1(b): Plots of (.)xI  versus p  with 5k   and 0,80, 0.95, 0.99    
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From Figure 4.1(b), when k  and p  are held constant and increasing the values of   and   

we observe that:   

 i) Fisher information of the PR-experiment increases.  

 ii) The area between the plots of PG- and PR-experiments diminishes meaning that for 

 almost perfect test kits, retesting of the already tested pools is not necessary, which 

 is the case in practice.   

 iii) The region in which the Fisher information of the PR-experiment is higher than 

 that of the  PI-experiments increases.  

 

From Figures 4.1(a) and 4.1(b), it can be observed that the plot of the Fisher information of 

the PR-experiment is strictly decreasing function as the value of p increases for various values 

of ,k   and  . We can also conclude that the Fisher information of PR-experiment is higher 

than the other two models for small values of p. For the values of p close to 1 the Fisher 

information for PI-experiment is higher. This means that in situation where p is higher PI-

experiment is viable.  

 

4.3 Computation of cut off values  

As defined in Section 3.5, let ija be the cut off value between (P ), (P ) and (P )I G R

x x xI I I   

where ija is a unique root in (0, 1) of the equation (P ) (P )i j

x xI I  for , , ,i j I G R ,  i j  and 

ij jia a , we compute the point of intersection for each pair. Notice that we computed the cut 

off for the pair PI and PG in chapter 3, next is the computation of cut off for the pairs (PI , PR) 

and (PG ,  PR). 

 

4.3.1 Computation of cut off values of  (P )I

xI  and (P )R

xI  

In this section, the cut off values of PI- and PR-experiment are computed. 

If (P ) (P )I R

x xI I  then 

2 2 2 2 2 2 2

1 1 3 3

( 1) (1 p) ( (1 ) )

(1 ) (1 )

kk   

   

    


 
 

2 2 2 2

1 1 3 3

1 (1 p) ( 1)

(1 ) (1 )

kk  

   

  


 
 

and upon re-arranging, we have  

2 2 2 2

3 3 1 1(1 )(1 p) (1 p) ( 1) (1 ) 0kk              .                       (4.5) 
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To solve for p in Equation (4.5) is not easy, therefore we solve it iteratively as follows:  

Define  

2 2 2 2

3 3 1 1(p) (1 )(1 p) (1 p) ( 1) (1 )kf k             ,                   (4.6) 

 then the function (p)f  is continuous in the interval (0,1) .  

From Figure 4.1 of the graphs of Fisher information, a unique value of p  for the Equation 

(4.6) exists such that (p) 0f   which is the point of intersection of the two curves of PI- and 

PR-experiments and the value of p can be solved iteratively using Newton-Raphson method. 

The Newton-Raphson MATLAB code is provided in Appendix C. 

 

4.3.2 Computation of cut off values of  (P )G

xI  and (P )R

xI  

For (P ) (P )G R

x xI I , we have 

2 2 2 2 2 2 2 2 2 2

2 2 3 3

(1 ) ( 1) (1 p) ( (1 ) )

(1 ) (1 )

k kk p k   

   

      


 
 

2 2 2 2 2 2 2 2 2

2 2 3 3

(1 p) ( 1) (1 p) ( 1) ( 1)

(1 ) (1 )

k kk k     

   

        


 
 

2 2 2 2 2

2 2 3 3

(1 p) (1 p) ( 1)

(1 ) (1 )

k k  

   

    


 
. 

Upon simplification 

2 2 2 2 2

3 3 2 2(1 )(1 p) (1 p) ( 1) (1 ) 0k k               

2 2 2

3 3 2 2(1 p) { (1 ) ( 1) (1 )} 0k             . 

Working similarly as in the previous sections in chapter 3, with  

2

3 3 2 2(p) (1 ) ( 1) (1 )f            ,  

the iteration is  

1

(p )

'(p )

i
i i

i

f
p p

f
     

and it stops if 1i ip p     for some arbitrary . The MATLAB code is presented in 

Appendix D.  

 

Next, we compute the roots of f(p) in Equation (4.6) and Equation (4.8). The results are 

presented in Table 4.1. 
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Table 4.1: Cut off values ‘a’ of  PI-, PG- and PR-experiments for various values of ,   and k         

 

k 

0.80    0.90    0.95    0.99    

IGa  
IRa  

GRa  
IGa  

IRa  
GRa  

IGa  
IRa  

GRa  
IGa  

IRa  
GRa  

2 0.528 0.500 0.394 0.563 0.515 0.334 0.596 0.549 0.312 0.646 0.623 0.296 

3 0.446 0.422 0.284 0.477 0.438 0.237 0.507 0.469 0.221 0.555 0.536 0.209 

5 0.348 0.329 0.182 0.371 0.342 0.150 0.395 0.366 0.139 0.439 0.422 0.131 

10 0.234 0.222 0.095 0.248 0.229 0.078 0.263 0.244 0.072 0.296 0.282 0.068 

15 0.181 0.172 0.065 0.190 0.177 0.053 0.201 0.186 0.049 0.227 0.215 0.046 

20 0.150 0.142 0.049 0.156 0.145 0.040 0.164 0.164 0.037 0.185 0.175 0.035 

50 0.078 0.075 0.020 0.080 0.075 0.016 0.083 0.077 0.015 0.092 0.087 0.014 

  

From Table 4.1, it can be noted that the cut off value between PI and PR and also between PG 

and PR decreases as the value of k increases holding specificity and sensitivity constant. As 

the specificity and sensitivity increases the cut off value between the PI- and PR-experiments 

increases while that of PG and PR decreases. In general from Table 4.1 we can conclude that 

as k increases, the cut off value decreases for various values of   and   i.e. the region in 

which the PR-experiment is better than the GP and IP shrinks. It can also be noted that the 

region in which the PI-experiment is better than the PG- and PR-experiments enlarges as the 

pool size increases. As the sensitivity and specificity of the tests increases, the region in 

which the PR-experiment is better decreases and the region in which PI-experiment is better 

than the PG- and PR-experiments increases. For example if 0.80   , k = 3 and N tests are 

available, then the allocation that maximizes the information about p is 

 

, 0.283

, 0.283 0.446

, 0.446

, 0.283

, 0.446

R

G

I

G R

I G

observe all p if p

observe all p if p

N observe all p if p

arbitrary p or p if p

arbitrary p or p if p

 


 


 




 

 

For generality, if N tests are available, then the allocation that maximizes the information 

about p is 
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,

,

,

,

,

R

GR

G

GR IG

I

IG

G R

GR

I G

IG

observe all p if p a

observe all p if a p a

N observe all p if p a

arbitrary p or p if p a

arbitrary p or p if p a

 


 


 



 

 

 

Note also that the region where one experiment is better than the other depends on the 

unknown parameter p , hence adaptive rule is suggested where p is estimated at each stage 

and the next observation is allocated depending on the relationship between the 

estimated p and the cut off.  

 

4.4 Estimation of p 

The maximum likelihood estimation method is used in this section to estimate the value of 

p using PR-experiment only and the joint experiment model. The number of observations 

from PR-experiment is assumed to be r and N m n r   , total number of observations from 

the three experiments. 

 

4.4.1 Estimation of p from the PR-experiment 

If r  observations from the PR-experiment are used to estimate p  and 3zX  pool test positive. 

Then 3 3~ ( )zX Bernouli  , and for a single observation  

3 31

3 3 3( x ,p , ) (1 )z zx x

zf     
      .                                                 (4.9) 

The likelihood function of Equation (4.9) is 

3 3

3 31 1

1

3 3 3
1

3 3

L(x ,p , ) ( (1 ) )

(1 )

z z

r r

z zz z

r
x x

z
z

x r x

   

  







  

    

and taking log on both sides we have  

3 3 3 31 1
logL( ) log( ) (r ) log(1 )

r r

z zz z
x x 

 
      .                                                         (4.10) 

The first derivative of equation (4.10) is 

3 33 31 1

3 3

(r ) (1 )logL( )

1

r r

z zz z
x xd dd

d q dq dq

 

 
 

 
 



 
. 

Equating to zero and upon simplifying we have  
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3 33 31 1

3 3

(r ) (1 )
0

1

r r

z zz z
x xd d

dq dq

 

 
 

 
 



 
 

3 33 1 1

3 3

(r )
0

1

r r

z zz z
x xd

dq



 
 

  
   
   

 
. 

The function 3 0
d

dq


  because it is a function q. Therefore we are left with   

3 31 1

3 3

31
3

32 2 1

(r )
0

1

(1 ) (1 ) q

r r

z zz z

r

zz

r

zk k z

x x

x

r

x
q

r

 



 

 






 





   

 





 

hence 

1

32 1

2 2
ˆ

(1 )

r k

zz

R

r

x

rq



 


 
 
 
  
 
 


. 

Therefore the maximum likelihood estimator of p is 

1

32 1

2 2
ˆ 1 .

(1 )

r k

zz

R

r

x

rp



 


 
 
  
  
 
 



                                                     (4.11) 

 

4.4.2 Estimation of p from the joint experiment model                   

 If m  is the number of observations from PI-experiment, n  is the number of observations 

from the PG-experiment and r is the number of observations from the PR-experiment, then the 

joint probability density function of the random variables  1iX , 2 jX  and 3zX  from the PI-, 

PR- and PR-experiments respectively is a multinomial probability density function given by 

the product of their respective density functions, since the random variables are assumed to 

be independent, then 

2 21 1 3 3
11 1

1 1 2 2 3 3( , | , , ) (1 ) (1 ) (1 )j ji i z z
x xx x x x

f x p k        
 

                 (4.12) 

whose joint likelihood function is 
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1 1 2 2 3 3L( , | k, , ) 1 1 1
m m n n r r

i i j j z zi i j j z z
x m x x n x x r x

x p             
            

                        

Proceeding as in the previous sections, we have 
 

2 21 1 3 311 31 2 1

1 1 2 2 3 3

mdlog (.)

(1 ) (1 ) (1 )

nm r

ji zji z
x nx x r dd dL

dq dq dq dq

   

     

 
 

  
  

 
                                

 

where   1 1
d

dq


    ,  12 1kd

kq
dq


     and  1 2 23 (1 )kd

kq
dq


    . 

Thus    

2 21 1 3 311 31 2 1

1 1 2 2 3 3

m
0

(1 ) (1 ) (1 )

nm r

ji zji z
x nx x r dd d

dq dq dq

   

     

 
 

  
  

 
.                             

Letting  

2 21 1 3 311 31 2 1

1 1 2 2 3 3

m
(q)

(1 ) (1 ) (1 )

nm r

ji zji z
x nx x r dd d

f
dq dq dq

   

     

 
 

  
  

 
,          (4.13) 

then (q)f  is a function of q . Since ,k  and   are known constants, a unique value of q that 

satisfy the equation exists since the graph of the Equation (4.13) cuts the q-axis at a point. 

The unique root of Equation (4.13) is the MLE of q. Since equation (4.13) cannot be put in 

simpler form to obtain q, we apply Newton-Raphson procedure to obtain the estimates of q 

from which the MLE of p is obtained. A MATLAB for obtaining ˆ
mleq  is presented in 

Appendix E.   

 

4.5 Properties of the Estimators 

As in Section 3.7, the properties of the maximum likelihood estimates of the prevalence rate 

are discussed and their asymptotic variance derived. 

 

4.5.1 Variance of ˆ R

rp
 
of the PR-experiment 

As in Section 3.7.1, finding the logarithm and the second derivative with respect to p  of 

Equation (4.12) yields 
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Therefore  
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hence the asymptotic variance of ˆ R

rp  of the PR-experiment is 

3 3

2 2 2 2 2 2
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k (1 p) ( (1 ) )

R

r k
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                                      (4.14) 

 

4.5.2 Variance of ˆ
mlep

 
of the joint experiment model             

The asymptotic variance of ˆ
mlep  of the joint experiment is obtained by solving 

1
2

2

log ( )d f
E

dp



   
  
   

 where ( )f   is provided in equation (4.12), the asymptotic variance is  
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hence assuming ,m n  and r  are the total number of observations of PI-, PG- and PR-

experiments respectively then  

Q
pmle

)1)(1)(1(
)ˆvar( 321321  
                                                  (4.15)

 

where 

2 2 2 2 2

2 3 2 3 1 3 1 3

2 2 2 2 2 2

1 2 1 2

( 1) (1 )(1 ) (1 ) ( 1) (1 )(1 )
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Q m nk p

rk p
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     





          

       

 

4.6 Comparing the variances for PI-, PG-, PR-experiments and the joint experiment   

In this section we shall plot the graphs of the variance of PI-, PG- and PR-experiments and 

joint experiment model versus p  for comparison purposes. 
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10k   

 

Figure 4.2(a): plots of ˆ(p)Var  versus p  with 0.99   and 2, 5, 10k  . 

 

Observed from Figures 4.2(a), is that as the value of k increases from 2 to 10 holding 

sensitivity and specificity of the tests constant:  

 i) The graph of ˆvar(p )R

r  shifts to the left. 

 ii) The region in which ˆvar(p )I

m  is higher than ˆvar(p )R

r  shrinks.  

 iii) The region in which ˆvar(p )G

n  is higher than ˆvar(p )R

r  increases.  

 iv) The area in which ˆvar(p )R

r  is smaller than variance of the other models 

 decreases. 

 

We also plot var( )  for fixed k but varying and  . We have the following graphs: 
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0.99    

 

Figure 4.2(b): Plots of ˆ(p)Var  versus p  with 5k   and 0.80, 0.95, 0.99    

 

As observed from Figures 4.2(b), keeping k constant, increasing sensitivity and specificity of 

the test kits:  

 i) The graph of ˆvar(p )R

r
 shifts to the left. 

 ii) The region in which ˆvar(p )I

m  is higher than ˆvar(p )R

r  increases.  

 iii) The region in which ˆvar(p )G

n  is higher than ˆvar(p )R

r  decreases.   

 

We note that ˆvar(p )R

r  increase exponentially as the value of p increases. It is noted also that 

ˆvar(p )R

r  is smaller than ˆvar(p )I

m  and ˆvar(p )G

n  for values of p close to 0, for values of p close 

to 1 ˆvar(p )I

m  is smaller than ˆvar(p )R

r  and ˆvar(p )G

n  while for some values of  p between 0 and 

1, ˆvar(p )G

n  is smaller than the variance of the other two models. Noted also is that variance of 

the combined experiment model of p̂mle  is smaller than variance of other three experiments 

under consideration in this chapter for the given values of ,   and k . Therefore a 

combination of experiments yields superior estimators. 
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4.7 Asymptotic Relative Efficiency for the three experiments  

In this section, ˆvar(p )mle
, ˆvar(p )I

m
, ˆvar(p )G

n
 and ˆvar(p )R

r
 are compared. This is accomplished 

by computing asymptotic relative efficiency (ARE) values for 0.99, 0.80   ; 

2, 3, 5, 10k    and 0.01, 0.05, 0.10, 0.15, 0.20, 0.30p  . Let 3 ˆvar(p )

ˆvar(p )

mle

I

m

ARE  ,  

4 ˆvar(p )

ˆvar(p )

mle

G

n

ARE   and 5 ˆvar(p )

ˆvar(p )

mle

G

n

ARE  . The computed ARE’s are tabulated in the 

following tables. 

 

Table 4.2: The ARE’s of the joint experiment relative to the PI-, PG- and PR-experiments       

       with 0.80    

 p  2k   3k   5k   10k   

 

0.01 

3ARE  0.056 0.028 0.012 0.004 

4ARE  0.215 0.235 0.264 0.314 

5ARE  0.729 0.736 0.723 0.682 

 

0.05 

3ARE  0.087 0.052 0.020 0.016 

4ARE  0.289 0.332 0.382 0.443 

5ARE  0.624 0.616 0.589 0.541 

 

0.10 

3ARE  0.115 0.077 0.051 0.040 

4ARE  0.333 0.380 0.429 0.483 

5ARE  0.551 0.543 0.520 0.476 

 

0.15 

3ARE  0.139 0.102 0.079 0.05 

4ARE  0.356 0.401 0.446 0.484 

5ARE  0.505 0.497 0.475 0.421 

 

0.20 

3ARE  0.161 0.128 0.117 0.216 

4ARE  0.369 0.410 0.448 0.436 

5ARE  0.470 0.462 0.434 0.347 

 

0.30 

3ARE  0.205 0.193 0.251 0.720 

4ARE  0.378 0.407 0.406 0.163 

5ARE  0.417 0.400 0.343 0.118 
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Table 4.3: The ARE’s of the joint experiment relative to the PI-, PG- and PR-experiments        

        with 0.99    

p  2k   3k   5k   10k   

 

0.01 

3ARE  0.131 0.089 0.053 0.027 

4ARE  0.349 0.392 0.432 0.465 

5ARE  0.520 0.520 0.515 0.508 

 

0.05 

3ARE  0.184 0.132 0.087 0.052 

4ARE  0.390 0.422 0.450 0.472 

5ARE  0.426 0.446 0.464 0.476 

 

0.10 

3ARE  0.198 0.148 0.104 0.074 

4ARE  0.393 0.421 0.446 0.466 

5ARE  0.409 0.431 0.450 0.460 

 

0.15 

3ARE  0.207 0.160 0.121 0.104 

4ARE  0.392 0.418 0.441 0.456 

5ARE  0.401 0.422 0.439 0.440 

 

0.20 

3ARE  0.215 0.172 0.140 0.152 

4ARE  0.390 0.414 0.433 0.439 

5ARE  0.395 0.415 0.427 0.409 

 

0.30 

3ARE  0.232 0.199 0.195 0.369 

4ARE  0.384 0.403 0.411 0.351 

5ARE  0.384 0.398 0.394 0.281 

 

 

From Tables 4.2 and 4.3 it is noted that the computed values of 'ARE s  are less than 1 for the 

given values of , , k   and p  hence the joint experiment model is superior to PI-, PG- and 

PR-experiments. 

 
4.8 Estimates of prevalence rate, variance and confidence interval 

The maximum likelihood estimates( p̂ ) of the prevalence rate of the joint experiment model, 

the variance and 95% Wald-type confidence interval for 5, 10k   and 80%, 90%    

are computed. 
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Table 4.4: Maximum likelihood estimates, variance and confidence interval for different  

       values of p for 80%    and 5, 10k   

 p  p̂  ˆvar(p)  95% CI  

5k   

0.01 0.01566 6.829310-5 0.00000, 0.03999 

0.05 0.06397 1.758810-4 0.01600, 0.11193 

0.10 0.10386 2.855110-4 0.04407, 0.16366 

0.15 0.17263 5.574310-4 0.09856, 0.24671 

0.30 0.33119 2.105410-3 0.23895, 0.42344 

10k   

0.01 0.01745 2.859210-5 0.00000, 0.04312 

0.05 0.03052 4.537810-5 0.00000, 0.06428 

0.10 0.08585 1.644310-4 0.03094, 0.14076 

0.15 0.12212 3.269910-4 0.05794, 0.18630 

0.30 0.28662 4.218910-3 0.19800, 0.37525 

 

Table 4.5: Maximum likelihood estimates, variance and confidence interval for different  

      values of p for 90%    and 5, 10k   

 p  p̂  ˆvar(p)  95% CI  

5k   

0.01 0.02017 3.709110-5 0.00000, 0.04772 

0.05 0.05229 8.233410-5 0.00866, 0.09592 

0.10 0.09213 1.445210-4 0.03544, 0.14881 

0.15 0.16454 2.912410-4 0.09187, 0.23721 

0.30 0.29088 7.668910-4 0.20187, 0.37990 

10k   

0.01 0.00971 9.306510-6 0.00000, 0.02893 

0.05 0.04671 4.110010-5 0.00535, 0.08807 

0.10 0.10616 1.326810-4 0.04578, 0.16653 

0.15 0.13960 2.298510-4 0.07168, 0.20753 

0.30 0.27932 1.817110-3 0.19139, 0.36726 

 

From Tables 4.4 and 4.5 it is observed that the maximum likelihood estimates of the 

prevalence rate are very close to the actual values which were used to simulate the estimates. 

The population estimates resulting from the experiments are used to compute the 

(1 )100%  confidence limits of the confidence interval of the simulated estimates where   
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is the level of significance and it is noted from Tables 4.4 and 4.5 that the actual value is 

within the limits. 

 

4.9 Comparing the joint experiments 

The joint experiment models in Chapter 3 and Chapter 4 are compared in this section by 

plotting the graphs of their variances. Asymptotic relative efficiency (ARE) values of two and 

three joint experiment models are computed. 

   

4.9.1 Comparing variances of the joint experiment models. 

The variances of two and three experiment joint models are compared in this section by 

plotting the graphs of their respective variances against p for values of 0.99, 0.80    

and 2, 10k  . 
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Figure 4.3(a): Plots of ˆ(p)var  versus p  for joint experiment models with 0.99    and     

            2, 10k  . 

 

As seen from Figures 4.3(a), the area between the two curves decreases as k increases 

keeping sensitivity and specificity constant  
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Figure 4.3(b): Plots of ˆ(p)var  versus p  for joint experiment models with 2k   and      

            0,80, 0.99   . 

 

As seen from Figure 4.3(b), keeping k constant, increasing sensitivity and specificity of the 

test kits increases the area between the two curves. The three experiment joint model has a 

smaller variance than two experiment model. Thus more information about the prevalence 

rate will be obtained when the joint three experiment model is applied.  

 

From Figure 4.3(a) and 4.3(b), the general behavior of the two graphs is the same i.e  

increases exponentially for small values of p and decreases thereafter as the value of p gets 

closer to 1. It is also observed that as the value of the parameter p increases especially for 

small sample size, the gap between the two curves increases and decreases thereafter as p gets 

closer to 1. For the given values of ,   and k  it is observed that the variance of the joint 

experiment model for three experiments is smaller or equal to variance of the joint 

experiment model for two experiments for the entire range of p hence we can conclude that 

the three experiment joint model is better than the two experiment joint model.  

 

4.9.2 Asymptotic Relative Efficiency of the joint experiment models 

In this section the asymptotic relative efficiency (ARE) of two and three experiment joint 

models is computed. The computed ARE values are plotted against p  for values of 
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 0.99, 0.80    and 2, 5, 10k   as shown in Figure 4.4(a) and 4.4(b). If the estimator of 

the two experiment joint model is denoted by 1ˆ
mlep  and the estimator of the three experiment 

joint model is denoted by 2ˆ
mlep , then we compute ARE as: 

2

1

ˆvar(p )

ˆvar(p )

mle

mle

ARE  . 
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Figure 4.4 (a): ARE plotted against p for 0.99    

 

As noted from Figure 4.4(a) the region in which the three experiment joint model is better 

than the two experiment joint model increases with increase in k. This means that as p 

increases, the two and three joint experiment models provides the same information about p. 

Now, suppose we change and  , we have this results in Figure 4.4(b).  
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Figure 4.4 (b): ARE plotted against p for 10k    
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From Figure 4.4(b), increasing sensitivity and specificity of the test kits while keeping k 

constant the region in which three experiment joint model is superior to two experiment joint 

model decreases. In general as noted from Figure 4.4(a) and 4.4(b), the computed values of 

ARE are less than or equal to 1 for the values of the parameter p  between 0 and 1 hence the 

three experiment joint model is more efficient than the developed two experiment joint model 

as evidenced earlier in the other conclusions.   
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CHAPTER FIVE 

RESULTS AND DISCUSSION 

The essence of this study was to develop an adaptive procedure that selects one experiment at 

a time based on available information for optimal estimation of a common prevalence rate. 

Thus, a mixture of experiments have been applied mainly to two experiments namely PI- and 

PG-experiments and to three experiments constructed by appending experiment PR on two 

earlier ones. A mixture of experiments is widely believed to yield better results in agricultural 

field. This study has proposed a mixture of experiments to estimate a prevalence rate of a 

common trait as proposed by Thomson (1962) who only applied PG-experiment with absence 

of errors. 

 

To help this discussion, ARE’s values have been computed for various pool sizes 2 – 10 and 

tabulated in Table 5.1.   

 

Table 5.1: The ARE’s of PG-, PR-, two joint and three joint experiment models relative to the 

        PI-experiment with 0.05, 2, 3, 5, 10p k   and 99%     

 

The (P ,P )G Ieff  column of the table gives the ARE’s of PG-experiment to PI-experiment 

which is widely discussed in pool testing literature. For instance see Brookmeyer (1999). The 

(P ,P )R Ieff  column gives the ARE’s of PR-experiment to PI-experiment. This column gives 

the results of Nyongesa (2017). The (two joint exp,P )Ieff  column gives ARE’s of two joint 

experiment model of PI- and PG-experiment to PI-experiment. A version of no test errors of 

this ARE’s have been discussed (Hardwick et. al., 1998). Hence contribution in this case is 

introduction of the test error element in Hardwick et. al.,(1998) model. Finally the 

(three joint exp,P )Ieff  column gives ARE’s of the three combined (PI-, PG- and PR-) 

experiment model to PI-experiment. 

k  (P ,P )G Ieff  (P ,P )R Ieff  (two joint exp,P )Ieff  (three joint exp,P )Ieff  

2 0.471 0.431 0.320 0.184 

3 0.313 0.296 .0238 0.132 

5 0.193 0.187 0.162 0.087 

10 0.109 0.108 0.098 0.052 
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From Table 5.1 all ARE’s 1, this implies that all considered testing procedures in this study 

are superior to one-at-a-time testing. Hence the procedures are viable for estimating 

prevalence rate with relative to pool sizes. There is a decline in ARE’s across the table with 

the minimum ARE’s being achieved with three joined experiment model. For example for 

10, 0.05, 99%k p      , (three joint exp,P )Ieff =0.052 which is almost two fold 

smaller than either procedure. Therefore the proposed three joint experiment model is 

superior to that of Hardwick et. al.,(1998), Nyongesa (2017) and Brookmeyer (1999). This 

study shows that a mixture of experiments yield superior results for estimating prevalence 

rate. In fact the more the mixture the experiment, the more superior the model is for 

estimating a common prevalence rate. This is true in practice as a mixture of experiment can 

yield worthwhile results particularly in agricultural field. 
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CHAPTER SIX 

CONCLUSION AND RECOMMENDATION 

6.1 Conclusion 

 This study focused on construction of new models for estimating the prevalence rate of a 

trait in a population with imperfect tests by selecting between two experiments namely PI- 

and PG-experiments and also by selecting between three experiments namely PI-, PG- and    

PR-experiments. Ideally the model should select the better experiment and once the  better 

experiment is being used, it should approximate the individual maximum likelihood estimator 

of the prevalence rate.  

 

From Chapter three of this study it can be concluded that the PG-experiment is better than the 

PI-experiment for values of p close to zero but for values of p close to 1.0 the PI-experiment 

is recommended. From the graphs of asymptotic variance and tables of ARE’s, the proposed 

joint model for sequentially selecting between two experiments for estimating the prevalence 

rate of a trait in a population with imperfect tests is more efficient than each of the 

experiment PI and PG across the entire range of parameter estimation regardless of the pool 

size, sensitivity and specificity of the tests.  

 

From Chapter four, the best estimator for small, medium and high values of the parameter p 

are ˆ ˆ,R G

r mp p  and ˆ I

np  from PR-, PG- and PI-experiment respectively. Also noted is for almost 

perfect tests i.e. sensitivity and specificity of the test kits about 100% retesting of already 

tested pools is not necessary. From Table 4.2 and 4.3, the computed values of asymptotic 

relative efficiency (ARE) for various values of , , k  and p are less than one hence the 

proposed joint model for sequentially choosing of the best experiment for optimal estimation 

of a trait with misclassification is more efficient than the PI-, PG- and PR-models separately. 

 

Comparison of the proposed two experiment joint model and  three experiment joint model 

was done by plotting the curves of asymptotic variance of ˆ
mlep  against p  and by plotting the 

curves of ARE for various values of , , k  and p . It was noted that the three experiment 

joint model does very well across the entire range of the parameter values than the two 

experiment joint model.   
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Through simulation using R-code program developed, the computed estimates were very 

close to the actual values used to simulate the estimates and they were within the upper and 

the lower (1 )100% Wald-type confidence interval. Noted also is that the developed 

models are suitable for small values of the prevalence rate since the var iance of estimates 

increases as the values of the estimates ( p̂ ) increases. 

 

6.2 Recommendation 

The models developed in this study of estimating the prevalence rate are recommended for 

use when incidence probability is relatively small, sensitivity and specificity of the tests high. 

Better estimation of prevalence rate has important health implications for prevention, 

intervention and treatment of rare diseases like HIV infections in a population hence the 

developed models are highly recommended for use. Our improved estimate of the prevalence 

rate could substantially reduce the potential risks for secondary transmission by infected 

population who are unaware of infections. Reliable estimates of the prevalence rate are also 

required in environmental monitoring where samples of units of soil are combined and tested 

for toxins in order to know the right chemicals or fertilizers to apply. Accurate prevalence 

rate estimates are required also in prevention and treatment of rare diseases in plant (Graham, 

1996) and in early stages of drug discovery (Xie et  al., 2001).  

 

6.3 Areas of further research 

Mixture of experiments yields better estimators than individual estimators. It could be 

worthwhile to consider more experiments.  
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APPENDICES 

Appendix A: Matlab code for solving Equation (3.8) 

 

2 2 2

2 2 1 1

0
0 '

0

'

0

0

(p) (1 )(1 p) k (1 p) (1 )

(p )
%

(p )

% ( ) is thederivative f(p)

% p

%

int('cut off value

k

syms p c k

f

while i c

f
p p Newton Raphson method

f

f

is theinitial approximationof the root of f p

if p p stopping criterion

fpr

   



     



  



 

0

is %f\ n',double(p))

return

end

i i 1;

p p

end

 
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Appendix B: Matlab code for solving Equation (3.18) 
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2 21 1 11 1 2

1 1 2 2
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0

0

m
(q)

(1 ) (1 )

(q )
%

(q )

% ( ) is thederivative f( )

%q

%

nm

ji ji

syms q c k m n

x nx d d
f

dq dq

while i c

f
q q Newton Raphson method

f

f

is theinitial approximationof the root of f q

if q q stopping crite

 

  
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
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 
 
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  
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int('mleof q is %f\ n',double(q))

return

end

i i 1;
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fpr

q q

end
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Appendix C: Matlab code for solving Equation (4.6) 
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2 2 2 2
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is theinitial approximationof the root of f p
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return

end
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end
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Appendix D: Matlab code for solving Equation (4.8) 
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p p Newton Raphson method

f

f

is theinitial approximationof the root of f p

if p p stopping criterion

fpr

     



     



  



 

0

,double(p))

return

end
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Appendix E: Matlab code for solving Equation (4.15) 
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