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ABSTRACT 

Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris is a seed and soil borne disease 

affecting chickpea, Cicer arietinum L. It is widely distributed where chickpea is grown causing 

yield losses ranging from 12 to 100% depending on the level of resistance of the genotype and 

the suitability of environmental conditions for disease development. Evolution of new and 

virulent races of Fusarium oxysporum f. sp. ciceris necessitates continued screening, breeding 

and deployment of new resistance genes when hitherto resistance genes succumb to new races of 

the pathogen. Two experiments were set up in this study. The aim of the first experiment was to 

screen 20 chickpea genotypes introduced from ICRISAT for resistance to Fusarium wilt under 

greenhouse conditions in a completely randomized design (CRD). The second experiment was 

conducted to evaluate efficacy of two fungicides, thiram and carbendazim in managing Fusarium 

wilt and was in a split plot design. Four rates of each fungicide (0%, 50%, 100% and 150%) of 

the recommended rate (1.5 g/Kg seed), were used. One resistant variety (Chania 1) and one 

highly susceptible variety (Chania 2) selected from the greenhouse screening experiment were 

used in the field experiment. Six genotypes were found to be moderately resistant, ten were 

susceptible and four were highly susceptible. Carbendazim and thiram rates were effective in 

reducing wilt incidence in chickpea. The least wilt incidence was observed when 150% rate of 

either thiram or carbendazim was used. Highest wilt incidence was observed in control treatment 

plots. There was a positive interaction between variety and fungicide application on dry matter 

and grain yield. Interaction between moderately resistant Chania 1 and fungicide resulted in 

significantly lower wilt incidence, higher dry matter production and highest grain yield of 1.4 

t/ha. Significantly higher wilt incidence, lower dry matter and grain yield of 1.3 t/ha were 

observed in the interaction between fungicide treatment and highly susceptible Chania 2 variety. 

Six moderately resistant varieties; 95423, 97105, 97114, 97125, 97126 and 97406 could be used 

together with 100% and 150% rate of application of either thiram or carbendazim in order to 

manage wilt incidence and ensure higher dry matter and grain yield.  
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CHAPTER ONE 

INTRODUCTION

1.1 Background Information 

In Kenya, 89% of land is arid and semi-arid (ASAL) (MD&P, 2015). These dry land areas 

experience problems of moisture stress and various pests and diseases that attack crops. These 

combined with poor management severely limits crop production and leads to food insecurity. 

Other constraints to crop production in these areas include poor quality of seed and the suitability 

of the crop genotype to selected growing environment.  

Chickpea (Cicer arietinum L.) is an important cool season food legume crop mainly grown in 

areas with residual soil moisture and has great agronomic potential for use as food grain, salad, 

snacks like mandazi and chapati and forage in dry land areas of Kenya (Nielson, 2001; Oweis et 

al., 2004; Kamithi et al., 2008). It is a hardy crop that grows in dry land areas and yields 

substantially well. Studies in Naivasha have shown potential yields of between 1.6 and 2.3 tons 

of grain per hectare for genotype ICCV 95423 (Kabuli) and ICCV 97105 (Desi), respectively 

(Kibe and Onyari, 2008) and at varying plant population densities and nitrogen levels (Kibe and 

Kamithi, 2007).  

Serious pests and diseases affecting the chickpea crop at various growth stages however limit its’ 

productivity. Generally, the pathogens that affect chickpea crop include fungi, bacteria, viruses 

and mycoplasma. More than 30 pathogens have been reported to affect chickpea in different 

parts of the world, but only a few of them are economically important in as far as the damage 

they cause is concerned (Nene et al., 1991). Fungal pathogens affecting roots, stems, leaves, 

flowers and pods comprise the most devastating group of pathogens of chickpea. The important 

diseases are Ascochyta blight (Ascochyta rabiei); Fusarium wilt, Dry root rot, Stunt, Botrytis 

gray mould, Collar rot, Black root rot, Phytophthora root rot, Pythium root rot and seed rot (Nene 

et al., 1991). The complex in which soil borne pathogens occur makes isolated control of one 

pathogen difficult and therefore necessitates combination of host plant resistance together with 

fungicidal seed treatment strategies and other cultural practices like crop rotation.  

Chickpea is a relatively new crop in Kenya and a lot of yield performance trials are still being 

undertaken on many genotypes. Some genotypes have been released as varieties and seed 

bulking in the Rift Valley is going on. Several genotypes that have been found to yield well 
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across several environments need to be evaluated further for drought tolerance and resistance to 

pests and diseases. This study was part of the larger ICRISAT research and its’ aim was to screen 

20 genotypes for resistance to Fusarium wilt under greenhouse conditions and later assess the 

efficacy of carbendazim and thiram as seed dress fungicides in the control of Fusarium wilt in 

the field. 

1.2 Statement of the problem 

Soil borne diseases are a problem to sustainable chickpea production in the world. Fusarium wilt 

causes varying degree of yield losses which can be as high as eighty percent depending on the 

level of resistance of the genotype. The complex in which soil borne diseases occur necessitates 

preventive control measures because effective control is hard to achieve once the disease is 

established. The successful adoption of chickpea could be hampered by diseases and pests which 

affect the crop. Soil borne diseases occur as a complex and as such control of one disease in 

isolation is impractical. Host plant resistance (HPR) is one major method used to prevent 

Fusarium oxysporum f. sp. ciceris infection in chickpea. Evolution of new races of Fusarium 

oxysporum f. sp. ciceris leads to breakdown of host resistance resulting in short lifespan of 

resistant genotypes. Twenty chickpea genotypes introduced for possible adoption by farmers in 

Njoro region had to be evaluated for susceptibility/resistance to Fusarium wilt. An integrated 

disease management approach that entails chemical seed dressing, cultural practices like crop 

rotation and host plant resistance are used to ensure durability of resistance genes. Fungicides 

carbendazim and thiram among others; have been used in other parts of the world to control 

infection of chickpea by Fusarium oxysporum f. sp. ciceris and other soil borne pathogens. No 

research has been done in Kenya to assess the efficacy and optimize seed dressing rates of these 

fungicides for the control of Fusarium wilt in chickpea. 

1.3 Objectives 

1.3.1 General Objective 

To screen chickpea genotypes for resistance to Fusarium wilt and to study the efficacy of 

fungicides in the management of Fusarium wilt and thus increase in yields. 
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1.3.2 Specific objectives 

i. To screen twenty chickpea genotypes for resistance to Fusarium wilt under greenhouse 

conditions. 

ii. To determine the efficacy of varying thiram and carbendazim rates in the control of 

Fusarium wilt incidence and yield on selected chickpea genotypes under field conditions.  

iii. To determine variety and fungicide interaction effects in the control of Fusarium wilt 

incidence and on yields of chickpea under field conditions (Sick plot). 

1.4 Hypotheses (HO) 

i. There are no chickpea genotypes resistant to Fusarium wilt.  

ii. Thiram and carbendazim rates are not effective in the control of Fusarium wilt of chickpea. 

iii. There are no interaction effects of fungicide with variety (host plant resistance) in the 

control of Fusarium wilt and yield of chickpea. 

1.5 Justification 

Fusarium wilt is a fungal disease which is both seed and soil borne. Yield loss from this disease 

is variable but it can cause total crop failure when the genotype is susceptible. Most soil borne 

diseases are mainly controlled through preventive methods like host plant resistance and 

fungicidal seed treatment. Use of resistant genotypes is the most reliable, environmental friendly, 

economically affordable method of Fusarium wilt management for small scale farmers. 

Genotypes of chickpea differ in their levels of resistance to Fusarium wilt. It is important to 

screen selected genotypes to identify inherent resistance against Fusarium wilt, in each genotype.  

This way genotypes introduced from ICRISAT into Kenya had need to be identified for 

resistance to Fusarium wilt and could be used for further breeding and adoption in farmers’ 

fields. Host plant resistance (HPR) is used together with other methods of control in an 

integrated management. Fungicidal seed treatment is normally used in conjunction with HPR 

thus reducing excessive use of fungicides and thus reduces environmental pollution arising from 

fungicides. Carbendazim and thiram had not been assessed for efficacy against soil borne 

pathogen F. oxysporum f. sp. ciceris. This study was conducted to determine the efficacy of 

carbendazim and thiram fungicidal seed dressing and their interaction with identified varieties 

possessing various resistance reactions to Fusarium wilt.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1. Chickpea plant 

2.1.1 Chickpea production 

Chickpea (Cicer arietinum L.) is the third most important legume crop in the world after dry 

beans and peas (Romeis et al., 2004; Kumar et al., 2004). It is second in importance after rice in 

Asia (ICRISAT, 2005) and is highly adapted to varied agro-ecological zones (Kibe and Onyari, 

2008). Annual global production is estimated at 9.24 million tons grown on 12.03 million 

hectares with average yields of 818 Kg/ha (ICRISAT, 2007) with the major producing areas 

being India, Pakistan, Turkey, Iran, Myanmar, Ethiopia, Mexico, Australia, Canada and Iraq. 

Approximately 90% of the global area and 88% of production is concentrated in Asia with India 

being the leading chickpea growing country taking over 60 % share in acreage and production. In 

Africa, Ethiopia is the leading grower of chickpea with approximately 37% of the total hectares 

in Africa and over 48% of production (Daba et al., 2005; Kibe and Kamithi, 2007). In Eastern 

and Southern Africa, chickpea is an important legume crop, with Ethiopia, Tanzania, Malawi and 

Sudan being the leading producers (ICRISAT, 2006). In Kenya it is grown by few farmers in 

Eastern and Rift valley provinces.   

Chickpea is an important source of protein for humans which can also be used as animal feed 

(Oweis et al., 2004). It is a key component in the diets and forms a rich source of essential 

vitamins, minerals, and important amino acids like lysine and other secondary metabolites 

(Grusak, 2002). It is also used in snacks like mandazi and chapati and forms an important salad 

while large seeded Kabuli type chickpea are sold for canning purposes; with the dry matter being 

a component of animal feed (Oweis et al., 2004). The crop can fix high amounts of nitrogen in 

cereal-legume rotation systems, conserves soil moisture through addition of organic matter, act 

as ‘break-crop” that facilitates control of diseases, pests and weeds and also improves the 

physical characteristics of various soil types (Pye et al., 1984; Taa et al., 1997; ICRISAT, 2001; 

Cheruiyot et al., 2001; Cheruiyot et al., 2002).  

Chickpea has gained importance in Australia, Canada and USA as a relay and rotational crop 

with cereals like wheat (ICRISAT, 2008). Desi and Kabuli are the two main types of chickpea. 

Although Desi type is the most common as compared to the Kabuli type there has been an 
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increase in farmers’ interest on Kabuli because of favorable prices and the extra-large size of 

beans with test weights of 35 to 40 g/100 seed (Daba et al., 2005). Kabuli beans are 

whitish/cream coloured while the Desi types are brownish, small seeded with test weights of 15 

to 27 g/ 100 seed (Kamithi et al., 2008). 

2.1.2 Chickpea production constraints 

Biotic and abiotic stresses that affect chickpea are some of the important constraints that limit the 

production level of chickpea and cause yield loss of about one third (Haware et al., 1992). 

Abiotic stresses like drought and high temperatures set limits to chickpea production and 

breeding is usually focused towards these two stresses. Biotic stresses include insect pests and 

diseases that affect chickpea. Among the insect pests; Helicoverpa amigera is the most serious 

and varieties are developed with resistance to this pest in mind (Singh et al., 2006).  

There are numerous diseases of chickpea that cause varying degree of yield loss depending on 

the pathogen, the resistance of the host and the time of infection with regard to environmental 

conditions. Ascochyta blight and Botrytis grey mold are foliar diseases of chickpea that are very 

serious and can cause high degree of yield loss depending on the hosts’ resistance. Use of 

fungicides to control these two pathogens is not economical because four to six sprays may be 

necessary (Porta-Puglia et al., 1996) and this necessitates development of resistant genotypes as 

the only cost effective method of managing these two diseases (Nasir et al., 2000; Pande et al., 

2007). 

2.2 Diseases of chickpea 

Soil borne diseases that commonly affect chickpea include Fusarium wilt, Collar rot, Black root 

rot and other root rots caused by Pythium. Fusarium wilt is the most serious root disease 

wherever chickpea is grown (Pande et al., 2007). The pathogen, Fusarium oxysporum f. sp. 

ciceris is distributed worldwide (Zamani et al., 2004). Additionally, seed and soil can be infected 

with the fungus Botrytis cinerea (grey mould) and this can attack the plant, causing the base of 

the chickpea stem to rot and eventually resulting in death of the plant. 

2.2.1 Fusarium wilt 

Fusarium wilt causes severe losses on most vegetables, flowers, several field crops like cotton 

and tobacco, and plantation crops such as sugarcane, coffee, plantain, banana and a few shade 
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trees. Fusarium wilt is most severe under warm moist conditions and in greenhouses (Agrios, 

2005). Fusarium oxysporum is a large cosmopolitan genus of imperfect fungi and is of primary 

interest because numerous species are important plant pathogens (Austwick, 1982). Fusarium 

species causes vascular wilts, with most of the wilting due to Fusarium oxysporum (Agrios, 

2005).  

Fusarium wilt of chickpea is a major prevalent disease in most chickpea growing areas and is 

distributed worldwide wherever chickpea is grown (Jalali and chand, 1992). It has been reported 

to cause over eighty percent yield loss (Singh et al., 2006). The pathogen belongs to the genus 

Fusaria. Fusarium oxysporum f. sp. ciceris has been identified as causing wilt in chickpea; and 

these has been accepted worldwide as the causal agent for cicer spp (Booth, 1971). Fusarium 

oxysporum f. sp. ciceris is a seed and soil borne pathogen that colonizes the xylem vessels and 

blocks them completely to effect wilting (Bateman et al., 1996). The disease affects crop in all 

stages and symptoms can be manifested from seedling to maturity. Fusarium wilt can cause high 

degree of yield loss depending on the susceptibility of the cultivar and the race of the pathogen. 

The disease can cause estimated severe yield loss of 60-70% (Jalali and Chand, 1992) with 

complete grain loss if the disease occurs at vegetative and reproductive stages (Navas-Cortes et 

al., 2000). 

Management of Fusarium wilt has been largely through development of resistant varieties in an 

integrated approach; but the high pathogenic variability in populations of Fusarium oxysporum f. 

sp. ciceris presents problems of sustainable resistance. Two pathotypes and eight races have so 

far been identified (Jimenez-Diaz et al., 1993). This means that the use of resistant varieties 

could play an important role in race identification in future. The pathotypes either induce severe 

wilting or yellowing and gradual wilting on the affected plant (Landa et al., 2004).  

The existence of races was first shown by Haware and Nene (1982) who described races 1, 2, 3 

and 4. To date; eight races designated as 0, 1A, 1B, 1C, 2, 3 4 5 and 6 (Haware and Nene, 1982; 

Navas-Cortes et al., 2000) have been described, and the races are divided broadly into two 

pathotypes of Fusarium oxysporum f. sp. ciceris (Landa et al., 2004). The first pathotype induce 

severe leaf chlorosis, flaccidity and plant death by 15-20 days after inoculation (vascular wilt), 

and the other pathotype induces progressive foliar yellowing, which develops 30-40 days after 

inoculation, and late death of the plant (vascular yellowing) (Jimenez-Diaz and Trapero-casas, 
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1990). The regional distribution of these races across the world indicates regional specificity 

(Kamal and Fred, 2007) for their occurrence.  

2.2.1 Symptomatology of Fusarium wilt 

The symptoms that are observed on the chickpea plant infected and affected by Fusarium wilt are 

generally classified according to growth stage. It is worthwhile to note that symptoms observed 

may vary according to the pathotypes or race of the pathogen. As mentioned earlier, there are 

eight races of Fusarium oxysporum f. sp. ciceris; and the symptoms observed are classified into 

two categories; those that cause instant wilting, and those that induce yellowing and progressive 

wilting (Landa et al., 2004). Based on crop stage, the following symptoms can be observed on 

infected plants. The infection process is influenced by the environment specifically temperature 

and inoculum load.  

2.3 Seedling stage 

The disease can be observed within three weeks of sowing. Whole seedlings (3 to 5 weeks after 

sowing) collapse and lie flat on the ground. These seedlings retain their dull green colour. When 

uprooted, they usually show uneven shrinking of the stem above and below the collar region (soil 

level). The shrunken portion maybe about 2.5cm or longer. Affected seedlings do not rot on the 

stem or root surface. However, when split open vertically from the collar downwards or cut 

transversely, dark brown to black discolouration of the internal stem tissues is clearly visible and 

in the seedlings of highly susceptible cultivars which die within 10 to 15 days of emergence, the 

black discolouration may not be clearly visible. However, internal browning from the root tip 

upwards is clearly seen (Nene et al., 1991). 

2.4 Adult stage 

The affected plants show typical wilting symptoms i.e. drooping of the petioles, rachis and 

leaflets followed by a yellowing of foliage and premature senescence. Drooping is clearly visible 

initially in the upper part of a plant but within a day or two; the entire plant droops and the 

affected leaves are chlorotic but most of the other leaves drop while still green. Gradually; 

however, all the leaves turn yellow and then light brown or straw coloured (Agrios, 2005). Dried 

leaflets or infected plants are not shed at maturity. Affected plants when uprooted and examined 

before they are completely dry show no external rotting or root discolouration. When stem is 

split open vertically, internal discolouration can be seen. Around the collar region above and 
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below the xylem in the central and inner portion (pith and part of the wood) is discoloured dark 

brown or black (Nene et al., 1979).  

In the initial stages of wilting the discolouration may not be continuous. Discolouration also 

extends several centimeters above the collar region into the main stem and branches. If the collar 

region is cut transversely with a sharp razor blade, black discoloration of both pith and xylem 

can be seen. Sometimes only a few branches are affected resulting in partial wilt in certain 

cultivars. The lower leaves dry up before the plant wilts. Wilt incidence is generally higher when 

chickpea is grown in warmer and drier climates (>25°  C ) and when crop rotations are not 

practiced (Nene et al., 1991).    

2.5 Control measures 

2.5.1 Control of soil borne diseases of chickpea 

The complexity in the control of established soil borne diseases makes it necessary to apply 

integrated disease management (IDM) strategies. Some IDM measures commonly used involve 

the utilization of host plant resistance, fungicidal seed dressing methods, biological suppression 

of the pathogens and other cultural methods in a compatible manner. Preventive methods of 

Fusarium wilt management are more effective because the chlamydospores can persist in the soil 

for indefinite periods of time (Haware et al., 1986; Agrios, 2005). 

2.5.2 Cultural control of Fusarium wilt 

Cultural management strategies like avoiding plant stress (poor fertility, water logging, drought, 

herbicide injury) which increase the risk of root rot problems should be avoided where possible. 

Using healthy seed with high germination is important because vigorous seedlings have a better 

chance to outgrow early-season infection. Planting crops when the weather conditions are likely 

to be non-conducive for the pathogen can also ensure a healthy crop (Agrios, 2005).  

Cultural control mainly entails having a stress free crop and reliance of unfavourable weather 

conditions, but once the inoculum has been introduced into the soil, it remains there for long 

periods of time of over 6 years (Haware et al., 1986) and this method may then cease to be 

effective. Practices like crop rotation can therefore be ineffective (Haware et al., 1990) due to the 

persistence of Fusarium oxysporum chlamydospores in the soil and hence long term control can 

only be achieved by use of resistant cultivars (Nene and Haware, 1980; Haware et al., 1992). 
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Integrated management combination of sowing date, partially resistant genotypes, seed and soil 

treatments with bio-control agents in field micro-plots infested with Fusarium oxysporum f. sp. 

ciceris race 5 showed that advancing sowing date from early spring to winter significantly 

delayed disease onset, reduced final disease intensity and increased yield (Landa et al., 2004).  

Some of these soil borne diseases may be effectively managed through alteration of sowing date 

such that an unsuitable environmental conditions of the pathogen to develop are created. The 

long term control strategy however is the use of resistant or partially resistant varieties (Landa et 

al., 2004).  

2.5.3 Biological control of Fusarium wilt 

Biological management of Fusarium wilt of chickpea has been addressed using bacterial and 

fungal antagonists. Isolates of Pseudomonas spp., Bacillus spp., Peanibacilluss spp., and non-

pathogenic isolates of F. oxysporum have been found to be effective in suppressing Fusarium 

wilt under controlled conditions (Landa et al., 2004). Mycorrhizal fungi can be used to 

effectively manage soil borne pathogens. Kumar et al. (2004) demonstrated by a pot research the 

efficacy of mycorrhizal fungi in controlling soil borne plant pathogens. He found that 

Mycorrhizal inoculation suppressed the incidence of wilt and root rot diseases by fifty-four and 

sixty-two percent, respectively.  

Biological control therefore offers potential suppression of Fusarium wilt under field conditions 

especially if used in combination with partial host plant resistance. The drawback of this 

management option was the short life span of the micro-organisms and the over reliance on 

conducive environmental conditions which might not always be possible. 

2.5.4 Fungicidal control of soil borne diseases 

The value of Fungicide seed treatments includes protection of seed viability and inhibition of 

diseases like seed rot and seedling blight. Seed treatments protect the seed by controlling fungi 

present either on the seed surface or carried internally in the seed and by controlling fungi 

present in the soil, or on crop residue in the soil (Pesticide News, 2002). Fungicides can only be 

used in a limited scale, for example as seed dress in an integrated disease management approach 

(Wagara, 2005). Fungicide seed treatments such as Apron (metalaxyl), Agrox, Captan Flowable 

(captan) and Thiram 75WP (thiram) can be used to protect the seedlings in early stages of plant 

establishment. In a study to evaluate the efficacy of different fungicide treatments, 50 seeds of 
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chickpea cultivar Pant G-186 were subjected to standard blotter tests. The fungicide treatments 

were carbendazim + thiram and benomyl + thiram (each applied at 1 g/ kg seed) and 

carbendazim, benomyl, captan, thiram, and indofil M-45 (Mancozeb + thiophanate-methyl) and 

Difolatan (captafol) (each applied at 2 g/kg seed) in controlling seed pathogens. Seed 

germination was highest with carbendazim (Singh et al., 2004).  

Based on this research, it would be easy to advocate for use of carbendazim for seed treatment. 

But it may not be possible to directly extrapolate the results to our local conditions and it is 

necessary to try out our own studies to see if our results as regards carbendazim will tally with 

this. In a different study, seven fungicides (thiram, Bavistin (carbendazim) Blitox (copper 

oxychloride), Captaf (captan), Indofil M-45 (Mancozeb + thiophanate-methyl), Ridomil MZ 

(Mancozeb + Metalaxyl) and Kitazin (iprobenfos) were evaluated against chickpea wilt in-vitro 

and in-vivo (seed treatment) and as soil drench. Thiram and Bavistin proved the most effective 

in-vitro by decreasing disease incidence and increasing grain yield under field conditions, (Singh 

and Jha, 2003). Based on the above two studies, it can be concluded that both carbendazim and 

thiram seem to be the best as regards fungicidal prevention of seed and seedling infection by soil 

borne pathogens.  

2.5.4.1 Carbendazim 

Carbendazim (methyl benzimidazol-2-acylcarbamate) is a systemic benzimidazole fungicide. It 

is used to control a broad range of diseases on cereals, fruits, cotton, tobacco, turf, ornamentals 

and vegetables (Pesticides News, 2002). It is also used in post-harvest food storage, as a seed 

pre-planting treatment and as a timber treatment fungicide. In addition to being a fungicide in its 

own right, carbendazim is a metabolite of thiophanate-methyl. Thiophanate breaks down rapidly 

in the environment to carbendazim and the use of thiophanate-methyl can lead to residues of 

carbendazim in treated commodities. It is frequently sold in combination with other fungicides, 

such as triazoles, dithiocarbamates and dicarboximides.  

Carbendazim works by inhibiting the development of fungi probably by interfering with spindle 

formation at mitosis (cell division). It has extensive applications worldwide, with the global 

market worth over $200 million at user level, equivalent to over 12000 tones active ingredient. 

Over the years, there has been a gradual reduction in carbendazim use and in 1996 just over two 

million hectares were treated with carbendazim in Great Britain, compared to nearly 1.8 million 
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hectares in 1999 and 821,000 hectares in 2000. Modern conazole and strobilurin fungicides are 

more efficacious. Application rates of 0.6-0.8 g/kg seed are effective for control of Fusarium 

(Pesticides News, 2002).   

2.5.4.2 Thiram 

Thiram belongs to the class dimethyl dithiocarbamate and is widely used as a seed dress 

fungicide to prevent crop damage in the field and to protect harvested crops from deterioration in 

storage or transport. It is mostly used to protect fruits, vegetables, ornamentals and turf crops 

from a variety of fungal diseases. Thiram is available as dust, flowable, wettable powder, water 

dispersible granules, and water suspension formulations and in mixtures with other fungicides. It 

is classified as toxicity class III- slightly toxic. Thiraflo is a broad spectrum flowable seed 

treatment fungicide and contains thiram as the active ingredient. It is registered for the control of 

damping off (Pythium spp.) as well as other seed and soil borne diseases of chickpea including 

Botrytis grey mould (Botrytis cinerea). Thiraflo acts by controlling and protecting the plant from 

all these diseases and thus increases early establishment of the chickpea crop (Hannaford, 2007). 

2.6 Integrated management of Fusarium wilt in chickpea. 

Integrated disease management (IDM) is important for sustainable legume farming. Fusarium 

wilt epidemics cause significant annual losses that may reach 100% (Landa et al., 2004) under 

conditions favourable for disease development. Management of Fusarium wilt is difficult to 

achieve and no single control strategy is effective. The use of resistant varieties of chickpea is 

the most practical and economically efficient means of controlling Fusarium wilt. Good progress 

has been made in developing high yielding well adapted chickpea genotypes with complete or 

partial resistance to Fusarium wilt (Landa et al., 2004). The evolution of new and virulent races 

of Fusarium oxysporum f. sp. ciceris to hitherto resistant varieties could curtail wilt management 

using resistance mechanisms.  

Crop rotation, soil solarization, pathogen free seed and fungicide seed treatment have been used 

to control Fusarium wilt in an integrated approach. A proper integrated package will vary 

according to the prevailing environmental conditions and the nature of the genotype in terms of 

resistance or susceptibility. 
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2.7 Host plant resistance 

One of the aims of plant breeding is developing resistant cultivars. Host plant resistance is stable, 

durable environmentally friendly and is technically feasible at the farmers’ level (Pastor-Corrales 

et al., 1998). It is one of the methods of preventing Fusarium wilt and other soil-borne diseases. 

Plant screening techniques include use of sick plot technique and green house screening through 

inoculation (Pande et al., 2006). Screening is geared towards identification of genotypes that are 

resistant to some of these important diseases during research stage. Breeding for resistance has 

led to the introduction of early maturing and Fusarium wilt resistant chickpea varieties 

culminating into dramatic change in productivity. 

2.8 Screening chickpea germplasm for Fusarium wilt resistance 

An essential component is screening and assessment in which presence or absence of a resistant 

character or the degree to which it is expressed is determined. A great deal of effort goes into 

elimination of susceptible plant material early in the breeding programme using large scale, free 

choice evaluations, often in field plots or greenhouses (Miklas et al., 2005). Material selected in 

these initial experiments is then assessed more vigorously in smaller groups that usually include 

susceptible genotypes as well as identifying useful sources of resistance for breeding. The more 

detailed approach also provides the basis of breeding genotypes during cultivar development.  

Before individual cultivars are finally released, large scale field assessments are carried out to 

confirm the performance of variety under more realistic field conditions. Evolution of new races 

of Fusarium oxysporum f. sp. ciceris necessitates continuous screening and assessment of 

chickpea germplasm to identify resistance genes which can still resist the pathogen and those that 

have succumbed to these new races. Screening methodologies have been evolving over time, 

from the conventional pots experiments, field sick plot experiments and lately genetic markers 

have been used to identify resistance genes in plants. Screening method adopted should be able 

to incite a disease such that it is possible to identify the susceptible from the resistant varieties. 

The methodology should ensure proper exposure of the pathogen inoculum to the plant. Pot 

screening is an effective methodology when the roots of the plant are injured, thereby creating an 

entry point for the pathogen. Field sick plot screening is effective but the inoculum level has to 

be high enough through repeated planting and testing of susceptible genotypes. Where genetic 

markers are used, field tests are still useful in ascertain the results of the lab screening.  
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 CHAPTER THREE  

MATERIALS AND METHODS 

3.1 Experimental site description 

K.A.L.R.O Njoro, Kenya lies at a latitude of 0° 23’ south, longitude of 35°35’ East and altitude of 

2,238 meters above sea level. This area falls in agro-ecological zone Lower Highland 3 (Jaetzold 

and Schmidt, 1983) and the soils at the site are vintric mollic Andosols. The site receives annual 

mean rainfall of 930 mm. The temperatures in the field are in the range of 19°C-22°C (mean 

maximum) and 5-8°C (mean minimum) (Jaetzold and Schmidt, 1983).Two experiments were set 

up in this study. The first experiment was aimed at screening 20 chickpea genotypes for 

resistance to Fusarium wilt. The experimental set up was in pots in a glasshouse at K.A.L.R.O 

Njoro in the year 2009. The second was done in K.A.L.R.O Njoro, field 4. The aim of the second 

experiment was to determine the efficacy of two fungicides; thiram and carbendazim in the 

control of Fusarium wilt and the effect of the treatments on the yield of chickpea. The 

experiment was setup in a wilt sick-plot at K.A.L.R.O Njoro.  

3.2 Pathogen isolation, purification and plant inoculation 

The pathogen; Fusarium oxysporum f. sp. ciceris was cultured and sub-cultured through single 

spore isolation/streaking (to purify) in the department of Biological sciences laboratory at 

Egerton University using potato dextrose agar (PDA). The initial culture was obtained from 

diseased plant tissues collected from Bomet, K.A.L.R.O Njoro and Gilgil where the crop had 

been grown previously in order to have all the representative races of the pathogen.  

3.3 Screening chickpea genotypes for resistance 

A total of 20 genotypes were planted in pots inside a greenhouse in K.A.L.R.O Njoro, Kenya 

during July – October season of 2009 and during the January-March season of 2010. The plants 

were grown in the greenhouse in pots in a completely randomized design and the level of 

resistance to fusarium wilt assessed. Randomization was achieved using simple random numbers 

selection by shaking and picking from a container with the pot initials. The pathogen Fusarium 

oxysporum f. sp. ciceris causing Fusarium wilt was confirmed as present through pathological 

studies of identification, culture and subculture and plant re-infection chickpea crop at 

experimental sites of K.A.L.R.O Njoro. The study was repeated for a second season. The Soil 
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was sterilized at 121°C at 15 pounds of pressure for one hour in an autoclave and placed in sterile 

plastic pots. Ten seedlings were raised in each pot; the experimental design was completely 

randomized design (CRD). The Ten-day old seedlings of the 20 chickpea genotypes were 

inoculated by dipping their roots in a suspension (5.1 × 106) of the pathogen and the seedlings 

transplanted into the pots containing the sterilized soil. The greenhouse experiment was 

replicated three times giving 60 pots in total. 

During the plant growth duration, periodic scoring for the Fusarium wilt was performed on all 

the pots. This was done by monitoring weekly for symptoms of Fusarium wilt. The wilted plants 

were counted on each pot and scored on a record sheet. Data obtained was computed into excel 

data sheet and the wilt incidence determined. The wilt incidence was determined as follows, 

(Neupane et al., 2007) 

% wilt incidence = (number of wilted plants/Initial number of plants) × 100  

 Further data analysis was done using Genstat to determine whether the observations were 

significantly different from each other. The genotypes were then classified as resistant (less than 

10% incidence), moderately resistant (11-20% incidence), susceptible (21-50% incidence) and 

highly susceptible (over 50% incidence) (Neupane et al., 2007). 

The statistical model for the greenhouse experiment was: 

yij = μ + ti + εij 

where, yij was the area under disease in the ith chickpea genotype at the jth replicate. 

 μ was the overall mean 

 ti was the ith chickpea genotype effect 

 εij was the random error component 

3.4 Evaluation of fungicides rates in control of Fusarium wilt (sick plot) 

The experiment was set up in a sick plot at KARI Njoro where other screening efforts were on 

going. One moderately resistant genotype (MR) and one highly susceptible (HS) genotype 

selected from the greenhouse experiment was used in the experiment and two fungicides 

(carbendazim and thiram). Four levels/rates; 0, 50, 100 and 150% of ICRISAT’s recommended 

dosage (1.5 g/kg seed) of each fungicide was used. The experimental design was split-plot 

replicated three times in two seasons. The main plot factors were two varieties of chickpea 

(ICCV 97105 and ICCV 92944) while the sub plot factors were the two fungicides (Ft and Fc) 
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thiram and carbendazim both at rates of 50, 100 and 150% randomized within the main plot. 

There was one sub plot of control (0%) in each main plot; which was not treated with any 

fungicide.  

This experimental design gave a total of seven treatment combinations per main plot factor, 14 

treatments per rep and an overall total of 42 micro-plots. Weekly scoring for wilt incidence was 

done on all treatment plots and the experiment was repeated in another season. Overall wilt 

incidence was calculated as a percentage of the original population using standard method 

described by Nasir et al. (2000) and Neupane et al. (2007). The data was tabulated and analyzed 

using Genstat software. The linear model fitted this field experiment was as follows. 

Yjk = μ + Vj + Vij+ Fk + (FV)jk+ Fik + εjk 

j = 1, 2; k = 1, ….. 7  

where, μ was Grand mean, Vj is jth chickpea genotype effect, Vij was main plot error (error a), Fk 

was effect of kth fungicide combination, (FV)jk was interaction effect of the jth genotype and the 

kth fungicide combination, Fjk was subplot error (error b); while εjk was the residual effect error. 

3.5 Land preparation and Planting 

Land preparation was done before planting by clearing the weeds followed by deep ploughing in 

order to create a suitable tilth for planting. Harrowing was done using a forked jembe and leveled 

with a rake. Seeds of the selected genotypes were planted at an intra-spacing of 10cm and while 

the interspacing was 40cm, thereby achieving a plant population of 250,000 plants/ha.  

3.6 Agronomic practices 

Debris and stubble were removed before sowing. Supplementary watering was done to the pots 

in the greenhouse using a watering-can before planting and thereafter at a 14-day interval to 

avoid plant water stress. The pots were kept weed and pest free through monitoring for pests like 

Helicoverpa amigera, and weeding. First weeding was done after 21 DAS and subsequently, on 

need basis. For the field study, weeding was done by uprooting and hoeing out the weeds in the 

field to achieve clear fields.  

3.6.1 Fungicide and Pesticide application 

The seeds were treated uniformly at each of the four rates (0%, 50%, 100% and 150%) for each 

fungicide to protect against Fusarium wilt. Computation of the actual rate was done based 
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ICRISAT recommended rates which on average is 1.5 g/kg seed for each fungicide. Knapsack 

sprayer was used to apply Bulldock Star at 0.5 Litres/ha for control of Helicoverpa amigera and 

other pests. No other fungicide was applied.  

3.7 Crop attributes measured (Field experiment) 

3.7.1 Fusarium wilt incidence 

Disease score for Fusarium wilt incidence following the standard procedure (described by Nasir 

et al., 2000; Neupane et al., 2007) was done from the 8th DAS until maturity on weekly basis for 

field experiment. Observations on wilt incidence were recorded and the data was tabulated into 

growth intervals and analyzed using Genstat statistical software. The results were interpreted as 

resistant (less than 10% incidence), moderately resistant (11-20% incidence), susceptible (21-

50% incidence) and highly susceptible (over 50% incidence) (Neupane et al., 2007). Further data 

analysis to separate means of treatments was performed using Genstat software version 14. 

3.7.2 Plant growth attributes and yield parameters (Field experiment) 

1. Height of the plant: The height of the plant was determined at 30, 60, 90 and 120 days after 

sowing (DAS). The vertical height of 4 randomly sampled plants was measured with a tape 

measure from ground level to the highest upper part and their average computed. 

2. Periodic dry matter: Periodic dry matter was determined at intervals of 30, 60, 90 days after 

sowing and final harvesting. This was done using destructive sampling where above ground 

parts in 0.5m2 was harvested and oven dried at 60°C to a constant weight after which the dry 

matter weight was measured with electronic balance. Sampling was done randomly.  

3. Number of pods per plant: This was obtained by sampling randomly 8 plants within each 

micro-plot and counting the number of pods per plant, and then calculating the average.  

4. Grain Yield: This was established by harvesting the seed from each plot, drying and taking 

their weights.  

5. Harvest Index: The relationship between grain (seed) yield and the total dry matter 

(harvesting) was established.  
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3.8 Data analysis 

Data obtained was analysed for ANOVA and mean separation performed using LSD. Genstat 

version 14 statistical software was used to analyse data.
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1 Screening chickpea genotypes for resistance to Fusarium wilt 

The first visible wilt symptoms appeared two weeks after inoculation with the pathogen. 

Fusarium wilt incidence varied between the 20 genotypes. It was observed that in the moderately 

resistant genotypes, there was no wilting in the first 30 days after sowing (DAS). In the 

susceptible and highly susceptible genotypes, wilting was observed beginning 30 DAS. Of the 20 

genotypes assessed, 6 were moderately resistant (MR), 10 were susceptible (S) and the 

remaining 4 were highly susceptible (HS). None was completely resistant (R) (Table 1).  

Moderately resistant genotypes identified were 95423, 97105, 97114, 97125, 97126 and 97406. 

In these MR chickpea genotypes, Fusarium wilt incidence at 30 DAS was 0-3.7%, and then 

increased to a range between 11.4-14.8% by the 45th DAS and 13.6-15.9% at 60 DAS. Chickpea 

genotypes susceptible (S) to Fusarium wilt had a disease incidence range of 0-20.6% by 30 DAS, 

10.3-36.7% by 45 DAS and 21.5-42.7% at 60 DAS (Table 1). The susceptible genotypes were 

00108, 00302, 00305, 92311, 92318, 95311, 97031, 96329, 97201 and Ngara local. Chickpea 

genotypes that were highly susceptible (HS) were 00402, 92944, 97110 and 97306. The HS 

genotypes had wilt incidence in the range of 11.1-14.2% at 30 DAS, 33.2-65.4% at 45 DAS and 

66.3-83.8% at 60 DAS (Table 1). Chaudry et al. (2007) screened 196 accessions and found no 

single immune or highly resistant genotype. 

Screening work by Muhammad et al. (2010) found genotypes 92944, 00108, and 00305 were 

resistant to wilt, but in this study were found susceptible. Genotype 97126 which this study 

found to be moderately resistant was also found to be resistant by Muhammad et al. (2010). The 

variations could be due to different races found in different geographic regions and the evolution 

of new races. In the moderately resistant chickpea (MR) genotypes, wilting incidence between 

45 and 60 DAS rose from 14.8 to 15.9% only, i.e., 1.1%. Susceptible (S) genotypes revealed a 

wider variation in wilt incidence of up to 6% (that is, 36.7 to 42.7% (Table 1) during the same 

period of growth. The smaller range of increase in wilt incidence amongst the MR genotypes is 

attributed to their genetic make-up (host plant resistance).  
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Table 1: Periodic wilt incidence for 20 chickpea genotypes inoculated with Fusarium 

oxysporum f. sp. ciceris under greenhouse conditions 

Code Genotype 30 DAS 45 DAS 60 DAS 
Rating (See legend 

below) 

1 ICCV 00108 20.67 31.58 41.88 S 

2 ICCV 00302 13.75 36.70 39.88 S 

3 ICCV 00305 12.23 23.32 42.73 S 

4 ICCV 92311 11.77 28.63 33.55 S 

5 ICCV 92318 10.55 21.10 41.08 S 

6 ICCV 95311 7.32 13.40 23.90 S 

7 ICCV 96329 12.32 22.25 41.32 S 

8 ICCV 97201 6.62 13.33 24.08 S 

9 ICCV 97031 11.08 26.33 40.42 S 

10 Ngara local 10.58 21.93 31.47 S 

11 ICCV 00402 11.18 33.25 66.30 HS 

12 ICCV 92944 12.68 65.48 83.80 HS 

13 ICCV 97110 12.30 33.07 70.12 HS 

14 ICCV 97306 14.27 41.67 71.22 HS 

15 ICCV 95423 0.00 12.42 14.37 MR 

16 ICCV 97105 0.00 11.43 13.60 MR 

17 ICCV 97114 0.00 14.83 15.72 MR 

18 ICCV 97125 0.00 14.63 15.90 MR 

19 ICCV 97126 0.00 11.78 13.98 MR 

20 ICCV 97406 3.78 13.48 15.22 MR 

 Lsd (P ≤ 0.05) 0.91 1.91 2.15  

 S.E 0.79 1.65 1.86  

 C.V (%) 9.30 6.70 5.0  

Legend: Disease score rating (based on % disease incidence): 0-10 Resistant, 11-20 Moderately 

resistant 21-50 Susceptible, Over 51 Highly susceptible (Neupane et al., 2007) 
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Previous studies by Haware and Nene (1980) reported that yield of chickpea was significantly 

affected by the time of wilting; with more losses being experienced when early wilting occurs. 

Early wilting could result in low population which consequently leads to low yield. Late wilting 

also contributes to yield losses (Haware and Nene, 1980). It was apparent that susceptible and 

highly susceptible genotypes experienced high Fusarium wilt incidence from the 30th DAS and 

peaking at 60 DAS. Resistance to wilt is a complicated mechanism and is governed by either 

monogenes or oligogenes. Late wilting is due to oligogenic resistance mechanism which delays 

disease symptoms and slow development of disease after pathogen reaction takes place (Sharma 

and Muehlbauer, 2007).  

Models were developed to relate wilt incidence to plant growth for each classification of 

resistance as shown in Tables 2, 3 and 4. The functions of the models for the susceptible 

chickpea genotypes are given in Table 2.  

Table 2: Functional relationship of Fusarium wilt incidence with time (DAS) from 30 DAS 
to 60 DAS for susceptible (S) chickpea genotypes 

Genotype (ICCV) Function Goodness of fit (R2)   

92311 y = 10.89x + 2.87 0.91 

92318 y = 15.27x - 6.29 0.97 

97201 y = 8.73x - 2.79 0.98 

00302 y = 13.07x + 3.98 0.84 

Ngara local y = 10.44x + 0.44 0.99 

00305 y = 15.25x - 4.40 0.97 

95311` y = 8.29x - 1.71 0.97 

97031 y = 14.67x - 3.39 0.99 

96329 y = 14.50x - 3.71 0.96 

00108 y = 10.61x + 10.16 0.99 
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These models could be used in predicting the wilt incidence in susceptible, highly susceptible 

and moderately resistant genotypes of chickpea, respectively. It was observed from the models 

that wilt incidence increased at a higher rate in the susceptible and the highly susceptible 

chickpea genotypes. It can be inferred that these susceptible genotypes would need management 

strategies to prevent economic damage from Fusarium wilt given the high rate of disease 

progression under ideal pathogenic conditions. It is evident from these models that in MR 

genotypes, though infection occurred, the rate of disease development was slow which was 

reflected by a low wilt incidence.  

Table 3: Functional relationship of Fusarium wilt incidence with time (DAS) from 30 DAS 
to 60 DAS for highly susceptible (HS) chickpea genotypes 

Genotypes (ICCV) Function Goodness of fit (R2) 

00402 y = 27.56x - 18.21 0.99 

97110 y = 28.91x - 19.32 0.97 

97306 y = 28.48x - 14.57 0.99 

92944 (Chania 2) y = 35.56x - 17.13 0.93 

Table 4: Functional relationship of Fusarium wilt incidence with time (DAS) from 30 DAS 
to 60 DAS for moderately resistant (MR) chickpea genotypes 

Genotype (ICCV) Function Goodness of fit (R2) 

97105 (Chania 1) y = 6.8x - 5.26 0.87 

97126 y = 6.99x - 5.39 0.87 

95423 (Saina 1) y = 7.19x - 5.44 0.85 

97406 y = 5.72x - 0.61 0.86 

97114 y = 7.86x - 5.54 0.79 

97125 y = 7.95x - 5.72 0.81 
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In the moderately resistant (MR) genotypes, it was observed that the rate of increase in wilt 

incidence ranged from 5.7 to 7.9% increase per day (Table 4). This was a lower rate of increase 

in wilt incidence and had goodness of fit (R2) ranging from 0.80 to 0.87. In the susceptible 

genotypes, wilt incidence increased in the range of 8.3 to 15.3% per day (Table 2) which was 

higher than the rate of increase observed in the moderately resistant genotypes. In the highly 

susceptible (HS) genotypes, the range of wilt incidence was from 27.6 to 35.6% increase per day 

(Table 3). These results were in agreement with findings of Muhammad et al. (2010) who 

reported that disease development in resistant genotypes was slow as compared to susceptible 

genotypes. Sharma and Muehlbauer (2007) also reported that in resistant genotypes, disease 

progression was somewhat low due to the genetic response of the genotype that delayed 

symptom development.  

4.2 Effect of thiram and carbendazim rates on Fusarium wilt in chickpea (Sick plot) 

Control of Fusarium wilt was assessed by determining the disease incidence on chickpea plants 

during the growth period (Table 5). Highly susceptible genotype (92944, i.e., variety Chania 2) 

and moderately resistant genotype (97105, i.e., Chania 1) identified in the greenhouse study 

(Table 1) were used in the trial. Chickpea genotype 92944 was released as variety Chania 2 by 

Egerton University in 2013 while moderately resistant genotype 97105 was released as Chania 1 

in the year 2011. All fungicide treatments were significantly (P ≤ 0.05) lower in wilt incidence as 

compared to the control treatment (no fungicide). Application of fungicide at all rates was 

observed to significantly reduce wilt incidence across all stages of growth.  

4.2.1 Effect of variety on Fusarium wilt incidence 

Highly susceptible Chania 2 showed significantly (P < 0.05) higher wilt incidence than MR 

Chania 1 across all growth stages (Table 5). This means that the pathogen readily established 

itself after invading the highly susceptible Chania 2 than Chania 1. Wilt incidence in Chania 2 

ranged from 4.6 to 23.8% while in Chania 1, the range was between 2.6 and 11.9. Wilt incidence 

was regressed over time in Figure 1 to determine the rate of change in wilt incidence with growth 

stage. Fusarium wilt (FW) incidence of both chickpea genotypes grown in the field was 

explained by the quadratic functions given in Figure 1. It was evident from the models in Figure 

1 that Fusarium wilt incidence after the 30th DAS increased at the rate of 2.2% for the 

moderately resistant variety Chania 1 and 4.0% for the HS Chania 2. Compared to the green 



23 
 

house data, the rates for HS genotypes and MR genotypes were over 35% and 5.7% (Table 3 and 

4), respectively. In the field, other environmental conditions might affect the development of 

Fusarium wilt. Therefore, greenhouse wilt incidence cannot be reliably extrapolated to predict 

response of field grown chickpea. The greenhouse had perfect conditions for disease 

development. Using the models, it can be inferred that complete wilting would take up to 75 days 

for MR and 54 days for HS genotypes. This shows that MR Chania 1 can resist the pathogenic 

attack for a prolonged time as compared to the highly susceptible genotypes Chania 2. In figure 1 

Chania 2 had low wilt incidence at 60 DAS. This low incidence is an advantage because it means 

such genotypes would require less foliar fungicide for management of Fusarium wilt incidence. 

Table 5: Effect of variety and fungicide rates on Fusarium wilt incidence of chickpea under 
field conditions 

Means followed by the same letter(s) in the same column are not significantly different at P < 

0.05 using LSD 

 Disease incidence (%) (Season I & II) 

Treatments 30 DAS (I) 30 DAS (II) 
45 DAS 

(I) 

45 DAS 

(II) 

60 DAS 

(I) 
60 DAS(II) 

Chania 2 4.70 a 4.60 a 13.68 a  12.79 a 23.83 a 21.41 a 

Chania 1 2.67 b 2.58 b 9.60 b 8.53 b 13.16 b 11.99 b 

LSD 0.50 0.88 0.80 2.10 3.19 2.63 

C.V 3.90 7.0 2.0 5.60 4.90 4.50 

No fungicide 5.65 a 5.90 a 19.90 a 19.68 a 30.20 a 27.57 a 

Thiram50% 4.70 b 4.15 b 15.95 b 13.38 b 22.88 b 21.32 b 

Thiram100% 3.27 c 3.30 c 9.05 c 8.82 c 17.12 c 15.60 c 

Thiram 150% 1.83 e 1.80 d 5.18 d 4.87 d 8.92 d 7.87 d 

Carbendazim50% 4.82 b 4.42 b 16.48 b 13.82 b 23.12 b 21.67 b 

Carbendazim100% 3.35 c 3.43 c 9.45 c 8.95 c 18.17 c 14.57 c 

Carbendazim150% 2.15 d 2.11 d 5.45 d 5.10 d 9.08 d 8.33 d 

LSD 0.27 0.41 0.93 0.78 1.15 1.18 

C.V 6.10 9.60 6.70 6.10 5.20 7.70 
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4.2.2 Effect of varying carbendazim rates in control of Fusarium wilt of chickpea  

Significant (P ≤ 0.05) differences in wilt incidences were observed between carbendazim rates 

used. Treatment of chickpea with 150% carbendazim resulted in low wilt incidence of 2.1% at 

30 DAS, in both season I and II (Table 5). At 45 DAS, treatment of chickpea with 150% 

carbendazim resulted in wilt incidence of 5.4% and 5.1% in season I and II, respectively. At 60 

DAS plots treated with 150% carbendazim had wilt incidence of 9.0% and 8.3% during season I 

and II, respectively. At 30 DAS treatment plots with 100% carbendazim had 3.3% wilt incidence 

in season I and 3.4% in season II. At 45 DAS, 9.4% and 8.9% wilt incidence was observed in 

100% carbendazim treatment, for season I and II, respectively. 

At 60 DAS, treatment of chickpea with 100% carbendazim resulted in wilt incidence of 18.1% 

and 14.5% for season I and II, respectively (Table 5). At 30 DAS control treatment had wilt 

incidence of 5.6% and 5.9% in season I and II, respectively. At 45 DAS, control treatment had 

wilt incidence of 19.9% and 19.6% in season I and II, respectively and at 60 DAS, the same 

treatment had 30.2% and 27.5% wilt incidence in seasons I and II, respectively. From these 

results, it was observed that significant (P ≤ 0.05) variations occurred between carbendazim rates 

used in terms of control of wilt incidence. The least wilt incidence was observed when 150% of 

carbendazim was used, with values ranging from 2.1% to 9.0% across all the growth stages. It 

can be inferred that the best fungicide treatment rate in the management of Fusarium wilt was 

150%.  

Fungicides act by eradicating the pathogen in the soil or on the seed (Pesticide news, 2002), 

thereby reducing chances of wilt development. Muhammad (2010) reported a direct correlation 

y (HS) = 4.0x - 0.54
R² = 0.86

y (MR) = 2.21x + 0.36
R² = 0.83

0
5

10
15
20
25
30

30 DAS (I) 30 DAS (II) 45 DAS (I) 45 DAS II 60 DAS I 60 DAS II

FW
 In

ci
de

nc
e 

(%
)

Growth Stage (DAS)

Figure 1. Fusarium wilt incidence in two varieties of chickpea
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between inoculum density and wilt severity. Carbendazim at 100% was the next best level of 

treatment in the control of Fusarium wilt. The treatment that was least effective was the control. 

This shows that if chickpea is not treated with seed dress fungicide, under suitable environmental 

and host conditions, high wilt incidence is likely to be observed. In vitro studies on the inhibition 

of F. oxysporum f. sp. ciceris by various fungicides indicate that carbendazim at varying rates is 

effective against this pathogen (Maitlo et al., 2014). This study demonstrated that treatment of 

chickpea with rates of over100% (1.5g/kg seed) carbendazim significantly reduced plant 

mortality (lower wilt incidence) which was in agreement with studies by Maitlo et al. (2014) and 

Nikam et al. (2007). Fungicide application protects the seed from soil and seed borne F. 

oxysporum f. sp. ciceris by mechanism like the eradication of the pathogen from the seed or the 

impact of fungicide on the inoculum in the rhizosphere. 

4.2.3 Effect of varying thiram rates in control of Fusarium wilt of chickpea  

Treatment using varying rates of thiram resulted in significant (P ≤ 0.05) differences in the 

management of Fusarium wilt at all the growth stages (Table 5). Application of thiram at the rate 

of 150% gave the best control of FW incidence at 30th growth stage with Fusarium wilt incidence 

of 1.8% being observed in season I and II. At 45 DAS, treatment with 150% thiram resulted in 

5.2% and 4.9% wilt incidence in season I and II, respectively (Table 5). At 60 DAS, thiram at 

150% resulted in wilt incidence of 8.9% and 7.9% for season I and II, respectively. Treatment of 

chickpea with 100% thiram gave wilt incidence of 3.3% at 30 DAS in both seasons. At 45 DAS, 

100% treatment with thiram gave 9.0% wilt incidence and 8.8% wilt incidence in season I and II, 

respectively. At 60 DAS, treatment with 100% thiram gave 17.1% and 15.6% wilt incidence in 

season I and II, respectively. Treatment of chickpea with 50% thiram at 30 DAS resulted in wilt 

incidence of 4.7% and 4.1% in season I and II, respectively. At 45 DAS, treatment of chickpea 

with 50% thiram resulted in 15.9% and 13.4% wilt incidence in season I and II, respectively. At 

60 DAS, chickpea plots treated with 50% thiram had wilt incidence of 22.8% and 21.3% for 

season I and II, respectively. Control treatment plots had wilt incidence of 5.6% and 5.9% in 

season I and II, respectively, at 30 DAS (Table 5). At 45 DAS, no fungicide treatment had wilt 

incidence of 19.9% and 19.6% in season I and II, respectively.  

At 60 DAS, control treatments had 30.2% and 27.5% wilt incidence in seasons I and II, 

respectively (Table 5). It was apparent that application of thiram had significant control on 
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Fusarium wilt incidence of chickpea. The least wilt incidence was observed when thiram at 

150% was used with values ranging from 1.8% to 8.9% across all growth stages. This was 

followed by application of thiram at 100% with wilt incidence ranging from 3.2% to 17.1% 

across all growth stages. Thiram at 50% treatment rate followed 100% treatment rate with wilt 

incidence values ranging from 4.1% to 22.8% across all growth stages. No-fungicide treatment 

had significantly (P ≤ 0.05) higher wilt incidence ranging from 5.6% to 30.2% across all growth 

stages (Table 5).  

Verma (1976) showed that seed dress fungicides were absorbed into the plant; translocated in the 

plant and protected the seedlings in the field for 30 days or more. This study found that better 

wilt management was achieved with higher fungicide rate. The results are in conformity with 

findings of Maitlo et al. (2014) who reported that increase in fungicide rate reduced wilt 

incidence. Muhammad (2010) reported a direct correlation of wilt severity to inoculum density. 

Fungicide application reduced the inoculum level and hence low wilt incidence. The rate of 

increase in wilt incidence over time was high under no fungicide treatment (Figure 2) as shown 

by the steep slope. It was observed that in the other curves of 50% rate of thiram and 

carbendazim, the rate of wilt progression was lower. The lowest rate of increase in wilt incidence 

was portrayed by 150% application of either thiram or carbendazim in Figure 2. This fact is 

reflected further by the functional relationships in Table 6. Under no-fungicide treatment, wilt 

incidence increased by a 0.77 factor per day which was higher compared to the other treatments 

(Table 6).  
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Thiram and carbendazim at 50% treatment rates had 0.6 factors while treatments at 100% rate of 

application of either carbendazim or thiram had a 0.4 factor of increase in wilt. The least factor 

0.2 of increase in wilt incidence was observed in treatment with 150% of carbendazim or thiram 

(Table 6). 

Table 6: Functional relationships between Fusarium wilt incidence over time and fungicide 
treatment in chickpea 

Treatment Function Goodness of fit (R2) 

No fungicide y = 0.77x - 16.5 0.98 

Carbendazim50% y = 0.59x - 12.6 0.98 

Thiram50% y = 0.58x - 12.7 0.99 

Carbendazim100% y = 0.43x - 9.8 0.99 

Thiram100% y = 0.43x - 10.0 0.99 

Carbendazim150% y =0.22x - 4.5 0.99 

Thiram150% y =0.22x – 4.8 0.99 

 

The linear graphs in figure 2 are supported by the respective production functions in Table 6 

which indicate that the rate of wilt development was dependent on the fungicide treatment. The 

highest rate of increase in wilt incidence of 0.77 per day of growth was observed under no 

fungicide treatment. This shows that application of fungicide reduced disease incidence 

significantly in chickpea. This rate declined by 0.18% (i.e. 0.59%), -0.34% (i.e. 0.43%x) and 

0.55% (0.22x) when fungicides were applied at 50%, 100% and 150%, respectively. These 

genetic coefficients are true for the genotypes. 

Further linear regression models were fitted on the data to evaluate the relationship between FW 

incidence and fungicide application (Table 7) at specific growth stages (DAS).  It was observed 

that increase in rates of thiram treatment from 0 to 150% (of the recommended 1.5 g/kg seed), 

suppressed Fusarium wilt incidence at the rate of -1.3% for every unit (%) of applied thiram by 



28 
 

the 30th DAS. With regard to carbendazim treatment, a relatively lower rate but similar trend in 

change of disease incidence per unit change of fungicide treatment was observed. The rate of 

Fusarium wilt was suppressed at the rates -1.2% per unit (%) increase in rate of carbendazim 

applied by the 30th DAS (Table 7). At 45 DAS, thiram treatments rates related negatively with 

wilt incidence declining at the rate of -5.1 per increase in 1% of thiram applied, while for 

carbendazim, FW incidence declined at the rate of -5.0 per 1% increase in carbendazim (Table 

7). At 60 DAS, wilt incidence declined at the rate of -7.4 per 1% of applied thiram and at -7.3% 

per 1% of applied carbendazim.  

These models are useful in predicting the pattern of decline in Fusarium wilt following treatment 

with fungicide and can influence other management decisions on wilt control. The models 

conform to the research findings of Maitlo et al. (2014) who reported that increasing fungicide 

rates reduced wilt incidence of chickpea thereby promoting growth of chickpea plants. The 

results indicate that treatment using either thiram or carbendazim resulted in significant reduction 

in Fusarium wilt incidence of chickpea across all growth stages as compared to the control 

treatment. The least wilt incidence was observed when 150% of either thiram or carbendazim 

was used across all growth stages.  

Table 7: Relationship between Fusarium wilt at different growth stages and Fungicide 
treatment 

Treatment Function Goodness of fit (R2) 

Thiram 30 DAS y = -1.3x + 7.1 0.98 

Carbendazim 30 DAS y = -1.2x + 6.9 0.98 

Thiram 45 DAS y = -5.1x + 25.3 0.98 

Carbendazim 45 DAS y = -5.0x + 25.4 0.98 

Thiram 60 DAS Y = -7.4x + 39.0 0.99 

Carbendazim 60 DAs Y = -7.3x + 39.1 0.99 

The degree of Fusarium wilt suppression varied for the different fungicide rates as shown in 

Table 5. Increasing rate of fungicide application achieved better control of Fusarium wilt was 
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achieved. De et al. (1996) reported that coating seeds with 0.2% carbendazim was more effective 

in reducing wilt and increasing yield in chickpea. Maitlo et al. (2014) also reported that increase 

in dosage of fungicide; as long as it was not phytotoxic, resulted in better wilt management. 

Nikam et al. (2007) working on Fusarium wilt management using in vitro and field studies found 

that thiram and carbendazim were the most effective in suppressing Fusarium wilt. Kovacikova 

(1970) reported that seed treatment with thiram at 2 g (133.3%) per kg seed gave the best 

protection against the Fusarium wilt of chickpea caused by F. oxysporum f. sp. ciceris.  

In vitro chemical studies found carbendazim to suppress F. oxysporum to different degrees based 

on the relative concentrations of the chemical. Other studies found that carbendazim suppressed 

F. oxysporum f. sp. ciceris by 70.0% at 0.3%; 50.6 at 0.2% and 25.9% suppression at 0.1% of 

carbendazim (Animisha et al., 2012). A direct correlation between inoculum density and disease 

severity was reported, although the genotype resistance and environmental conditions also play a 

role (Muhammad, 2010). Fungicide treatment reduces the amount of inoculum required for 

severe Fusarium wilt development. Further research should be focused on alternative and 

optimum foliar fungicides for management of Fusarium wilt. The economics (costs: benefits) of 

foliar applications rates used should also be included in future studies.  

4.3 Interaction effects of fungicide rates and variety on Fusarium wilt incidence 

The genetic resistance (host) to Fusarium wilt interacted significantly (P ≤ 0.05) with the 

fungicide treatments in both seasons (Table 8).  Control treatments had higher wilt incidences for 

both varieties compared with the fungicide treatments for both seasons. In field sick plot 

experiment, higher Fusarium wilt incidences were observed in HS Chania 2 as compared to the 

MR Chania 1 across all growth stages. As the thiram or carbendazim rate of application was 

increased, wilt incidence reduced significantly (P ≤ 0.05) in both varieties and at all growth 

stages. 

4.3.1 Interaction between treatments on Fusarium wilt incidence at 30 DAS 

Significant (P < 0.05) interactions between the varieties and fungicides treatment were observed 

(Table 8). Chania 1 had lower wilt incidence as compared to Chania 2. At 30 DAS, Chania 2 

under control treatment resulted in the highest wilt incidence of up to 7.1% and 7.7% in Seasons 

I and II, respectively which was higher than those observed from the other fungicide treatments.  
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Table 8: Interaction of thiram or carbendazim with two chickpea varieties on Fusarium wilt incidence at 30, 45 and 60 
DAS 

Means followed by the same letter(s) in the same column are not significantly different at P < 0.05 using LSD 

*Chania 2 is 92944, while 97105 is Chania 1 

 30 DAS_I 30 DAS_II 45 DAS_I 45 DAS_II 60  DAS_I 60 DAS_II 

Treatment 92944 97105 92944 97105 92944 97105 92944 97105 92944 97105 92944 97105 

Control 7.1a 4.2c 7.7a 4.0c 23.0a 16.7c 21.1a 18.2b 41.2a 19.1cd 36.9a 18.2c 

Thiram50 5.9b 3.4d 5.2b 3.1d 18.1b 13.7d 16.3bc 10.4d 29.2b 16.5e 27.0b 15.6d 

Thiram100 4.3c 2.2e 4.2c 2.3e 11.1e 6.9f 11.3d 6.3e 21.2c 13.0f 19.1c 12.0e 

Thiram150 2.3e 1.3f 2.3e 1.2f 6.1f 4.2g 6.0e 3.6f 10.8fg 7.0h 10.8e 4.9f 

Carbendazim50 6.1b 3.5d 5.5b 3.3d 18.8b 14.1d 17.1b 10.4d 29.7b 16.5e 27.7b 15.5d 

Carbendazim100 4.4c 2.3e 4.4c 2.4e 11.7e 7.1f 11.2d 6.6e 22.7c 13.6f 16.7cd 12.3e 

Carbendazim150 2.6e 1.6f 2.6e 1.6f 6.7f 4.1g 6.3e 3.9f 12.0f 6.1h 11.4e 5.2f 

LSD 0.4 0.7 1.2 1.6 2.4 2.4 
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Interaction of Chania 2 with either thiram 100% and or carbendazim 100% resulted in 

significantly (P < 0.05) lower wilt incidence of 4.3% and 4.4%, respectively. This was lower 

than 50% fungicide treatments and the control treatment of Chania 2 in season I. However, these 

interactions were not significantly different from the 4.2% wilt incidence observed for Chania I 

at 0% (control) fungicide treatment (Table 8). Chania I interaction with thiram 50% and 

carbendazim 50% treatment rates had wilt incidence values of 3.4% and 3.5%, respectively. It 

was evident that significantly (P < 0.05) lower wilt incidence was observed when the MR 

genotype Chania I was seed dressed with either 50% thiram or carbendazim as compared to HS 

Chania 2 when dressed with either of the two fungicides at 100% at 30 DAS (Table 8).  

Treatment of Chania 2 with 150% of thiram or carbendazim resulted in lower wilt incidence of 

2.3% and 2.6, respectively (Table 8) in Season I. Chania 2 at 150% fungicide treatments 

interactions were statistically similar to the interactions of Chania I with thiram and or 

carbendazim at 100% rate, with wilt incidence of 2.2% and 2.3%, respectively in season I being 

observed. The same trend was observed in Season II (Table 8). This means that the resistance 

level of Chania 1 interacted with fungicide treatment rate and hence low wilt incidence as 

compared to Chania 2 which needed 50% more of the fungicide to achieve a similar wilt 

incidence. The lowest wilt incidence was observed when Chania I interacted with either thiram 

or carbendazim treatments at 150% rate, with values of 1.3% and 1.6%, respectively (Table 8). 

The same trend was observed in Season II. 

It is therefore that farmers treat chickpea seed with either thiram or carbendazim at the rate of 

150% (2.25 g/kg seed) in order to achieve the best management (2.4%) of FW when growing 

either HS or S genotypes. However, if MR cultivar Chania 1 is grown, farmers could use lower 

rates of 100% of either thiram or carbendazim to achieve similar Fusarium wilt management 

levels of less than 2.3% incidence by the 30 DAS. This would be comparatively a better 

management option than growing the HS chickpea variety Chania 2 and treating seed with 150% 

fungicide rates at this growth stage. 

4.3.2 Interaction between treatments on Fusarium wilt incidence 45 DAS 

At 45 DAS, the highest wilt incidence 23.1% and 21.1% was observed with Chania 2 under 

control treatment for season I and II, respectively. This wilt incidence was significantly (P ≤ 

0.05) higher from the other fungicide treatments. In season I, Chania 2 under thiram or 
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carbendazim at 50% rate of application resulted in 18.1% and 18.8% wilt incidence, respectively 

in season I. This interaction was significantly (P < 0.05) different from the others (0%, 100% and 

150%) but not from each other (Table 8). In season I, Chania 1 control treatment was 

significantly (P < 0.05) superior to Chania 2 at either treatment with 50% thiram or 50% 

carbendazim with value of 16.7% wilt incidence. In Season II, interaction of carbendazim or 

thiram 50% treatment and Chania 2 was not significantly different from Chania I control 

treatment (Table 8). We can infer from these results a possible environmental influence that 

could have affected the interaction of Chania 1 under control treatment.  

Treatment of Chania I with either thiram or carbendazim at 50% resulted in significantly (P < 

0.05) lower wilt incidence of 13.7% and 14.1%, respectively in season I. The interactions of 

Chania 1 with 50% thiram or carbendazim were lower to application of the same rate (50%) of 

fungicides to Chania 2. A similar trend was observed in Season II. Interaction of Chania 2 with 

thiram or carbendazim at 100% resulted in lower wilt incidence values of 11.1% and 11.7% 

which were significantly (P < 0.05) different from other treatment interactions. Seed treatment of 

Chania 2 with 150% of either thiram or carbendazim resulted in 6.1% and 6.7% Fusarium wilt 

incidence, respectively. This was similar to application of thiram or carbendazim at 100% to 

Chania 1 which resulted in 6.9% and 7.1% Fusarium wilt incidence, respectively (Table 8). A 

similar trend was observed in Season II at 45 DAS.  

The lowest Fusarium wilt incidence was observed when Chania 1 was treated with either thiram 

or carbendazim at 150% which resulted in 4.2% and 4.1% Fusarium wilt incidence, respectively 

in season I. During season II, lower Fusarium wilt incidence of 3.6% and 3.9% were observed in 

Chania 1 treated with thiram and carbendazim, respectively (Table 8). 

4.3.3 Interaction between treatments on Fusarium wilt incidence 60 DAS 

At 60 DAS, Chania 2 under control treatment had 41.2% and 36.9% Fusarium wilt incidence in 

seasons I and II, respectively. Significant (P < 0.05) interaction occurred between Chania 2 and 

thiram or carbendazim at 50%, with values 29.2% and 29.7% wilt incidence, respectively in 

season I. (Table 8). Treatment of Chania 2 with 100% of either thiram or carbendazim resulted in 

a lower wilt incidence of 21.2% and 22.7%, respectively. These values were similar to the 

Fusarium wilt incidence of Chania I under control treatment. Application of thiram or 

carbendazim at 50% to Chania I resulted in significantly (P < 0.05) lower wilt incidence, with 
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values of 16.5% and 16.5% being observed, respectively (Table 8). This trend was consistent in 

season II. Treatment of Chania 2 with either thiram or carbendazim at 150% resulted in lower 

wilt incidence compared to treating the same variety with the other treatment rates (0%, 50% and 

100%), with Fusarium wilt incidence of 10.8% and 12.0% being observed for thiram and 

carbendazim, respectively at 60 DAS. These incidences were similar to Chania I treated with 

either thiram or carbendazim at 100% giving wilt incidence values of 13.0% and 13.6% for 

thiram and carbendazim, respectively in season I (Table 8). From these results, it was inferred 

that MR Chania 1 needed less chemical treatment as compared to the HS Chania 2 at 60 DAS.  

The interaction between Chania 1 with either thiram or carbendazim at 150% resulted in lower 

Fusarium wilt incidence of 7.0% and 6.1%, respectively in season I; and 4.9% and 5.2%, 

respectively in season II at 60 DAS (Table 8). It was observed that MR Chania 1 needed 

significantly lower fungicide rate as compared to Chania 2 to achieve a similar level of wilt 

incidence. It is possible to infer that planting of MR Chania 1 will require lesser chemical 

treatment to control Fusarium wilt as compared to growing the HS Chania 2 across all growth 

stages. Fungicide treatments reduce wilt incidence resulting in a healthy plant that yield more. 

Increasing fungicide rate reduces wilt incidence (Maitlo et al., 2014). The results have 

demonstrated that combining host plant resistance with higher rate of fungicide resulted in lower 

wilt incidence as the two disease management options worked in synergy against the invasive 

pathogen.  

4.4 Effects of variety and fungicide in periodic dry matter yield of chickpea 

4.4.1 Effect of variety on Dry matter yield of Chickpea 

Chickpea DM accumulation followed a sigmoid curve, showing an initial lag phase between 

sowing and 55 DAS. After the 55th DAS, rapid growth phase followed up to 90th DAS after 

which the rate of DM production declined as the crop approached maturity. First flowering was 

observed about 45 DAS while 50% flowering was at 58 DAS. Higher dry matter accumulation 

depends primarily on the genotype potential in terms of production and pest resistance and 

secondly on the management practices. Moderately resistant Chania 1 had high DM due to its’ 

genetic potential and wilt resistance than HS Chania 2 (Table 8). This is further supported by the 

negative correlation between DM and wilt incidence of -0.95 at 45 DAS and -0.83 at 60 DAS 

(Table 14). 
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At 30 DAS, dry matter (DM) yield for Chania 1 and 2 were not significantly different (Table 9). 

At 60 DAS, significant (P ≤ 0.05) differences were observed in DM of the two varieties, with 

Chania 2 yielding 2.4 g/plant and Chania 1 yielding 2.8 g/plant in season I. During season II, 

Chania 2 had 2.5 g/plant DM yield while Chania 1 had 2.8 g/plant at 60 DAS (Table 9). At 90 

DAS, Chania 1 had 7.8 g/plant DM yield in season I and II, while Chania 2 had 7.6 g/plant in 

season I and II. At 120 DAS, DM yield of 11.1 g/plant and 10.8 g/plant were observed in Chania 

1 and Chania 2, respectively in season I. 

MR Chania 1 had significantly (P < 0.05) higher DM yield as compared to HS Chania 2, which 

was evident from the 60th DAS onwards (Table 9). Higher incidences of wilt in chickpea have 

been reported to result in up to 100% yield loss under ideal conditions (Navas-Cortes et al., 

2000). In highly susceptible (HS) Chania 2, lower DM values were observed because of higher 

wilt incidence. Negative correlation between Fusarium wilt incidence and DM yield was 

observed at 45 DAS and 60 DAS, respectively (Table 14). From this negative correlation it can 

be inferred that if higher wilt incidences are observed in the field at 45 DAS and 60 DAS, lower 

DM yields of chickpea would be experienced. This observation was in agreement with Haware 

and Nene, (1980) who reported that early wilting caused more damage as compared to late 

wilting in chickpea. 

The negative correlation between wilt and DM could explain the variation in terms of DM yield 

observed between the two varieties, MR Chania 1 and HS Chania 2 as Chania 1 had low wilt 

incidence as compared to Chania 2. The highest DM was realized with variety Chania I (97105) 

at 11.1 g/plant and 11.2 g/plant for season I and II, respectively, at 120 DAS. These DM values 

for Chania 1 were significantly (P < 0.05) higher than for Chania 2 which had 10.8 g/plant and 

10.9 g/plant, respectively, for season I and II at 120 DAS (Table 9).  

4.4.2 Effect of fungicide rates on DM yield of chickpea at 30 DAS  

Chickpea DM was lowest in plots under control treatment on both seasons. In season 1, control 

treatment had 0.6 g/plant which was significantly (P ≤ 0.05) lower compared to all the other 

fungicide rates (Table 9). There was no significant difference between the fungicide rates 50%, 

100% or 150% in terms of DM at 30 DAS.  
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Table 9: Effect of variety, thiram or carbendazim rates on periodic dry matter (g/plant) of chickpea at 30, 60, 90 and 
120 DAS 

*Means followed by the same letter(s) in the same column are not significantly different at P < 0.05 using LSD 

Treatments 
30 DAS 

g/plant 

30 (SII) 

DAS 

60 DAS 

g/plant 

60 (S II) 

DAS 

90 DAS 

g/plant 

90 

(SII)DAS 

120 DAS 

g/plant 

120 (SII)DAS 

g/plant 

Chania 2 0.6 a 0.6 a 2.4 a 2.5 a  7.6 a 7.6 a 10.8 a 10.9 a 

Chania 1 0.6 a 0.6 a 2.8 b 2.8 b 7.8 b 7.8 b 11.1 b 11.2 b 

LSD 0.01 0.02 0.02 0.03 0.02 0.02 0.04 0.03 

C.V 0.3 0.4 0.3 0.3 0.1 0.1 0.1 0.1 

Control 0.64 a 0.65 a 2.30 a 2.31 a 7.45 a 7.46 a 10.25 a 10.27 a 

Thiram50% 0.66 b 0.66 b 2.44 b 2.49 b 7.61 b 7.61 b 10.37 b 10.59 b 

Thiram100% 0.67 c 0.67 b 2.61 c 2.76 c 7.76 c 7.77 c 11.38 c 11.38 c 

Thiram150% 0.68 c 0.68 b c 3.03 d 3.05 d 8.02 d 8.03 d 11.72 d 11.78 d 

Carbendazim50% 0.66 b 0.67 b 2.43 b 2.49 b 7.60 b 7.61 b 10.37 b 10.59 b 

Carbendazim100% 0.67 c 0.68c 2.60 c 2.77 c 7.73 c 7.76 c 11.38 c 11.38 c 

Carbendazim150% 0.68 c 0.68 c 3.03 d 3.05 d 8.01 d 8.02 d 11.71 d 11.78 d 

LSD 0.01 0.01 0.03 0.02 0.02 0.03 0.05 0.03 

C.V 1.1 1.1 0.8 0.7 0.3 0.3 0.3 0.2 
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Thiram and carbendazim at 150% treatments resulted in DM of 0.7 g/plant for both treatments. 

No significant (P ≤ 0.05) differences were observed between thiram and carbendazim at 150% 

rate, 30 DAS. A similar trend was observed during the second season with the control treatment 

being the lowest in terms of DM yield while the fungicide treatments had higher DM values, 

though a slight difference between the rates of fungicides was observed (Table 9).  

4.4.3 Effect of fungicide rates on DM yield of chickpea at 60 DAS  

Control treatment plots had 2.3 g/plant DM which was significantly lower (P ≤ 0.05) compared 

to all the other treatments in season I (Table 9). Treatment plots with thiram at 50% and 

carbendazim at 50% had 2.4 g/plant DM in season I and 2.5 g/plant in season II. There was no 

significant (P ≤ 0.05) difference between the thiram and carbendazim at this rate 50%. Treatment 

of plots with thiram at 100% and carbendazim at 100% resulted in 2.6 g/plant DM yield. The 

difference between thiram and carbendazim at 100% was not significantly (P ≤ 0.05) (Table 9). 

Plots treated with thiram and carbendazim at 150% had 3.0 g/plant DM in season I. There was no 

significant difference (P ≤ 0.05) between the two treatments (thiram 150% and carbendazim 

150%). In season two, a similar trend was observed, with greater DM coming from plots treated 

with thiram and carbendazim at 150% (of active ingredient) each.  

4.4.4 Effect of fungicide rates on chickpea DM yield 90 DAS and 120 DAS  

Dry matter of chickpea increased with fungicide treatment (Table 9). The least DM 90 DAS was 

obtained under control treatments, with 7.4 and 7.5 g/plant DM being realized in season I and II, 

respectively which was significantly (P ≤ 0.05) lower when compared to other fungicide rates. 

There were no significant differences between thiram and carbendazim fungicides, however, 

significant differences were observed within the fungicide rates (0%, 50%, 100% and 150% 

active ingredient 1.5 g/kg seed). The best treatment that yielded higher DM 90 DAS was either 

thiram or carbendazim at 150% (active ingredient 1.5 g/kg seed) with DM yield of 8.0 g/plant, in 

season I and II. Treatment of chickpea varieties with either thiram or carbendazim at 100% 

resulted in DM values of 7.7 g/plant in season I and II, at 90 DAS (Table 9). This treatment rate 

of 100% resulted in significantly (P ≤ 0.05) higher DM than 50% rate of either thiram or 

carbendazim, but no significant differences were observed between thiram and carbendazim at 

100% in both season I and II, 90 DAS.  
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Treatments of chickpea varieties with 50% of either thiram or carbendazim resulted in DM of 7.6 

g/plant in season I. The same DM value of 7.6 g/plant in season II at 90 DAS was observed. 

These DM values were significantly higher as compared to the control treatment which had 7.4 

g/plant in season I and II, 90 DAS (Table 9). It was observed that DM increased across all 

growth stages and with increasing fungicide rate.  

At 120 DAS, significantly (P ≤ 0.05) higher DM was realized in plots treated with either thiram 

or carbendazim at 150%, with 11.7 g/plant in season I and II (Table 9). Chickpea varieties 

treated with 100% of either thiram or carbendazim resulted in 11.3 g/plant DM yield in season I 

and II. The 100% rate was lower than 150% at 120 DAS. Treatment rate of 50% using either 

thiram or carbendazim resulted in DM which was lower than the 150% and 100% rates of 

treatments. At 50% rate of application of thiram and carbendazim, DM yield of 10.3 g/plant were 

observed in season I, while DM yield of 10.5 g/plant were observed for both thiram and 

carbendazim in season II, 120 DAS (Table 9). Control treatment plots had significantly (P ≤ 

0.05) low DM yield at 120 DAS, with 10.2 g/plant in season I and II. It was observed that 

application of fungicide increased the DM yield of chickpea from a range of 5.9% (at 30 DAS) 

up to 14.6% (at 120 DAS). It can be observed that the selection of either thiram or carbendazim 

did not significantly (P ≤ 0.05) affect the DM realized across all growth stages.  

The best treatments rate was 150% irrespective of the fungicide used (thiram or carbendazim). 

This was followed by 100% rate of either thiram or carbendazim. Previous studies found that 

carbendazim and thiram were effective in reducing wilt incidence and increasing yield (Kamdi et 

al., 2012), while De et al. (1996) found that coating seeds with carbendazim was more effective 

in reducing wilt and resulted in yield of chickpea. Other studies have also found that plants 

protected from the pathogen through chemical seed dress and or genetic resistance had improved 

yield (Maitlo et al., 2014). Singh et al. (2004) also reported highest seed germination with 

carbendazim. This high germination could affect plant population and hence dry matter. 

4.5 Interaction between fungicide and variety on periodic dry matter production 

Significant (P ≤ 0.05) interactions were observed between the treatments and varieties at 60, 90 

and 120 DAS (Table 10). The least DM was observed in Chania 2 with control treatment, across 

all growth stages, with values ranging from 2.1 g/plant at 60 DAS to 10.1 g/plant at 120 DAS. 
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All fungicide treatments of 50%, 100% and 150% had significantly (P ≤ 0.05) higher DM yield 

than the control (0%). 

4.5.1 Interaction between fungicide and chickpea variety on DM at 60 DAS 

Significant (P ≤ 0.05) interactions between the fungicide treatments and varieties were observed 

on the DM at 60 DAS (Table 10). The least DM was observed in Chania 2, under no fungicide, 

with DM of 2.1 g/plant and 2.2 for seasons I and II, respectively. At 50% thiram or carbendazim 

treatment significantly higher DM of 2.3 g/plant was realized in season I and II for both 

fungicides (Table 10). Treatment of Chania 2 with either thiram or carbendazim at 100% resulted 

in significant higher DM yield of 2.4 g/plant and 2.3 g/plant, respectively, in season I which was 

higher than either fungicide at 50% in season I with Chania 2. Chania 1 under control treatment 

had a significantly (P ≤ 0.05) higher DM yield of 2.4 g/plant than Chania 2 under either thiram or 

carbendazim at 100% (Table 10) in season I.  

In season II, 2.4 g/plant DM was observed in Chania 1 under control treatments which was 

significantly (P ≤ 0.05) lower to Chania 2 and either thiram or carbendazim at 100% treatments 

which had 2.6 g/plant. This suggests an environmental influence on Chania 1 during season II 

which might have resulted in slightly higher Fusarium wilt incidences, hence the low yield. The 

results show that with higher disease incidence (low or no fungicide), low DM will be realized 

and this will eventually affect grain yield. This is further supported by the significant (P < 0.01) 

negative correlation; -0.95 between Fusarium wilt incidence at 45 DAS and DM 120 DAS (Table 

14). The highest DM of 2.90 g/plant was observed in Chania1 under 150% treatment with either 

thiram of carbendazim (Table 10).  

Previous studies reported that treatment of seed with fungicides significantly checks wilt 

incidence and enhances plant growth and yield (Maitlo et al., 2014). Kamdi et al (2012) found 

that seed treatment with carbendazim and thiram resulted in increased germination, reduced wilt 

and increased yield. Muhammad (2010) reported a direct correlation between inoculum density 

and wilt severity in chickpea. Fungicide treatment reduces the amount of inoculum in the 

rhizosphere and these results in a healthy crop which explains the observed increase in dry 

matter with increase in fungicide rate.  
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Table 10: Effects of interaction between fungicide rates and variety on periodic dry matter (g/plant) 60, 90 and 120 DAS 

 60 DAS_1 60 DAS_II 90 DAS_I 90 DAS_II 120 DAS_I 120 DAS_II 

Treatment Chania

2 

Chania

1 

Chania

2 

Chania

1 

Chania

2 

Chania

1 

Chania

2 

Chania

1 

Chania

2 

Chania

1 

Chania

2 

Chania

1 

Control 2.18a 2.42d 2.21a 2.41c 7.32a 7.57c 7.35a 7.57c 10.13a 10.37c 10.12a 10.42b 

Thiram50 2.29b 2.58e 2.30b 2.68d 7.45b 7.76e 7.45b 7.76d 10.25b 10.49d 10.45b 10.71c 

Thiram100 2.36c 2.85f 2.66d 2.85e 7.62d 7.88f 7.61c 7.91e 11.31e 11.44f 11.10d 11.65f 

Thiram150 2.87f 3.18g 2.91f 3.18g 7.91f 8.12g 7.92e 8.14f 11.52g 11.91h 11.61f 11.94g 

Carbendazim5

0 

2.28b 2.57e 2.30b 2.67d 7.44b 7.76e 7.45b 7.76d 10.24b 10.49d 10.45b 10.71c 

Carbendazim1

00 

2.34c 2.85f 2.67d 2.85e 7.58c 7.88f 7.60c 7.92e 11.30e 11.44f 11.09d 11.65f 

Carbendazim1

50 

2.87f 3.17g 2.91f 3.19g 7.89f 8.13g 7.89e 8.15f 11.52g 11.90h 11.61f 11.94g 

LSD 0.034 0.034 0.034 0.039 0.062 0.041 

Means followed by the same letter(s) in the same column are not significantly different at P<0.05 using LSD 
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Figures 3 and Figure 4 show the relationship between DM 60 DAS with wilt incidence 30 DAS, 

for Chania 2 and Chania 1, respectively. From the linear models in figure 3 and 4, DM yield 

declined with increasing wilt incidence. These models can be used to predict DM loss in 

chickpea in relation to development of Fusarium wilt. From these results it can be inferred that at 

60 DAS, MR Chania 1 yielded more DM with comparatively less fungicides than HS Chania 2. 

The results are linked to the wilt incidence observed in Chania 1 and 2. High wilt incidence led 

to low yield due to unhealthy plants whose vascular systems have been invaded by the pathogen.  

Khan et al. (2004) reported the production of phytotoxins by the wilt pathogen which led to 

chlorosis in affected chickpea. Chlorophyll content determines the amount of dry matter through 

photosynthesis. Effective management of Fusarium wilt using fungicide treatments and resistant 

varieties therefore led to increased dry matter as less pathogen invasion occurred in fungicide 

treated chickpea compared to the control. Also, it was observed that combination of genetic 

resistance by choice of resistant variety with fungicide treatment was effective in controlling 

Fusarium wilt and improving yield, this was in agreement with Maitlo et al. (2014) who reported 

yield increase with increasing fungicide rates.  

4.5.2 Interaction effects between treatments on DM at 90 DAS 

Significant (P ≤ 0.05) interactions between varieties and fungicide treatments occurred on DM at 

the 90 DAS. Higher DM yield values in the range of 7.8–7.9 g/plant were observed when Chania 

1 interacted with 150% of either thiram or carbendazim (Table 10). The least DM yield was 

obtained with Chania 2 under control treatment with DM yield of 7.3 g/plant for season I and II, 

90 DAS. This was followed by the combination of Chania 2 with either 50% of thiram or 

carbendazim, resulting in DM yield of 7.4 g/plant in season I and II. Chania 1 combination with 

control treatment was the next best, in both seasons I and II, with DM yield of 7.5 g/plant in both 

season I and II. Chania 1 interacted significantly with thiram or carbendazim at 100% to give 

DM yield which was equivalent to Chania 2 yield under thiram or carbendazim at 150% (Table 

10) in both seasons. It can be inferred that to achieve a similar yield in Chania 2, significantly 

higher (+50%) application of thiram or carbendazim is necessary to achieve the same yield as 

MR Chania 1. The highest DM yield was obtained in the interaction between Chania 1 and either 

thiram or carbendazim at 150% giving 8.1 g/plant in season I and II.  
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Figure 5 and Figure 6 show the relationship between DM 90 DAS with wilt incidence (45 DAS) 

for Chania 2 and Chania 1, respectively. The linear functions indicate declining DM 90 DAS for 

both varieties as wilt incidence increases, with high coefficient of determination, R2 of 0.93 and 

0.89 for Chania 2 and Chania 1, respectively. With the high values of goodness of fit, we can 

predict accurately DM loss in chickpea when we observe wilt incidence in chickpea at 45 DAS.  

4.5.3 Interaction between fungicide and variety on DM at 120 DAS 

The highest DM yield 120 DAS was obtained in Chania 1 treated with either thiram or 

carbendazim at 150%, yielding DM of 11.9 g/plant in season I and II for both fungicides (Table 

10). Chania 2 under thiram or carbendazim at 150% resulted in DM yield of 11.5 g/plant for both 

fungicides in season I and 11.6 g/plant for both fungicides in season II. The least DM yield was 

obtained with Chania 2 under control treatment, giving DM yield of 10.1 g/plant for seasons I 

and II. Treatment of Chania 2 with 100% thiram or carbendazim resulted in DM yield of 11.3 

g/plant in season I and 11.1 g/plant in season II for both fungicides (Table 10).  

DM yield of Chania 2 at 100% fungicide was significantly (P < 0.05) higher than treatment with 

50% of either fungicide, but lower than the yield of Chania 1 under 100% rate of thiram or 

carbendazim. Chania 1with 100% treatment of thiram or carbendazim resulted in 11.4 g/plant 

DM in season I and 11.6 g/plant in season II for both fungicides MR Chania 1 had significantly 

higher yield than Chania 2 under control treatment. Treatment of MR Chania 1 with either 

fungicide resulted in higher DM yield as compared to treatment to HS Chania 2, across all 

treatment rates (50%, 100% and 150%). It is therefore recommended that farmers adopt MR 

Chania 1genotype as opposed to HS Chania 2 so as to reduce fungicide treatment rates and 

realize higher DM yields.  

Combination of resistance with fungicide treatment led to increased DM yield as the crop had 

better health. Figure 7 shows the relationship between DM 120 DAS and wilt incidence 60 DAS 

in Chania 2, while Figure 8 shows the relationship between DM 120 DAS and wilt incidence 60 

DAS in Chania 1. In Figure 7 and 8, increase in wilt incidence resulted in reduced DM. Based on 

the vascular nature of the pathogen, invasion of xylem tissues deprives the plant of water uptake 

which affects other processes like photosynthesis and nutrient mineral absorption. Padwick 

(1941) reported that some plants may look apparently healthy while they have been invaded by 

the pathogen. In severe cases, the pathogen produces phytotoxins which causes wilting and leaf 
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burning (Khan et al., 2004). It was observed that MR Chania 1 was able to yield more DM with 

lower fungicide treatment as compared to the HS Chania 2. Higher DM in MR Chania 1 is due to 

the lower wilt incidence (Table 8) which resulted in a healthy crop and hence higher DM yield.  

Studies on the effect of fungicide on yield of soybean showed that the yield increase was more 

related to the disease control aspect of the fungicide that led to a healthy crop yielding more 

(Catherine and Palle, 2009). This study observed that combining resistance with fungicide 

treatment led to increasing yield as the wilt incidence was reduced. Further, there was a positive 

correlation between DM and grain yield (Table 14). Figure 9 and Figure 10 shows the 

relationship between grain yield and final dry matter (120 DAS) in Chania 2 and Chania 1. Grain 

yield increased with increasing dry matter both in Chania 1 and 2. It was observed that grain 

yield increased by a factor of 0.1 increase in dry matter in both varieties. The goodness of fit was 

0.99 in Chania 2 and 0.88 in Chania 1. This means that there were other contributing factors 

towards grain yield especially in Chania 1 than in Chania 2.  

Mallu et al. (2015) reported a positive and significant correlation between biomass and grain 

yield. Management practice that enhances dry matter accumulation therefore leads to higher 

grain yield. These include management options like treatment of chickpea with fungicides to 

control wilt. Fusarium wilt has been reported to result in reduced chlorophyll content in chickpea 

(Khan et al., 2004) through the production of phytotoxins that can cause leaf wilting, chlorosis or 

complete plant wilting depending on the race of the pathogen. This way, wilt incidence leads to 

decline in dry matter of chickpea by affecting processes of photosynthesis and water uptake by 

blocking xylem vessels.    
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4.6 Effect of variety and thiram or carbendazim on chickpea plant height (PH) 

4.6.1 Effect of variety on plant height 

There were significant (P < 0.05) differences in the plant height (PH) (Table 11) between the two 

varieties. At 30 DAS, Chania 1 had a height of 10.8cm while Chania 2 had 10.1cm in season I. In 

season II, Chania 1 had 11.1cm while Chania 2 had 10.1cm at 30 DAS. At 60 DAS, Chania 1 

had plant height (PH) 24.3cm while Chania 2 had 22.3cm (Table 11). The differences were 

significant (P ≤ 0.05). The same trend was observed in season II, with Chania 1 obtaining PH of 

24.4cm while Chania 2 had 22.8cm. At 90 DAS, Chania 1 had plant height of 28.4cm while 

Chania 2 had 26.2cm in season I. In season II, Chania 1 had 28.7cm while Chania 2 had 26.3cm. 

The differences between the two varieties at 90 DAS in terms of PH were significant (Table 11). 

At 120 DAS, Chania 1 had a PH of 32.3cm while Chania 2 had 30.0cm in season I. In season II, 

Chania 1 had 32.7cm while Chania 2 had 30.19cm. The difference between the two varieties was 

significant (P ≤ 0.05) (Table 11).  

Moderately resistant Chania 1 had higher plant height across all growth stages in contrast with 

HS Chania 2, across all growth stages. Table 12 shows a high positive correlation of 0.92 

between grain yield and plant height. It is possible to infer that MR variety Chania 1 would yield 

more grain as compared to HS Chania 2 as a result of better plant height. Figure 11 shows that 

grain yield increases at the rate of 0.02 for every unit increase in plant height. Genetic resistance 

of a variety reduces the negative impacts of that pathogen on that variety. It has been reported in 

other studies that a healthy crop results from management of Fusarium oxysporum f. sp. ciceris 

(through fungicides) and had higher shoot length (Maitlo et al., 2014).  

It also observed that between the two varieties, Chania 1 and 2 significant differences in terms of 

plant height occurred. Due to the nature of the pathogen, it can be inferred that HS Chania 2 was 

affected by the pathogen, which could have resulted in blockage of its xylem vessels, thereby 

leading to reduced plant vigor and subsequently low plant height. This is supported by Khan et 

al. (2004) who reported stunting in infected chickpea plants.  

4.6.2 Effect of fungicide treatment on plant height 

Plants treated with fungicide were significantly taller in height to the control treatment at all 

growth stages (Table 11). At 30 DAS, control treatment had lower plant height (PH) which was 

significant (P ≤ 0.05) than all the other fungicide treatments with PH of 9.3cm and 9.1cm for 
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seasons I and II, respectively. Treatment with thiram or carbendazim at the rates of 50% to 150% 

rates gave significantly higher PH values in the range of 10.1 to 11.3cm to the control. A similar 

trend was observed in season II. At 60 DAS, control treatment had significantly (P ≤ 0.05) lower 

PH of 20.0cm and 20.1cm for season I and II, respectively. Treatment with either thiram or 

carbendazim at 50% gave PH values of 21.5cm and 21.6cm in season I, respectively, while in 

season II, 22.5cm was observed for either of thiram and carbendazim. Treatment with 100% of 

either thiram or carbendazim gave PH of 24.3cm and 24.1cm, respectively, in season I at 60 

DAS. In season II, treatment of chickpea with 100% of either thiram or carbendazim yielded PH 

values of 24.5cm and 24.3cm, respectively (Table 11) at 60 DAS.  

The highest PH was obtained by treating chickpea with either thiram or carbendazim at 150% 

which yielded 25.7cm and 26.3cm, respectively in season I, while in season two, 25.7cm and 

25.8cm was obtained for the two fungicides, respectively (Table 11). At 90 DAS, significantly (P 

≤ 0.05) low plant height was observed in the control treatment giving PH of 23.1cm and 22.6 cm 

for Season I and II respectively. At 100% and 150% treatment with thiram or carbendazim, PH 

values in the range of 28.3cm to 30.8cm were observed 90 DAS. The highest PH 90 DAS was 

obtained by treating with thiram or carbendazim at 150% with PH of 30.5cm and 30.8cm, 

respectively (Table 11). The results of this study are in agreement with other studies which found 

that fungicide treatments increased plant height as compared to the control (Khalil et al., 2002; 

Maitlo et al., 2014). Khan et al. (2004) reported that phytotoxins released by the pathogen induce 

leaf wilting, chlorosis and sometimes stunting.  

Muhammad (2010) found a direct correlation between wilt severity and inoculum density. It can 

therefore be inferred that fungicidal seed treatment inhibits seed or soil borne pathogens creating 

a rhizosphere free from biotic stress of the pathogen and this could result in vigorous seedlings. 

At 120 DAS control treatments had significantly (P ≤ 0.05) low PH of 25.1cm and 24.7cm for 

seasons I and II, respectively (Table 11). Treatment of chickpea with either thiram or 

carbendazim at 50% rate gave PH value of 29.0cm and in season II, 29.3cm. Significantly higher 

PH was obtained by treating chickpea with either thiram or carbendazim at 100% or 150% with 

PH values in the range of 32.7cm to 35.5cm 120 DAS (Table 11). No interactions were observed 

between treatments. In figure 13 the relationship between PH and grain yield is illustrated. Grain 

yield increases by 0.02 per increase in PH. According to Mallu et al. (2015) the correlation 

between plant height and dry matter led to more dry matter partitioning into grain yield.  
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Table 11: Effect of thiram or carbendazim rates on periodic plant height of two chickpea varieties 

Treatment Height 30_I Height 30_II Height 60_I Height 60_II Height 90_I Height 90_II Height 120_I Height 120_II 

92944 10.09 a 10.14 a 22.38 a 22.86 a 26.24 a 26.33 a 30.05 a 30.19 a 

97105 10.85 b 11.14 b 24.38 b 24.43 b 28.43 b 28.71 b 32.38 b 32.76 b 

LSD 0.73 0.71 0.35 1.28 0.73 0.2 0.82 0.35 

C.V 2.0 1.9 0.4 1.5 0.8 0.2 0.7 0.3 

Control 9.33 a 9.17 a 20.00 a 20.17 a 23.17 a 22.67 a 25.17 a 24.67 a 

Thiram50 10.50bc 10.67 b 21.50 b 22.50 b 25.50 b 25.50 b 29.00 b 29.33 b 

Thiram100 10.50bc 10.50 b 24.33 c 24.50 c 28.33 c 28.50 c 32.67 c 33.00 c 

Thiram150 11.33c 11.50 b 25.67 d 25.67 c 30.00 c 30.50 de 35.17 d 35.50 d 

Carbendazim50 10.17 ab 10.67 b 21.67 b 22.50 b 25.50 b 25.83 b 29.00 b 29.33 b 

Carbendazim100 10.50bc 10.67 b 24.17 c 24.33 c 28.33 c 28.83 cd 33.00 c  33.33 c 

Carbendazim150 11.00bc 11.33 b 26.33 d 25.83 c 30.50 c 30.83 e 34.50 cd 35.17 d 

LSD 0.65 0.77 0.78 0.96 1.31 1.18 1.15 1.07 

C.V 5.3 6.1 2.8 3.4 4.1 3.6 3.1 2.9 

Means followed by the same letter(s) in the same column are not significantly different at P < 0.05 using LSD 
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Studies by Maitlo et al. (2014) indicated that plants treated with fungicides had enhanced growth 

and had higher shoot length values. The eradication of the pathogen by fungicide treatment led to 

healthy plants devoid of negative effects of phytotoxins released by the wilt pathogen after it 

invades chickpea as reported by Khan et al. (2004). Treatment of seeds with fungicides protects 

the plant from invasion by soil borne pathogen and consequently a healthy crop grows. This 

explains why seed treated fungicides had significantly higher plant heights as opposed to 

untreated plants. Other studies have found that treatment of chickpea with fungicides and other 

plant extracts resulted in increased root and shoot weight (Khalil et al., 2002; Animisha et al., 

2012; Maitlo et al., 2014).  

It can be inferred that as a result of increased fungicide rate, the negative effect of rhizosphere 

pathogens was reduced leading to a healthy crop, hence the observations on increasing plant 

height with fungicide rate increase. This is in agreement with Maitlo et al. (2014) who found that 

increasing dosages of carbendazim were effective in reducing wilt incidence and improving 

shoot height. Plant height has a positive correlation to grain yield as reported by Mallu et al. 

(2015). Table 14 shows a high positive correlation (r) of 0.92 between grain yield and plant 

height. These results are in agreement also with Halila and Strange (1997) who reported that 

plants infected by Fusarium oxysporum f. sp. ciceris were occasionally stunted and seed yield 

was correlated to plant height.   

4.7 Effect of variety and fungicide treatments on yield parameters of chickpea 

4.7.1 Effect of variety and fungicide treatments on number of pods per plant 

Significant (P ≤ 0.05) differences in the number of pods per plant were observed between the 

two varieties. Chania 2 had 114.1 while Chania 1 had 123.4 pods/ plant (Table 12). The number 

of pods per plant is correlated to grain yield, with grain yield increasing by a factor of 0.01 for 

every increase in pods per plant (Figure 14). Pods per plant also had a high positive correlation 

(r) of 0.93 to grain yield (Table 14). These results are in agreement with Mallu et al. (2015) who 

found a positive relationship between number of pod per plant and grain yield. Significantly low 

number of pods/plant of 101.8 was observed in the control treatment. In chickpea treated with 

either thiram or carbendazim at 50%, 113.8 pods per plant were observed (Table 12).  

Treatment of chickpea with 100% of either thiram or carbendazim gave 122.7 and 123 number of 

pods/plant, respectively. The highest number of pods per plant was obtained when either thiram 
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or carbendazim was used at 150% recommended active ingredient, which gave 128.3 and 128.1 

number of pods per plant, for thiram and carbendazim, respectively (Table 12). Number of pods 

per plant was positively correlated to both DM and grain yield with correlation coefficients of 

0.87 and 0.93, respectively (Table 14). This means that for a farmer to achieve high yield (DM or 

grain yield), it is necessary; one to choose a variety like Chania 1 which had significantly (P ≤ 

0.05) higher pods /plant of 123.4, and two, adopt a wilt management plan of 150% application 

which also gave the highest number of pods per plant at 128.3 (Table 12).  

4.7.2 Effect of treatments on 100 seed weight and Harvest Index 

Significant (P ≤ 0.05) differences between varieties were observed with Chania 1 having 24.2 

g/100 seeds, while Chania 2 had 19.7 g/100 seeds (Table 12). Figure 15 shows the relationship 

between seed weight and grain yield, whereby grain yield increased by a factor of 0.01 seed 

weight. This low relationship could be attributed to the fact that there are only one or two seeds 

per pod in chickpea hence lesser influence on grain yield. Control treatment had significantly 

low seed weight at 20.3 g/100 seeds. Treatment of chickpea with either thiram or carbendazim at 

50% gave seed weight of 21.2 g/100 seeds and 21.3 g/100 seed, respectively, which were 

significantly higher than the control treatment (Table 12).  

Seed treatment with either thiram or carbendazim at 100% gave test weight of 22.3 g/100 seeds. 

Treatment of chickpea with 150% of either thiram or carbendazim gave significantly higher test 

weight of 23.1 g/100 seed for both fungicides. Fusarium wilt has been shown to affect the seed 

weight resulting in lighter and shriveled seeds of dull colour (Haware and Nene, 1980). As 

fungicide rate was increased, inoculum density was reduced as a result of the negative effect of 

fungicide. This led to a healthy plant and hence better seed weight which explains the variation 

observed in the seed weight. Muhammad (2010) reported a direct correlation between wilt 

severity and inoculum density.  

4.7.3 Effects of variety and fungicide treatments on harvest index 

Results on harvest index (H.I) showed significant difference (P ≤ 0.05) between varieties Chania 

1 and Chania 2, with 48.1% for Chania 1 and 45.6% for Chania 2 (Table 12). The higher harvest 

index in Chania 1 could be a result of higher DM and grain yield as compared to Chania 2. 

Fungicide control treatment showed the least harvest index of 44.7% which was lower than all 
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the other fungicide treatments. The highest harvest index was obtained at carbendazim 100% 

which was significantly higher at 49.2% followed by carbendazim at 150% at 48.7% (Table 12).  

4.7.4. Effect of variety on Grain Yield 

Grain yield was significantly (P ≤ 0.05) different between the two varieties with Chania 1 giving 

a higher grain yield of 1.3 t/ha while Chania 2 gave a mean grain yield of 1.2 t/ha (Table 12). 

These variations could be due to the genetic differences between the two varieties.  

4.7.5 Effect of fungicide treatments on Grain yield 

Fungicide rates had a significant (P ≤ 0.05) effect on grain yield of chickpea. Highest grain yield 

of 1.4 t/ha was recorded when either thiram or carbendazim was seed dressed at 2.25 g/kg seed 

(150%). This was followed by applying either carbendazim or thiram at 100% which had a mean 

grain yield of 1.3 t/ha. The lowest grain yield of 1.1 t/ha was observed when no fungicide 

treatment was used (Table 12).  

Table 12: Effect of variety and fungicide rate on yield, pods/plant, seed weight and harvest 
index  

Treatments Pods per plant 100 seed weight (g) Harvest Index (%) Grain Yield (T/ha) 

Chania 2 114.19 a 19.7 a 45.68a 1.2 a 

Chania 1 123.43 b 24.2 b 48.15b 1.3 b 

LSD 2.5 3.9 0.8 0.02 

C.V 0.6 0.5 0.5 0.5 

Control 101.8 a 20.3 a 44.72a 1.15 a 

Thiram50% 113.8 b 21.2 b 46.29b 1.21 b 

Thiram100% 122.6 c 22.3 c 45.85b 1.31 c 

Thiram150% 128.3 d 23.1d 46.68b 1.37 d 

Carbendazim50% 113.8 b 21.3 b 46.87b 1.21 b 

Carbendazim100% 123.0 c 22.3 c 49.29d 1.31 c 

Carbendazim150% 128.2 d 23.1 d 48.70c 1.34 d 

LSD 2.9 3.7 0.7 0.02 

C.V 2.1 1.4 1.3 1.2 

Means followed by the same letter(s) in a column are not significantly different at P<0.05 LSD 
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These results corroborated those of De et al. (1996) who noted that coating seeds with 0.2% 

carbendazim was more effective in reducing wilt and increasing yield. Kamdi et al. (2012) 

reported low wilt incidence and maximum grain yields after applying carbendazim at 2 g/kg seed 

(i.e., 133.3% rate). Khalil et al. (2002) reported that fungicide treatments increased grain yield in 

wheat as compared to untreated plots. Maitlo et al. (2014) reported that fungicide treatment 

remarkably checked disease development and subsequently increased plant growth and yield as 

compared to untreated plants. It can be inferred that treatment of chickpea with 150% and 100% 

thiram or carbendazim was very effective in controlling wilt incidence. The wilt pathogen 

releases phytotoxins (Khan et al., 2004) which leads to wilting, stunting, and chlorosis hence low 

dry matter. Application of fungicide protects the crop from the pathogen which results in taller 

healthy plants, higher DM yields and better yield of chickpea.  

There was a positive correlation between grain yield and plant height, number of pods and seed 

weight. Chickpea height was shown to increase seed/grain yield by a factor of 0.0238 t/ha per cm 

increase in chickpea height (Figure 11). In pods per plant, 0.0089 t/ha increase for every increase 

in pod, while 0.082 t/ha increase in gain yield was observed for every single increase in 100 seed 

weight (Figure 12 and Figure 13, respectively).  
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4.8 Interaction effects of varieties with fungicide treatments on Grain yield 

Significant (P < 0.05) interactions between varieties and fungicide treatments were observed 

(Table 13) on grain yield of chickpea. Chania 1 interacted with either thiram or carbendazim 

applied at 150% (of recommended optimum rate -ROR) yielding highest grain yield of 1.4 t/ha. 

Chania 2 interacted with thiram and carbendazim applied at the rate of 2.25 g/kg seed yielding 

grain yield in the range of 1.3 t/ha grain yield (Table 13). The lowest grain yield was obtained 

with Chania 2 under control treatment with grain yield of 1.1 t/ha (Table 13). It was observed 

that lower grain yield was realized in the treatments that had higher incidence of Fusarium wilt 

(Table 8). There was a negative correlation of -0.95 and -0.83 between grain yield and wilt 

incidence at 45 DAS and 60 DAS (Table 14). Figure 7 and Figure 8 shows the relationship 

between grain yield with wilt incidence for Chania 2 and Chania 1, respectively.  

y = 0.0089x + 0.2184
R² = 0.9623

0.0

0.4

0.8

1.2

1.6

30 60 90 120 150

G
ra

in
 y

ie
ld

 (t
/h

a)

pods/plant (number)
Figure 12. Relationship of Pods/plant and Grain yield

y = 0.0824x - 0.5299
R² = 0.99

0.6

0.9

1.2

1.5

20 21 22 23 24

G
ra

in
 y

ie
ld

 (t
/h

a)

100 seed weight

Figure 13. Relationship between Grain yield and seed weight



53 
 

Table 13: Interaction of variety with thiram or carbendazim on Grain yield of chickpea 

Treatment Grain Yield (T/ha) 

 92944 97105 

Control 1.10a 1.19c 

Thiram50 1.14b 1.27d 

Thiram100 1.27d 1.34e 

Thiram150 1.32e 1.41f 

Carbendazim50 1.13b 1.28d 

Carbendazim100 1.27d 1.34e 

Carbendazim150 1.32e 1.41f 

LSD 0.03 

 

The relationships show that as the wilt incidence increased, grain yield declined at -0.01 and -

0.02 for Chania 1 and 2, respectively with R2 values of 0.88 and 0.92 for Chania 2 and Chania 1, 

respectively. Application of fungicide as seed dress to MR Chania 1 resulted in a synergistic 

effect with less pathogen establishment and this resulted in a healthier crop as compared to the 

lower fungicide rates and HS Chania 2. Thus, the healthy crop from Chania 1 interactions 

resulted in higher grain yield. Muhammad (2010) reported a direct correlation between wilt 

severity and inoculum density. Inoculum density is adversely affected by fungicide application 

and use of resistant genotype.  

4.9 Correlation analyses of yield attributes 

There were positive correlations between chickpea pods per plant and 100 seed weight. Grain 

yield was positively correlated (R=0.90) with dry matter at 120 DAS (final harvest). Plant height 

was positively correlated to dry matter and Grain yield. The number of pods per plant was 

positively correlated to grain yield with a high correlation coefficient R = 0.93 (Table 14). This 

means that a healthy (wilt free) chickpea crop would have tall plants of 32.6-35.5 cm as a result 

of absence of the inhibiting phytotoxins released by the pathogen (Khan et al., 2004). The 

healthy crop would also have more pods per plant in the range of 122.6 - 128.3; a higher rate of 

DM accumulation throughout the crop growth cycle, which would consequently translate into 

higher grain yield of over 1.3 t/ha.  
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Grain yield was positively correlated to harvest index with a coefficient of 0.73 (Table 14). This 

observation was in agreement with Halila and strange (1997). Grain yield was negatively 

correlated to Fusarium wilt disease incidence, with correlation coefficient r of -0.94 and -0.95 at 

45 DAS and 60 DAS, respectively (Table 14). Fusarium wilt incidence should be controlled 

early in order to increase grain yield because early wilting leads to more yield loss (Haware and 

Nene, 1980). Plant height was positively correlated to dry matter. Dry matter was also positively 

correlated to number of pods per plant and harvest index (Table 14). Dry matter 120 DAS was 

negatively correlated to Fusarium wilt incidence both at 60 DAS and 45 DAS.  

It was observed that as wilt incidence increased, DM yield was reduced due to low plant stand 

and low weight in infected plants (Table 14). Number of pods per plant was positively correlated 

to harvest index and plant height with r values of 0.66 and 0.93 respectively both of which were 

significant (P<0.01). Number of pods was negatively correlated with Fusarium wilt incidence at 

60 DAS and 45 DAS (Table 14). Harvest Index (H.I) was positively correlated with plant height 

with an r value of 0.60, but negatively correlated with Fusarium wilt incidence both at 60 DAS 

and 45 DAS with r values of -0.70 and -0.60, respectively (Table 14). 

Table 14: Correlation between key crop attributes, yield parameters and Fusarium wilt 

incidence 

 DM 120 Grain 

yield  

Pods/plant Harvest 

index 

Plant 

height  

DI 60 DAS 

Dry matter 120       

Grain yield 0.90**      

Number of Pods 0.87** 0.93**     

Harvest Index 0.50** 0.73** 0.66**    

Plant Height 0.90** 0.92** 0.93** 0.60**   

DI 60 DAS -0.83** -0.94** -0.91** -0.70** -0.87**  

DI 45 DAS -0.95** -0.96** -0.94** -0.61** -0.95** 0.92** 

** Significant at P<0.01; * significant at P<0.05. r (24,0.05) =0.388, r (24, 0.01) =0.496 
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The positive correlation between plant height and harvest index is supported by the relationship 

between plant height and grain yield, which showed that as plant height increased, grain yield 

also increases (Figure 13). Studies by Halila and strange (1997) and Mallu et al. (2015) showed a 

positive correlation between plant height and grain yield. Wilt incidence in chickpea leads to low 

dry matter which in turn leads to low grain yield (Figure 7 and 8), hence low H.I values. Wilt 

incidence leads to low population and stunted crop which culminates into low yield (Singh and 

Jha, 2003). Plant height was negatively correlated with Fusarium wilt incidence at 60 DAS and 

45 DAS giving r values of -0.87 and -0.95, respectively (Table 14). These findings are in 

agreement with research studies done by Halila and Strange (1997) who found a positive 

correlation between seed yield, plant height and seed weight. Muhammad (2010) found a direct 

correlation between inoculum density and wilt severity.   

These results were in agreement with Haware and Nene (1980) who reported stunting in infected 

plants. Muhammad (2010) reported a direct correlation between wilt severity and pathogen 

inoculum density. This means that as fungicide rate was increased, plant height was improved 

due to low infection by the pathogen. Maitlo et al. (2014) also found that increasing fungicide 

rates improved shoot height by reducing wilt incidence. Fusarium wilt incidence at 60 DAS was 

positively correlated with Fusarium wilt incidence at 45 DAS with an r value of 0.92 which was 

significant (P<0.01) (Table 14). This means that wilt incidence observed at 45th DAS was likely 

to incite more wilt incidence at 60th DAS and therefore alternative management options should 

be adopted.  
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 CONCLUSIONS 

Six genotypes were found to be moderately resistant (MR), ten were susceptible (S) and the 

remaining four were highly susceptible (HS). None was completely resistant (R). The moderately 

resistant genotypes identified were 95423, 97105, 97114, 97125, 97126 and 97406. 

Under varying rates of carbendazim and thiram, Fusarium wilt incidence (%) was lowest when 

chickpea was seed dressed with 150% of the fungicides. Highest grain yields of 1.4 t/ha were 

recorded when carbendazim and thiram were seed dressed at 150% (2.25 g/kg seed).   

Positive interactions between variety and fungicide treatments were observed on wilt incidence 

of chickpea. Chania 1 needed significantly lower fungicide treatment as compared to Chania 2 to 

achieve a similar level of disease incidence. This means that to achieve effective wilt 

management, it is appropriate to use resistant or moderately resistant varieties and at least 100% 

rate of either fungicide.  

5.2 RECOMMENDATIONS 

1. Screening for resistance/tolerance should be a continuous effort as the pathogen evolves 

new races over time, which could be virulent to hitherto resistant/tolerant chickpea 

varieties.  

2. The moderately resistant genotypes identified in this study should be deployed for use in 

integrating Fusarium wilt resistance in popular chickpeas varieties and thus, management 

of Fusarium wilt disease. 

3. Trials should be done to determine the optimum timing with respect to wilt incidence on 

field crop, the rate and number of alternative fungicide spray(s) required for effective 

management of Fusarium wilt in chickpea. 

4. Further studies to determine the most economic rates of applying thiram and or 

carbendazim for Fusarium wilt management and increased yields for various agro 

ecological zones of Kenya is recommended. 

5. Exploit resistant genes in MR genotypes in molecular mapping to assist in future 

screening and breeding through gene tagging.  
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