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Abstract 

We explore how climate, climate risk and weather affect maize intensification among smallholders 

in Kenya. We find that each plays an important role in maize intensification choice. The economic 

implications of this choice are also analyzed. We find that the share of maize area planted to hybrid 

seeds contributes positively to expected crop income, without increasing exposure to income 

variability or downside risk. The promotion of maize hybrids is potentially a valuable adaptation 

strategy to support the well-being of smallholder farmers, especially if these prove tolerant to a 

wide range of conditions.   
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1. Introduction 

Farmers in Africa are among the most vulnerable to climate change. On the African continent, 

multiple stresses occur at multiple scales; African smallholder farmers, who are among the world’s 

poorest, have limited capacity for adaptation (Boko et al., 2007). Kenya is heavily exposed to 

changing climatic patterns, with serious repercussions for the well-being of farming households 

(Oremo, 2013). Many areas of the country have registered rising seasonal mean temperatures over 

the last 50 years. Regional climate model studies suggest drying over most parts of Kenya in August 

and September, although climate impacts are likely to be unevenly distributed across the country 

(Niang et al., 2014). 

Smallholder farm families pursue various adaptive strategies to cope with climate change, but 

intensification of production - e.g. increased use of hybrid seed and mineral fertilizer - is not 

generally considered to be one of them.  Since the Green Revolution in Asia, researchers have 

debated whether the yields of improved varieties and hybrids are higher but also more variable, 

exposing poor farmers to greater risk (e.g., Anderson and Hazell, 1989). In general, empirical 

evidence on this point depends on the counterfactual (which varieties/hybrids are compared) and 

the geographical scale of analysis. In the major agricultural regions of Kenya, farm families depend 

on maize as a food staple and ready source of cash. Maize growers have high adoption rates and a 

history of growing maize hybrids with and without fertilizer (Mathenge et al., 2014). They have 

limited access to credit and no access to insurance, so they have a strong incentive to plant seed 

that reduces the variance of yields and limits their exposure to downside risk. Preliminary research 

by Jones et al. (2012), who considered several of the major maize-growing agro-ecologies, 

suggested that the use of hybrids in maize production not only enhanced mean yields but also 

reduced downside risk, with no significant effect on yield variance.  

Smallholder agricultural production in rainfed agriculture, like that found in Kenya, relies on 

environmental production conditions that are “exogenously” determined - largely outside the 

control of farm families (Sherlund et al., 2002). Ochieng, Kirimi and Mathenge (2016) estimated 

the effects of climate variability and change in crop revenue on maize and tea revenues earned by 

smallholder farmers in Kenya, finding differences between the two crops; temperature affected 

crop revenues negatively in maize but positively in tea production, while rainfall had a negative 
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effect on income from tea. An analysis by Wineman et al. (2016) explored the channels through 

which exposure to extreme weather in Kenya affects the well-being of smallholder farm 

households, based on longitudinal and spatial analysis of income- and calorie-based measures of 

welfare. The authors found that extreme weather generally affects household welfare via crop 

production, recommending the development of new varieties with enhanced tolerance of dry and 

moist extremes.  

Here, we focus on variety choice. Climate and soil characteristics are rarely incorporated into 

micro-economic analysis of variety choice. Mutiso (1996) showed that farmers in southeastern 

Kenya follow local knowledge systems when choosing the time to prepare land and plant. Other 

agronomic factors also guide planting decisions, especially in areas with sparse rainfall (Sacks et 

al., 2010). Thus, it is important to account not only for environmental conditions, including climate 

and soil quality, but also for factors influencing farm management choices and adaptation options, 

such as human capital (labor supply and quality), financial and physical capital (assets, access to 

credit, farm size and tenure). 

We address two research questions in this paper. First, we ask how climatic shocks, weather and 

climate change affect smallholder decisions to intensify maize production. We measure 

intensification as the share of maize area per farm allocated to hybrid seeds. While controlling for 

relevant covariates as noted above, we differentiate and test the separate effects of climatic shocks, 

climate and weather on hybrid area shares. Climate shocks refer to the number of times during the 

previous decade that each village experienced a serious drought. The term climatology refers to 

climate normals. Climate normals are measured as average weather conditions over a 30-year 

period (1971-2010). Weather indicates the rainfall and temperature registered during the main 

rainfall season of the corresponding data collection year.  

Second, we ask whether and how allocating a higher share of maize area in hybrid seeds per farm 

affects the vulnerability of smallholder income, expressed in terms of expected crop income, crop 

income variability and downside risk. Maize is the primary staple food grown by all smallholder 

farmers in the sample, across a wide range of livelihood types and farming systems. Mathenge et 

al. (2014) report that maize accounts for about 28% of gross farm output in the small-scale farm 

sector and that, outside the semi-arid areas, 98% of households grow maize. Tegemeo Institute 

data, used by Mathenge et al. (2014) and here, show that the share of crop income in household 
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income averages 45%, varying only between 44% and 48% over the years of the survey.  

With reference to the portfolio theory of decision-making, we address the second question by using 

Antle’s (1983) method of moments. Our econometric strategy reflects the structure of our data-

generating process and conceptual frame. We apply our model to four waves of panel data collected 

in the major agricultural regions of Kenya, controlling for time-invariant heterogeneity by applying 

the Mundlak-Chamberlain procedure. We are interested in examining both the maize 

intensification decision and the relationship of maize intensification to income vulnerability in our 

two-stage econometric modeling. We also consider the potential endogeneity of input choices in 

crop income outcomes.  

We contribute to the existing literature in several directions. First, from a methodological 

perspective, we differentiate the roles of climatology, climate shock and weather on input choices 

in a micro-economic context.  Second, we explore the intensification of staple food production 

through the dimension of hybrid seed. The Boserupian hypothesis (Boserup, 1975) suggests that 

population pressures on a declining environmental base generate incentives for intensifying food 

production. In a volatile environmental context, input intensification could aggravate smallholder 

vulnerability. We test this hypothesis.  

Third, in the second stage of the estimation procedure, we include, along with intensification 

variables, climatology, climate shocks and weather as explanatory factors, gauging the impact on 

crop income and risk across agro-regional zones. The inclusion of both climate and weather 

variables allows us to capture the full extent of underlying adaptation decisions (Bezabih et al., 

2014). Thus, our work contributes to illuminating an ongoing debate concerning the appropriate 

measurement methods in adaptation studies.  

Finally, we include detailed information on environmental production conditions, such as climate 

and soil characteristics at the village level, and separate the main rainfall season and short season 

rainfall. The incidence of seasons and their length vary across Kenya’s agro-regional zones, and 

across years. Sherlund et al. (2002) have demonstrated the potential bias in production models of 

failing to control for soil quality. In terms of measurement techniques, we utilize the most advanced 

drought index available (SPEI). The SPEI is a multi-scalar drought index that accounts for the fact 

that the impact of rainfall on the growing cycle of a plant depends on the extent to which water can 

be retained by the soil.   
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2. Theoretical Basis 

A leading paradigm in models of seed-fertilizer adoption since the Green Revolution has been the 

portfolio theory of investment attributed to Markowitz (1952), articulated by Just and Zilberman 

(1983) in terms of trade-offs between the mean and variance of yield distributions, where the choice 

variable was the crop area share allocated to new techniques (here, hybrid seed) with higher mean 

yields as compared to more traditional farmers’ techniques (local maize, no mineral fertilizer).   

However, the approach has been far less commonly applied in the analysis of natural resource 

management. We apply it in the context of intensification choices made under climate change and 

extend it to include skewness effects, following Antle’s method of moments (1983). Recent 

research has demonstrated the importance of the third moment in analyzing climate-related risk in 

agricultural production (Koundouri et al., 2006; Di Falco and Chavas, 2009). Notably, we assume 

that a farm family will maximize the following function:  

max
𝛼𝑡

𝛼𝑡(𝐸𝑡𝑅𝑡+1 − 𝑅𝑓,𝑡+1) −
𝑘1

2
𝛼𝑡

2𝜎𝑡
2 +

𝑘2

3
𝛼𝑡

3𝛾𝑡 
(1) 

where the family chooses to allocate the maize area share of 𝛼𝑡 to the riskier hybrid seeds at time 

t and the other terms are defined as follows: Rt+1 is the return to hybrid maize, from time t to time 

t+1; Rf,t+1 is the return to local maize, from time t to time t+1; EtRt+1 is the conditional mean 

(conditional on the farmer’s information at time t, thus they are written with t subscript) of the 

maize area planted with hybrid seeds and  𝜎𝑡
2 is the conditional variance of the maize area planted 

with hybrid seeds. 

The terms 𝑘1and 𝑘2  are coefficients representing farmers’ risk aversion to yield variance and 

skewness respectively. Higher terms k1 and k2 indicate more conservative farmers who hold less 

hybrid seeds. 

We extend the standard mean variance model by adding skewness, defined as: 

𝛾𝑡 = 𝐸 (
𝑋 − 𝜇

𝜎
)

3

=
𝜇3

𝜎3
 

(1) 

Given the definition of 𝛼𝑡 we can re-define the overall variance of (maize) yields as: 𝜎𝑝𝑡
2 =  𝛼𝑡

2𝜎𝑡
2. 

Similarly, we define the skewness as: 𝛾𝑝𝑡
2 =  𝛼𝑡

3𝛾𝑡.  The return on the input mix (the seeds portfolio) 
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is a linear combination of the simple returns of the riskier and less risky inputs. By definition, the 

input that generates higher means (in this case, the intensifying input, hybrid seeds) also generates 

greater variance.  One of the factors that can contribute to increasing the vulnerability of modern 

agricultural production systems is the utilization of a narrow range of genetic material in plant 

breeding, so that the different varieties grown by farmers are in fact closely related; another is the 

slow turnover of modern varieties in farmers’ fields, although we have no evidence of such a 

situation in Kenya (Smale and Olwande, 2014). 

We assume that the benchmark input set has sufficiently low risk, so that the solution of the 

problems is almost identical to the standard mean-variance model with a riskless asset. The farm 

family prefers a high mean and low variance of returns on the mix. As in the standard mean variance 

model, we assume that the farm family maximizes a linear combination of mean and variance of 

returns from inputs, with a positive weight on the mean and a negative weight on the variance. The 

farm family is averse to results skewed in a specific direction (𝛾𝑡 < 0).  

By solving the first order condition of Equation (1), we can find the optimal share of maize land to 

be farmed with the riskier input set.  

𝐸𝑡(𝑅𝑡+1 − 𝑅𝑓,𝑡+1) − 𝑘1𝛼𝑡𝜎𝑡
2 + 𝑘2𝛼𝑡

2𝛾𝑡 = 0 (2) 

Defining: 

                  𝛥 = 𝐸𝑡𝑅𝑡+1 − 𝑅𝑓,𝑡+1 ;         𝑥 =
𝛥

𝑘1𝜎𝑡
2    ;          𝑦 =  

𝑘2𝛾𝑡

𝛥
  

 

The solution of the maximization problem also can be written as: 

                                     𝛼𝑡 = min (𝛼𝑡 =
1 − √1 − 4𝑥𝑦

2𝑥𝑦
   , 1)       (3) 

In cases where the yield skewness plays a small part, an approximate solution, up to the first order 

in 𝛾, is: 

𝛼𝑡 =
𝛥

𝑘1𝜎𝑡
2 +

𝛾𝑡𝛥2𝑘2

𝑘1
3𝜎𝑡

6 + ⋯ 0(𝛾𝑡
2) 

(4) 
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where  
𝛥

𝑘1𝜎𝑡
2 >

|𝛾𝑡|𝛥2𝑘2

𝑘1
3𝜎𝑡

6   and higher orders are expected to be negligible, because of the way we 

defined the approximation. 

Equation (4) indicates the share of (maize) land on which the farmer is willing to plant riskier 

inputs (hybrid seeds). This share is equal to the risk premium divided by the conditional variance 

times a coefficient representing the risk aversion of the farm family plus a term capturing aversion 

to negative outcomes of the distribution of skewness. By including skewness in the model, we can 

approximate downside risk exposure. Increased skewness of yield (income) implies lower exposure 

to downside risk. Downside risk refers to the probability of zero or negative crop income for a 

smallholder farming family, which is potentially disastrous (Di Falco and Chavas, 2009). Reducing 

downside risk decreases the asymmetry of the yield (income) distribution by shifting it toward 

higher outcomes, holding both means and variances constant (Menezes at al., 1980; Di Falco and 

Chavas, 2009). We can view the short-term decision of a farming family as intended to avert 

negative outcomes or yield fluctuations in a specific direction. 

Figure 1 illustrates the result of the farmer’s maximization problem presented in Equation (4). The 

figure shows the optimal share of (maize) land planted to intensified inputs, for given ranges of 

variance, skewness and expected returns. Figure 1 has some interesting features. First, we notice 

that, for high values of the variance term 𝜎𝑡
2, the distribution of the skewness of the yield does not 

matter in defining the share of land allocated to the risky inputs 𝛼𝑡, as indicated by the almost 

vertical boundary lines for values in the range from 𝛼𝑡 ,=0.1 to 𝛼𝑡 =0.4. However, as variance 

decreases or expected crop income increases (i.e., as we move to the right along the horizontal 

axis), the distribution of yield skewness (captured by 𝛾𝑡)  becomes increasingly relevant in 

determining the family’s allocation to the risky input, up to a point where the variance is very low 

and only extremely adverse distributions of outcomes matter. 
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Figure 1. Optimal (Maize) Land Partition 

 

For example, we can consider an initial land allocation between risky and less risky input 

combinations, defined by the red cross in the graph, where 90% of the area is allocated to intensified 

inputs and 10% to the other input set.  We assume that the distribution of skewness equals zero and 

that the ratio 
𝛥

𝑘1𝜎𝑡
2  equals almost 1.1 for this input choice.   

If skewness increases to high enough positive outcomes, holding the variance constant will cause 

the share  𝛼𝑡 to increase to 1. However, as the distribution of skewness assumes negative outcomes 

(and the farm family fears crop failure), the share of cropland allocated to the intensified input 

decreases. Under downside risk aversion, farm families are adversely affected by downside risk 

(e.g., risk of negative crop income).  We expect that a downside-averse decision maker will invest 

in adaptation strategies to reduce such risk (Menezes et al., 1980; Antle, 1983 and 1987; Di Falco 

and Chavas, 2009). Our research interest in capturing how inputs contribute to the skewness of the 

crop income distribution is greatest when variance is neither too low (and thus there is very little 

risk associated with the second moment of the distribution of crop income), nor is variance 

extremely high.  

The precise shape of the cutting lines in Figure 1 depends on the range of values attributed to the 

expected yields, as well as their variance and skewness. These are determined by the type of crops 

grown and local environmental conditions. Figure 1 provides intuition concerning why, under some 

conditions, the third moment of the distribution of agricultural yields does not seem to be a key 

α=0.2 

α=0.3 

α=0.4 

α=0.5 

α=0.6 

α=0.7 

α=0.8 

α=0.9 
α=1 
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determinant of farmer input choices, although some literature has found it to be crucial (Koundouri 

et al., 2006; Di Falco and Chavas, 2009; Groom et al., 2008; Di Falco and Veronesi, 2014). For 

example, skewness and variance effects might be very different across a country like Kenya, which 

is characterized by the presence of various agro-regional zones. Notably, hybrid seed would be 

preferred in areas where the marginal productivity is higher.  
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3. Empirical Approach 

3.1 Data Sources 

We draw on three comprehensive data sources in our analysis. The first source is household survey 

data collected by Egerton University’s Tegemeo Institute of Agricultural Policy and Development, 

with technical support from Michigan State University, in four rounds (2000, 2004, 2007, and 

2010). Argwings-Kodhek (1999) provides a detailed description of the sample design, which was 

implemented in consultation with the Kenya National Bureau of Statistics (KNBS).  Survey 

instruments are available online (www.tegemeo.org). All non-urban divisions in the selected 

districts were assigned to one or more agro-regional zones based on agronomic information from 

secondary data. The panel dataset comprises eight agro-regional zones. Within each division, 

villages and households (in that order) were randomly selected. The sample excluded large farms 

with over 50 acres and two pastoral areas. The final dataset used in this study contains detailed 

farm-level data from 1,243 agricultural households in 22 districts. Certain village-level covariates, 

such as population density and agro-regional zones, are included in these data and our analysis.  

Second, we associate climate variables developed from the monthly average maximum, minimum 

and average temperature and monthly cumulative precipitation for 107 villages across Kenya from 

1971. These climate data are from the Climatic Research Unit (CRU) TS3.21 dataset (Harris et al., 

2014). We compile climate data to match the main rainy season and the short rains season, taking 

into account local differences in the length and timing of these two seasons. These data were used 

to calculate the SPEI Index; as discussed above, this multi-scalar drought index accounts for the 

impact of rainfall on plant growth in the context of the soil’s capacity to retain water. This in turn 

depends on the characteristics of the soil and on the extent to which sunshine induces evaporation 

(Harari and La Ferrara, 2014). The indicator, developed by Vicente-Serrano et al. (2010), considers 

the joint effects of precipitation, potential evapotranspiration and temperature (PET) in determining 

droughts.  

The SPEI index is an extension of the widely used Standardized Precipitation Index (SPI) (McKee 

et al., 1993), and can be used for determining the onset, duration and magnitude of drought 

conditions with respect to normal local conditions.  Increasingly, the SPEI index is considered an 

improved measure over similar indexes previously used because it provides a better measure of the 

effective amount of moisture received by the soil (Vicente-Serrano et al., 2010; Harari and La 



10 

Ferrara, 2014).2 We employ a three-month SPEI Index (SPEI3), determined for the last month of 

the main rainfall season and comprising also the two preceding months, taking into account 

differences between agro-climatic zones in establishing the reference month. 

Third, we draw on soils data at the village scale from the Harmonized World Soil Database, a 

partnership between the Food and Agriculture Organization (FAO) and the European Soil Bureau 

Network (FAO, IIASA, ISRIC, ISSCAS, JRC, 2012).  

3.2 Estimation Strategy  

Our analysis is conducted in two stages. In the first stage, we analyze the determinants of maize 

intensification, paying particular attention to the role of past climatic shocks (captured by the SPEI3 

index), access to markets (captured by population density) and the price per kg of fertilizer used on 

dry maize from hybrid seeds during the main rainfall season3. Second, we probe how maize 

intensification, along with climate and weather, affect farmers’ welfare under uncertainty, taking 

into account the heterogeneity in agro-regional conditions within Kenya. In this second step, we 

model the production technology as a stochastic production function, assessing its probability 

distribution using the sequential estimation procedure (Antle 1983; Kim and Chavas, 2003). The 

dependent variables in the second step of the estimation procedure are expected crop income, 

variance and skewness of crop income.  

We test and control for the potential endogeneity of maize intensification decisions by estimating 

two-stage least squares. This is a robust estimation method that provides a standard starting point 

for applying instrumental variables (Angrist and Krueger, 2001). In the first stage of the estimation 

procedure, we use the frequency of climatic shocks, the logarithm of population density at the 

village level and the price of fertilizer as instrumental variables for the decision on maize 

intensification. For identification purposes, some of the variables in the equation determining maize 

intensification (Equation 5) can be excluded from the crop income and risk equations (Equation 6). 

                                                           

2 Examples include the SPI, which is based on rainfall only, and on the assumption that temperature and potential 

evapotranspiration have negligible variability compared to precipitation, as well as the Palmer Drought Severity Index (PDSI) 

(Palmer, 1965), which is based on the soil-water balance equation on a fixed temporal scale between 9 and 12 months. 
3 By dry maize, we refer to maize grown and harvested dry, rather than green. Price is averaged over fertilizer types, of which the 

dominant type applied to hybrid maize was Diammonium Phosphate (DAP).  
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In the first stage of our estimation, we use Equation (5) to represent the optimal strategy undertaken 

by the representative farm household:  

𝛼𝑖𝑡 = 𝛼 (𝑥𝑖𝑡
ℎ , 𝑥𝑟

𝑠, 𝑥𝑟𝑡
𝑣 , 𝑥𝑖𝑘𝑡

𝑝 , 𝑥𝑖𝑡
𝑓 

, 𝑥𝑟𝑡
𝐶𝑅 , 𝑥𝑟𝑘

𝑐 , 𝑥𝑟𝑘𝑡
𝑤 , Za;  𝛾 ) + 𝜀𝑖𝑡      (5) 

The subscript 𝑖𝑡 denotes the 𝑖𝑡ℎ farm household in year 𝑡, while the subscript r is used for village-

level observations and k indexes the rainfall seasons. Terms γ and 𝜆 are vectors of parameters, 

and εit is the household-specific random error term. The dependent variable 𝛼𝑖𝑡 is a continuous 

variable indicating the share of land planted with hybrid seeds of dry maize. 

3.3 Explanatory Variables 

Definitions for each variable are presented in Table 1. Descriptive statistics of the variables used 

in this study are presented in Table 2.  

Vectors 𝑥𝑖𝑡
ℎ , 𝑥𝑖𝑡

𝑓 
,  include household and other farm characteristics respectively.  The human 

capital resources of the household are measured as the number of adult men and adult women in 

the household with a secondary education. Financial capital is measured in terms of livestock 

wealth, access to credit at the village level, and salaries and remittances, which provide liquidity 

that is uncorrelated with crop income. Farm physical capital is represented by scale of land 

cultivated, with a dummy variable indicating ownership by deed.  

Vector 𝑥𝑖𝑘𝑡
𝑝  includes the farm price for fertilizer applied to hybrid maize grown during the main 

rainfall season,4 while the vector 𝑥𝑟𝑡
𝑠  includes soil quality information at the village level. Vector 

𝑥𝑟𝑡
𝑣  includes the logarithm of population density at village level.  

Of special interest is vector 𝑥𝑟𝑡
𝐶𝑅, capturing how climatic risk affects intensification decisions. This 

vector includes a climate risk proxy stemming from the SPEI3 index, determined for the last month 

of the main rainfall season, taking into account differences between agro-climatic zones in 

establishing the reference month. Notably, we include the number of times during the previous 

decade that the value of the SPEI3 was lower than -1.65. This value indicates the exposure of the 

village to serious drought stress. The SPEI3 drought index expresses the incidence of past droughts 

                                                           

4 If the household did not buy fertilizer for this crop during the main rainfall season, the village’s average is used. 
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(climatic shocks) as determinants of input choices. Vectors 𝑥𝑟𝑡
𝑐 , 𝑥𝑖𝑡

𝑤 include climate and weather 

information. Vector Za contains agro-regional zones fixed effects. We include them in the analysis, 

as we believe that being in a specific agro-regional zone affects significantly the farm management 

decisions. For examples, the way farmers adapt to climate change might differ significantly 

depending on whether the farm is located in a zone with a bimodal or unimodal rainfall regime.  

The role of variable 𝛼𝑖𝑡, representing farmers’ decisions on the intensification of production, enters 

the second stage of our estimation strategy via the predictions from the system of Equation (1). 

Through this second step, we investigate how intensification affect farmers’ expected crop income 

under risk.  

In order to capture the full extent of risk exposure, we assess the impact of intensification strategies 

on the distribution of expected crop income (Equation 6a), its variance (Equation 6b) and skewness 

(Equation 6c). To do this, we follow Antle’s moment-based approach to specify the stochastic 

structure of the model. 

Accordingly, the estimated relationship between crop income risk equations, climatic variables, 

maize intensification decisions and other covariates is given by: 

ln 𝑦𝑖𝑡 = α + 𝛽𝑤𝑤𝑟𝑘𝑡 + 𝛽𝐶𝑐𝑟𝑘 +  𝜇 𝑥i,t + 𝜑𝑠r + 𝜗𝛼̂𝑖𝑡 + ξZa + 𝜀𝑖𝑡 (6a) 

𝜀𝑖̂𝑡
2 = α + 𝛽𝑤𝑤𝑟𝑘𝑡 + 𝛽𝐶𝑐𝑟𝑘 +  𝜇 𝑥i,t + 𝜑𝑠r + 𝜗𝛼̂𝑖𝑡 + ξZa + 𝜀𝑖̌𝑡 (6b) 

𝜀𝑖̂𝑡
3 = α + 𝛽𝑤𝑤𝑟𝑘𝑡 + 𝛽𝐶𝑐𝑟𝑘 +  𝜇 𝑥i,t + 𝜑𝑠r + 𝜗𝛼̂𝑖𝑡 + ξZa + 𝜀𝑖̃𝑡 (6c) 

The subscripts 𝑖, 𝑡, r and k are defined as in Equation 5. The dependent variable ln𝑦𝑖𝑡 denotes the 

logarithm of crop income for the 𝑖𝑡ℎ farm household at year 𝑡.5 We incorporate both weather and 

climate measures as determinants of farm-level crop income and risk, as presented in Equation 6. 

Therefore, 𝑤𝑟𝑘𝑡  is a vector of weather variables: temperature (minimum and maximum) and 

precipitation (monthly cumulative) in year t, while 𝑐𝑟𝑘 is a vector of climate normals for the mean 

                                                           

5 In order to treat the zero values in the sample, which would result into a reduction of the sample size, we add the constant 1 to 

each variable before taking the natural logarithm i.e.: ln(variable)=ln[1 + (variable)]. By doing this, we ensure that all of the 

logarithms will exist. 
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temperature and cumulative rainfall. Both vectors refer to village r, for the main rainfall season 

(k=1). Vector  𝑥𝑖𝑡  includes socioeconomic and physical farm characteristic variables at time t. 

Vector 𝑠r contains soil quality variables, available at the village level. Za is a set of agro-regional 

zone fixed effects. These dummy variables can capture exogenous variables that vary by agro-

regional zone but have not been measured. 

The coefficients 𝛽𝑤, 𝛽𝑐 , 𝜇, 𝜑, , 𝜗 and ξ represent the vectors of parameter estimates for each 

associated vector of variables, while 𝜀𝑖𝑡 is the error term. The composite error term is composed of 

a normally distributed random error term, 𝑢𝑖𝑡~𝑁(0, 𝜎𝑢
2), and an unobserved household specific 

time-invariant component (𝑞𝑖), as follows: 

𝜀𝑖𝑡 = 𝑞𝑖 + 𝑢𝑖𝑡           (7) 

Similarly, 𝜀𝑖̌𝑡 and 𝜀𝑖̃𝑡 are the composite error terms for the variance Equation (6b) and the downside 

risk Equation (6c) respectively, and have the same distribution properties as 𝜀𝑖𝑡.  

The panel structure of our dataset necessitates the use of a fixed effect estimator that permits the 

time-variant regressors to be correlated with the time-invariant component of the error term, while 

assuming that these regressors are uncorrelated with the idiosyncratic error. This estimation 

provides consistent parameters even if there is correlation between the independent variables and 

time-invariant unobserved heterogeneity such as soil quality. The estimation of an instrumental 

variables model with fixed effect methodology would allow us to test and control for potential 

endogeneity caused by a correlation between decisions regarding intensification and vulnerability 

outcomes. However, standard fixed effect models rely on a data transformation that removes the 

individual effect. 

We have previously discussed the importance of including in our framework variables that are by 

their nature time-invariant regressors, such as climatology and soil quality variables. One way to 

include time-invariant variables while addressing endogeneity is to estimate a random effects 

model while controlling for unobserved heterogeneity using the Mundlak-Chamberlain approach 

(referred to as the pseudo-fixed effects model). Following Mundlak (1978) and Chamberlain (1982, 

1984), the right-hand side of our regression equation includes the mean value of the time-varying 

explanatory variables. This approach relies on the assumption that unobserved effects are linearly 

correlated with explanatory variables. Thus, the unobserved household specific time-invariant 

component in Equation (7) can be specified as: 
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𝑞𝑖 =  𝜁𝑥̅ +  𝑣𝑖   

where 𝑥̅ is the mean of the time-varying explanatory variables within each farm household (cluster 

mean), 𝜁 is the corresponding vector coefficient, and 𝑣𝑖   is a random error unrelated to the 𝑥̅′s. The 

vector 𝜁  will be equal to zero if the observed explanatory variables are uncorrelated with the 

random effects. The use of the Mundlak-Chamberlain device also addresses the problem of 

selection and endogeneity bias where these are due to time-invariant unobserved factors, such as 

household heterogeneity (Wooldridge, 2002). If we failed to control for these factors, we would 

not obtain consistent parameter estimates. Moreover, estimation of parameters 𝜁 allows us to test 

for the relevance and strength of the fixed effects via an F test, performed for the endogenous 

variable. 

4. Results 

First-stage regression results for the potentially endogenous variable are reported in Table 3. 

Frequent past climatic shocks, as manifested by drought incidence, reduce the maize area share per 

farm allocated to hybrid seeds. Looking at the weather variables, extreme temperature influences 

maize intensification. Maximum temperature has a negative (insignificant) impact on 

intensification of production at an increasing rate (significant), while minimum temperatures have 

the opposite signs with the same significance. Higher rainfall has a significant, positive correlation 

with hybrid seed use, at a decreasing rate. Farmers in areas where the weather is more favorable 

tend to allocate more maize area to hybrid seeds; temperatures are lower in the areas with the 

highest historical adoption rates.   

Population density has a positive correlation with maize intensification, consistent with the 

Boserupian hypothesis. The presence of educated men in the household has a positive impact on 

the adoption of maize hybrid seeds, since education provides access to information, services and 

communication, as well as the potential to utilize these more effectively. 

Fertilizer price has the expected negative sign but is not a statistically significant determinant of 

maize area shares planted to hybrid seed. Other research in Kenya has suggested that Kenyan 

farmers tend to apply non-optimal quantities of mineral fertilizers. Ogada et al. (2010) found that 

most Kenyan farm households apply insufficient quantities of mineral fertilizers; Sheahan (2011) 

and Marenya and Barrett (2009) found the opposite. Our empirical model does not enable us to 
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draw conclusions regarding the quantitative response of fertilizer application rates on maize to 

price variation, but only regarding the jointness of use of mineral fertilizers and hybrid seed. In 

about 90% of the plots in our dataset where maize hybrid seeds are planted during the main rainfall 

season, mineral fertilizers were also applied.6  Also using the Tegemeo dataset, Smale et al. (2015) 

found a strongly significant and expected negative sign for the relationship between nitrogen 

nutrient kgs per ha of maize and the fertilizer price.  

Wealthier farm families and families with higher human capital resources are more likely to plant 

a larger share of their land with hybrids. There is no statistically significant evidence that those 

farmers living in villages with less binding expenditure constraints are planting larger land shares 

with hybrid seeds. Credit is not provided directly for maize production in Kenya, but farmers who 

obtain credit for other purposes may also be more likely to plant hybrids (such as tea growers in 

the highlands). A larger land endowment is negatively associated with the land share allocated to 

maize hybrid seed planted, suggesting that larger landowners might allocate a larger land share to 

other crops, such as cash crops, instead of staple crops. Soil quality strongly affects intensification 

decisions. 

Table 4 reports the results for the second stage regressions. We address the issue of the instruments’ 

relevance using an F test of the joint significance of the excluded instruments, reported at the 

bottom of Table 3. The F statistic is greater than 10. This result indicates the strength of the chosen 

instruments (Staiger and Stock, 1997). The choice of instruments seems appropriate and we turn to 

discussing our main regression results. 

Column (1) reports the impact of intensification of production on expected crop income. Consistent 

with previous research, a larger share of maize area per farm allocated to hybrid seed tends to 

positively affect expected crop income (Jones et al., 2012; Mathenge et al. 2014). To capture the 

full extent of how these management decisions determine risk exposure, we also report both the 

farm-specific variance function (Column 2) and the skewness function (Column 3) for crop income.  

We find no evidence that a larger share of land allocated to dry maize hybrid seeds (intensification) 

increases risk, either in terms of variance (this finding is consistent with Jones et al. (2012)) or 

                                                           

6 The remaining 10% of observations have missing values regarding the application of mineral fertilizers on the plot; thus, we 

cannot exclude the possibility that the percentage of the plot farmed with hybrid seeds where mineral fertilizers was applied is 

even higher.  
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skewness of the distribution of crop income. The share of maize area allocated to hybrids has no 

significant impact on either the variance or the skewness of crop income. Thus, planting a greater 

area with maize hybrid seed contributes positively to mean crop income, with no statistically 

significant impact on the other risk equations.  

In general, long-term impacts are larger than short-term effects, a result also found in Bezabih et 

al., (2014). Looking at weather, the squared temperature and precipitation coefficients are generally 

significant. This finding implies that the model is nonlinear.  The fact that the squared terms are 

positive or negative reveals that seasonal effects are convex or concave, respectively. The 

maximum diurnal temperature correlates negatively with expected crop income, whereas higher 

minimum temperature is beneficial. Furthermore, higher diurnal temperature is associated with 

crop failure. Several agronomic studies confirm that maize reacts differently to maximum and 

minimum temperature (Harrison et al., 2011). Rainfall during the current main rain season has a 

bell-shaped relationship with crop income. Looking at the crop income equation (Column 1) we 

also notice that the coefficients associated with temperatures are much larger than the coefficients 

associated with rainfall. This result confirms those of Kabubo-Mariara and Karanja (2007), who 

concluded that, in Kenya, the temperature component of global warming is much more important 

than precipitation. Interestingly, weather, but not climate, has an impact on the third moment of the 

distribution of crop income. 

The impacts of climate normals on expected crop income are very similar, generally larger than 

the impacts of weather, but not statistically significant. An increase in rainfall climatologies 

enhances the risk associated with the variance of the distribution of agricultural yields, as well as 

the risk of crop failure. This result is probably related to the fact that most of the agriculture in the 

country (and in our sample) is rainfed and depends strongly on the quantity and distribution of 

rainfall across space and time. 

Soil quality is an important determinant of farm crop income. Higher values associated with the 

gravel variable indicate higher percentage of materials in the soil that are larger than 2mm. In areas 

where this type of soil is predominant, farming is more difficult and plant life is sparser. Notably, 

the higher the value associated with gravel soil, the lower the ability of the soil to retain moisture, 

and the lower the presence of mineral nutrients. Henceforth, the negative coefficient associated 

with this variable complies with our expectations.  pH is a measure for the acidity and alkalinity of 
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the soil, measured in concentration levels (-log(H+)). pH between 5.5 and 7.2 (acid to neutral soil) 

offers the best growing conditions, and the mean value of the sample is in this range. Higher pH 

(associated with alkaline soils) is negatively correlated with crop income. Furthermore, farmers in 

Kenya tend to apply DAP as the main fertilizer type on dry maize from hybrid seeds, when they 

need to increases the soil pH. This application might, however, also increase acidity of the land 

over the medium to long-term.  

Farm size, as expected, plays an important, positive role in determining crop income, as does the 

value of livestock assets. Higher shares of remittances and other salaries in total household income 

negatively affect crop income, probably because farmers with outside options in terms of income 

diversification have lower incentives to take management and investment decisions to improve 

maize farming conditions.  

Whether the family has a title deed over the land it operates is not statistically significant on 

expected crop income. However, the associated coefficient is negative; indicating that land tenure 

insecurity could be detrimental to crop income. Since the ratification of the new constitution in 

Kenya, land tenure and entitlement has been a prominent concern. This finding suggests that land 

certification could be an effective policy instrument to buffer against climate anomalies. The 

presence in the household of women with secondary education is positively correlated with crop 

income and reduces the risk of crop failure. This result highlights the importance of human capital 

in efficiently managing agricultural technology. 
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5. Conclusions and Implications 

In this paper, we have analyzed two major research questions. First, we have explored how 

climatology, weather, and climate shocks affect maize intensification, other factors held constant. 

Second, we have tested whether maize intensification affects the vulnerability of smallholder 

farmers to crop income variability and downside risk, in the presence of these factors. We have 

defined maize intensification as the maize area share per farm allocated to hybrid seed (much of 

which is fertilized). Drawing from and extending the portfolio theory of investment choice, we 

estimated a two-stage model to identify the determinants of input use and assess the effects of input 

use on the mean, variance and skewness of crop income among smallholder farmers in Kenya. We 

focus on maize production, considering the importance of this crop not only as a food staple but 

also an income source in Kenya. In order to include time-invariant variables such as soils and agro-

regional fixed effects, while addressing endogeneity, we estimate a random effects model while 

controlling for unobserved heterogeneity using the Mundlak-Chamberlain approach (referred to as 

the pseudo-fixed effects model).  We extend the portfolio investment approach previously applied 

to the analysis of input use decisions by incorporating and differentiating the effects of weather, 

climate change and climatic shocks.  

Our approach enables us first to demonstrate that maize intensification is strongly affected by 

weather, climate shocks and climatology, in addition to commonly cited, household-farm 

characteristics such as education, wealth, access to credit and off-farm earnings. Next, we find that 

maize intensification has a positive effect on expected crop income but has no significant effect on 

crop income variability or downside risk. Moreover, relying on a higher proportion of hybrid seed 

use, which is negatively associated with persistent climatic shocks, is not enough to statistically 

significantly reduce the likelihood that crop income falls below a given threshold (downside risk). 

Importantly, cropping system decisions are related to longer-term investment choices, while 

decisions on specific hybrid types are, rather, annual decisions.  

Thus, maize intensification is not in and of itself an effective strategy in the face of climate change 

and climate shocks. Further, our results suggest that farmers are not adapting optimally to climate 

change. Suboptimal choices might reflect multiple market failures, such as credit constraints, poor 

access to input and output markets and information asymmetries.   
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In addition to these major findings, our empirical analysis confirms the need to account for agro-

regional zones and soil quality variables in microeconomic models of input use and adaptation 

strategies. Omission of these factors could cause biased estimates of included coefficients. 

Regression results support the Boserupian theory that rising population density provides incentives 

for the shift toward more intensive farming systems. Finally, we find trade-offs between nonfarm 

employment and crop income, indicating changing dynamics of income in rural communities as 

Kenya urbanizes.  

Our findings lead us to recommend that the Government of Kenya play an active role in 

encouraging smallholder adaptation to changing climate patterns and climate shocks. In Kenya, 

multiple market failures include poor or non-existent insurance, so that farmers use other risk-

coping mechanisms, which can be weak (Fafchamps, 1992; Kurosaki and Fafchamps, 2002). Safety 

nets typically provide only limited support (Dercon and Krishnan, 2000; Dercon, 2004), while off-

farm income that is not covariant with agricultural shocks is limited in more remote rural areas. In 

this context, smallholder maize growers need other adaptation mechanisms than the use of hybrid 

seed as a strategy to buffer against downside risk. Not only do smallholders need continued 

improvement of access to well-adapted hybrid seed and other inputs through decentralized, 

competitive markets but also effective, widely-diffused market information services and other 

insurance mechanisms. Helping farmers learn about weather, climate, production and post-harvest 

handling, as well as other adaptation strategies, would be beneficial. 
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Table 1. Variables Definitions 

Variable Description 

Farm specific variables (Source: Tegemeo) 

Crop income (KES) Value of crop production minus input and land preparation costs 

(labor and seeds costs excluded). 

Price fertilizer (KES) Farm price fertilizer for dry maize from purchased hybrids. If the 

household did not buy fertilizer for this crop category, the village’s 

average is used. 

Educated men No of adult men with secondary education 

Educated women 

Livestock assets (KES) 

No of adult women with secondary education 

Total nominal value (KES) of livestock assets 

Credit village Proportion of village households that received credit, by year 

Salaries & remittances  Share of salaries and remittance earnings in total household income  

Land total household land area (ha)  

Land title deed =1 if land owned with no title deed,  0 otherwise 

Village-specific climate characteristics (Source: CRU TS3.21) 

SPEI3 Index  

 

 

 

 

 

 

Droughts_165 

3 months Standardized Precipitation-Evapotranspiration Index 

(SPEI3) for the last month of the main rainfall season (January, 

July or August, depending on the division and agro-regional zone 

to which each village belongs) and the two preceding months. We 

calculated the SPEI index manually, using the R routines developed 

by Vicente Serrano et al. (2010). SPEI index for each location is 

based on monthly precipitation and rainfall at village level, 

downloaded from the CRU TS3.21 dataset (Harris et al., 2014) for 

the period 1971-2012. 

Number of times in the last decade# the value of the spei3 was <-

1.65 in the last month of the main rainfall season. 

Temperature max (°C)* 

 

Temperature min (°C)* 

 

Temperature average (°C)* 

 

Rainfall (mm/mo)* 

Monthly average maximum air temperature (°C) during the major 

rainfall season 

Monthly average minimum air temperature (°C) during the major 

rainfall season 

Monthly average average air temperature (°C) during the major 

rainfall season 

Cumulated rainfall (mm/mo) during the major rainfall season 

Temperature average 

climatologies* 

Average air temperature (°C) 1971-2010 during the major rainfall 

season 
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Rainfall climatologies 

(mm/mo)* 

Cumulated rainfall (mm/mo) 1971-2010 during the major rainfall 

season 

Village-specific soil characteristics (Source: World Soil database) 

AWC_mm 

 

Ph top soil (-log(H+)) 

 

Gravel top soil (%vol) 

Available water storage capacity class of the soil unit, measured in 

mm/m 

pH measured in a soil-water solution. It is a measure for the 

acidity/alkalinity of the soil 

Volume % gravel (materials in a soil larger than 2mm) in the  

topsoil (i.e. 0-30 cm) (%vol) 

Village level socio economic variables & Agro-regional Zones 

Population density Village population density (cap/km²) 

Agro-regional zone  HPMZ high potential maize zone (26.6%); CHI central highlands 

(19.4%), WLO western lowlands (12%); WTR western transitional 

(11.7%);  ELO eastern lowlands (11.3%); WHI western highlands 

(10.3%); CLO coastal lowlands (5.9%); MRS marginal rain 

shadow (2.7%). Percentages indicate the frequency of farms in our 

sample in each agro-regional zone. 

*We take into account the relevant cropping season: e.g. for villages in the Rift Valley, the reference period is March 

(year-1) to (August year-1). # Reference Decades: 1989-1999 for 2000; 1993-2003 for 2004; 1996-2006 for 2007; 

1999-2009 for 2010. 
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Table 2. Descriptive Statistics 

Variables  Mean Std. Dev.  Min Max 

Farm-specific variables 

Crop income (KES) 87,911 142,264 0  3,883,123 

Hybrid seeds (maize land share) 0.338 0.323 0  1 

Price fertilizer (KES) 37.08 18.03 0.32  700 

Educated men 0.89 0.98 0 10 

Educated women 0.71 0.81 0 6 

Livestock assets (KES) 81,366 217,682 0  8,679,900 

Credit village 0.47 0.30 0 1 

Salaries & remittances income share 0.18 0.24 0 1 

Land  5.80 8.72 0 157 

No land title deed dummy 0.36 0.48 0 1  

Village-specific climatic variables 

Temperature max (°C) 26.56 3.63 19.12 33.47 

Temperature min (°C)  14.04 3.76 7.523.95 

Temperature average (°C) 20.27 3.62 13.3 28.67 

Rainfall (mm/mo) 708.75 209.29 145  1154.1 

Temperature average climatologies (°C) 19.57 3.69 13.61 27.89 

Rainfall climatologies (mm/mo) 708.95 186.32 184.58 946.44 

SPEI3 Index -0.18 1.01 -2.28 2.24 

Droughts_165 0.74 0.72 0 2 

Village-specific soil characteristics 

AWC_mm149.42 3.77 125  150 

Gravel top soil (%vol) 1.25 4.09 0  28 

Ph top soil (-log(H+)) 5.75 1.04 4.5  8.9 

Village-specific socio economic variables 

Population density  363.47 214.88 16.43 1,245.11  
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Table 3. Estimation results – First Stage regressions 

 share acreage under purchased hybrids   

Droughts_165 -0.0565***   [0.0085] 

ln population density 0.3534*** [0.0536] 

ln fertilizers price -0.0163 [0.0104] 

Temperature max -0.2010 [0.1514] 

Temperature max squared 0.0059** [0.0029] 

Temperature min  0.0581 [0.0657] 

Temperature min squared -0.0042* [0.0022] 

Rainfall 0.0004* [0.0002] 

Rainfall squared -2.81e-07** [1.41e-07] 

Temperature average climatologies -8.2869*** [1.1446] 

Temperature average climatologies squared 0.1481*** [0.0257] 

Rainfall climatologies -0.0133*** [0.0039] 

Rainfall climatologies squared 6.02e-06** [2.36e-06] 

AWC_mm 0.0008 [0.0030] 

Ph top soil 0.0892*** [0.0117] 

Gravel top soil 0.0087*** [0.0019] 

ln livestock assets 0.0060* [0.0031] 

ln credit village 0.0468 [0.0323] 

no land title dee dummy -0.0045 [0.0092] 

ln educated men 0.0267** [0.0120] 

ln educated women 0.0012  [0.0121] 

ln salaries & remittances income share 0.0558 [0.0347] 

ln land -0.0466*** [0.0125] 

Agro-regional FE Yes 

F test of excluded  instruments F(5, 4041)=30.58 

Observations 4,085 

Notes: pseudo-fixed effect estimation. Robust standard errors in brackets. 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 4. Estimation results – Second Stage regressions (Pseudo Fixed Effects Estimation) 

 (1) ln_crop Income (2) Variance (3) Skewness 

share acreage under purchased 

hybrids 
0.8873*** [0.2615] -0.4921 [0.4843] -1.8270 [60.4570] 

Temperature max -3.3191*** [0.4660] 0.9754 [1.0438] 

-12.4135**

 [6.2528

] 

Temperature max squared 0.0637*** [0.0091] -0.0175 [0.0200] 

0.2433*

 [0.1661

] 

Temperature min  1.9952*** [0.2060] -0.4800 [0.4717] 

5.3069*

 [3.0216

] 

Temperature min squared -0.0659*** [0.0071] 0.0146 [0.0150] 

-0.1723*

 [0.0934

] 

Rainfall 0.0068*** [0.0006] -0.0005 [0.0007] 

0.0065

 [0.0208

] 

Rainfall squared 
-4.42e-06***[3.82e-

07] 
-1.41e-07[4.44e-07] 

-4.14e-06  

[0.00002] 

Temperature average climatologies -2.6787 [8.1524] -9.1297 [30.8128] 

6.2084

 [4944.3

] 

Temperature average climatologies 

sq. 
0.0826 [0.1686] 0.1458 [0.6034] 

0.0967       

[100.828] 

Rainfall climatologies -0.0037 [0.0088] 0.0270 [0.0271] 

-0.0289

 [3.9933

] 

Rainfall climatologies sq. 5.55e-06  [6.30e-06] -0.00002*[0.00002] 

0.00003

 [0.0029

] 

AWC_mm -0.0008 [0.0133] 0.0593** [0.0273] 

0.0228

 [0.3569

] 

Ph top soil -0.4427*** [0.0447] 0.0831 [0.0689] 

0.1851

 [1.4567

] 

Gravel top soil -0.0449*** [0.0087] -0.0083 [0.0170] 

-0.0250

 [1.0743

] 

ln livestock assets 0.0456*** [0.0096] -0.0268* [0.0159] 

0.2112

 [0.3059

] 
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ln credit village 0.3046*** [0.1029] 0.3764* [0.2040] 

-2.1129

 [2.8854

] 

no land title dee dummy -0.0365 [0.0273] -0.0742** [0.0308] 

0.2418

 [0.1665

] 

ln educated men 0.0093 [0.0386] 0.0813 [0.0504] 

0.0534

 [1.3603

] 

ln educated women 0.0992** [0.0462] -0.1979 [0.1217] 

1.2878*

 [0.6849

] 

ln salaries & remittances income 

share 
-1.0519*** [0.1429] 0.5615 [0.4673] 

-4.9736

 [6.7722

] 

ln land 0.4596*** [0.0464] 0.1290* [0.0731] 

-0.7405

 [2.9065

] 

Agro-regional FE Yes Yes Yes 

Observations 4,085 4,085 4,085 

Number of hhid 1,166 1,166 1,166 

Notes: Pseudo-Fixed effect estimation. Robust standard errors in brackets. *** p<0.01, ** p<0.05, * p<0.1. 

 


