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ABSTRACT 

 In most laser applications it is necessary to focus, modify or shape the laser beam by 

using lenses and other optical elements. The most important characteristic of a lens is its focal 

length. The focal length of a lens gives a measure of how strongly the lens either converges 

or diverges light. When the lens is imperfect, it generates aberrations. This imperfection 

could be due to disfigured or imperfectly figured optics and misalignments of the lens in an 

optical system. It’s important to determine how the aberrations affect the focal length and 

hence the imaging properties of the lens and find ways of minimizing or eliminating these 

effects. This will improve the quality of the experiments and results achieved. Also in case of 

imperfect lenses e.g. those with cracked or deformed surfaces, cost of new purchases will be 

saved in that the imperfect lenses can still be used and the aberrations generated corrected. 

This thesis reports a theoretical and experimental investigation of the focal length of a lens 

generating aberrations. A theoretical model was formulated by considering the general case 

of a Gaussian laser beam passing through a lens with arbitrary aberrations and finite aperture. 

By considering the difference between the incoming and outgoing effective radii of 

curvature, an expression for the lens focal length as a function of the aberrations present was 

derived. In order to test the model, a lens with various aberrations was simulated with phase 

holograms in the laboratory. Primary aberrations with selected coefficients were programmed 

onto a phase Spatial Light Modulator whose Liquid Crystal Display (LCD) was active in 

reflective mode only. On striking the LCD, the incoming laser beam was reflected off it and 

into a two-dimensional Shack-Hartmann wavefront sensor. The sensor used binary optic 

lenslet arrays to directly measure the wavefront slope (phase gradient) of the laser beam. By 

integrating these measurements over the lens aperture, the wavefront or phase distribution 

was determined and the laser beam parameters presented in terms of Zernike polynomial 

coefficients. From these, Zernike primary aberrations affecting the field curvature 

immediately before and after the lens which in turn affects the accurate determination of its 

focal length was analysed from the graphs of lens power against aberrations and calculated 

using Mathematica software. The theoretical results show that out of all the primary 

aberrations used, only three, namely spherical, defocus and x-astigmatism aberrations have 

significant effect on the lens focal length. The presence of x- astigmatism creates two focal 

planes, one in the horizontal plane and the other in the vertical plane. This means that if x- 

astigmatism is non zero then the lens will have two focal planes. The experimental result 

validates the theoretical model satisfactorily. 
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 CHAPTER ONE 

1.0 INTRODUCTION 

1.1 Background Information 

 In the study of transmission and reflection of light through an optical system it is 

often advantageous to consider the paraxial approximation in which the beam travels along 

an optical axis and directions close to it. In such a context the illumination may be identified 

as a combination of axial waves of light for which the angles are all small. If a typical angle 

is θ radians, it designates the situation in which cosine θ may be well approximated by 

21
1

2
  as paraxial (Sudarshan et.al, 1983). A common situation in which the paraxial 

approach fails is when aberrations are present. Aberrations are departures of the performance 

of an optical system from the predictions of paraxial optics. They occur when light from one 

point of an object after transmission through the system does not converge into (or does not 

diverge from) a single point. This leads to blurring of the image produced by an image-

forming optical system. There are several causes of aberration such as,  

i. Disfigured or imperfectly figured optics since rarely is an element made exactly to 

specifications. 

ii. Misalignments. If the mirrors in a multiple-element system are not perfectly aligned, 

aberrations will result. These can be derived (third-order) from the aberration 

expressions for decentred elements. 

iii. Forced surface deformations caused by thermal variations and improper mounting. 

iv. Air currents / turbulence. 

For a laser beam propagating in the Gaussian form, i.e. a beam whose intensity is highest at 

the centre and diminishes around the edges, it is more appropriate to introduce the aberrations 

as a phase function that modifies the wavefront of a laser beam. A wavefront is the surface 

that is normal to the direction of propagation of light, and it represents all the points of an 

oscillating electric field having equal phase. Since the phase function is usually located at the 

exit pupil of the optical system then it means that the departure of the actual wavefront is 

with respect to an ideal spherical wavefront given by paraxial optics, (Alda et.al, 1997). 

A lens is the most basic optical imaging device available to an optics researcher. The focal 

length is the most important parameter in the optical performance of a lens. Several methods 

http://en.wikipedia.org/wiki/Paraxial_optics
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are available for the measurement of the focal length which includes determining the change 

of curvature of the field immediately before and after the lens. If aberrations are present in 

the lens then the curvature is defined as the average curvature of the field. The optical lens 

has been studied previously in terms of classical optics to determine its aberrations (Mahajan, 

1998). Yet to date no study has been done to link the aberrations of the lens to its focal 

length. This work attempts to formulate a simple formula that can be used to determine the 

focal length of an aberrated lens based on the analysis of the input and output laser beams. A 

general case of a Gaussian laser beam passing through a lens with arbitrary aberrations and 

finite aperture will be considered. By noting the difference in the incoming and outgoing 

effective radius of curvatures, an expression for the focal length as a function of the 

aberrations in the beam will be derived. 

 To achieve this experimentally, a two dimensional Shack-Hartmann wavefront sensor 

that uses Zernike polynomials to expand the wavefront aberrations was used. The primary or 

low order Zernike polynomials are related to these aberrations up to a third order: tilt, 

astigmatism, spherical, triangular astigmatism, defocus and coma aberrations.  The wavefront 

sensor gives its measurements in terms of Cartesian coordinates i.e. the x and y axis although 

the laser beam has a cylindrical geometry. The measurements provide the required data for 

evaluation of the influence of aberrations in the lens focal length. This influence can be 

deduced from the formalism presented in this thesis. 

 This work is organised as follows. Chapter one gives the introduction. Chapter two 

details the historical background of the work, followed by the theory of aberrations and the 

theoretical model for calculating the focal length including the tensor formulation used to 

calculate beam size and curvature in both cartesian and cylindrical form. In chapter three, the 

experimental methods together with the equipment used are presented. Chapter four gives the 

results, analysis and discussion. Finally conclusion, recommendations and references are 

presented.  

1.2 Statement of the Problem 

 In optical experiments using lenses, it’s important to know how the lens focal length 

impacts on the laser beam that is transmitted through it. In some cases the lens is imperfect 

and therefore generates aberrations which have effects on individual or collective property of 

the laser beam. Hence there is need to determine which specific aberrations being generated 

have an effect on the lens focal length and how to correct for the aberrations so as to improve 

the quality of the image formed. 
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1.3 Objectives 

1.3.1 General Objective 

 To determine how the aberrations generated by an imperfect lens in any optical 

system affects the focal length of the lens together with the imaging properties of the lens and 

how to minimise or eliminate these undesirable effects. 

1.3.2 Specific Objectives 

(i). Determine how the primary aberrations affect the curvature of the lens field immediately 

in front and after the lens. 

(ii). Develop a theoretical model for calculating the focal length of a lens generating 

aberrations. 

(iii). To test the formulated theoretical model. 

1.4 Hypotheses 

(i). None of the primary aberrations have an effect on the curvature of the field surrounding 

the lens. 

(ii). Not all the primary aberrations used to formulate the theoretical model affect the lens 

focal length. 

(iii). The theoretical and experimental results are a reasonable match. 

1.5 Justification of the Study 

 There is continued need to know the properties of optical devices especially lenses in 

the expanding optical industry. The quality of image formed has been associated with the 

nature of the lenses used, some of which introduces aberrations. As such, it is important to 

understand these so that it will be easier to identify, correct or compensate for aberrations in 

any optical system. This will improve the quality of the experiments and results achieved. 

Also in case of imperfect lenses e.g. those with cracked or deformed surfaces, cost of new 

purchases will be saved in that the imperfect lenses can still be used and the aberrations 

generated corrected using the theoretical model developed.  
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CHAPTER TWO 

2.0 LITERATURE REVIEW 

 The propagation of light through aberrated optical systems is a subject which has 

elicited much interest in the last few years. For most optical systems of practical interest a 

complete analytical treatment of the aberrations is not possible. The primary aberrations 

obtained by considering the aberration function to be expanded as a polynomial in the 

aperture can be calculated numerically. Optical aberrations have found use in the fields of 

atmospheric turbulence (Noll, 1976), imaging (Mahajan, 1998) and ophthalmology (Dai, 

2008). Their use in laser beams has mostly been limited to the aberrations’ impact on the 

laser field during propagation (Wada et. al., 2005 and Singh et. al., 2007). 

 A polynomial representation of the optical wavefront is essential in the analysis of 

optical system performance (Born and Wolf, 1999). Use of the well-known Zernike 

polynomials for describing aberrations of an optical system is acceptable since they are 

related to the primary aberrations and thus provide a convenient mathematical expression of 

the aberration content in a wavefront using familiar terms (Tripoli, 2002). As an example, 

Bezdid’ko (1974) reviewed the use of these polynomials in the analysis of wavefront 

aberrations. In particular he demonstrated that the coefficients of the Zernike polynomial 

expansion of the wavefront aberration tells us the degree to which higher order aberrations 

are compensated by the lower ones. Wang and Markey (1977) used these polynomials to 

represent the Kolmogoroff spectrum of atmospheric turbulence, from which the numbers of 

independent corrections required in a wavefront compensated system are derived. Noll (1976) 

also introduced several new parameters of these polynomials. Today these polynomials are in 

widespread use in optical design as well as in optical testing (Francis and Harvey, 1976).  

 For an optical system having a rotational symmetry the primary or Seidel aberrations 

are five in number. These are aberrations which are due to the geometry of lenses or mirrors, 

and are applicable to systems dealing with monochromatic light (James and Katherine, 1992). 

Equations that can be used to calculate Seidel aberrations generated by a lens, based on its 

focal length, geometry, object and image positions were derived by Mahajan (1991). The 

equations show that out of the five aberrations only four are generated that is, coma, field 

curvature, astigmatism and spherical aberration. This formulation in part was used by Ruff 

and Siegman (1993) to derive a simple formula showing the effects of spherical aberration on 

laser beam quality factor M2 and that there was a critical size of the beam above which the 
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beam degraded quickly. This model was extended to a tensor formulation to include all 

primary Zernike coefficients in the characterization not only of beam quality but also of 

divergence and curvature but was not tested experimentally (Alda et al, 1997).  

2.1 Wavefront Aberrations 

 The deviation of a wavefront in an optical system from a desired perfect planar 

wavefront is called wavefront aberration. The exit pupil plane is the plane that usually 

describes these aberrations (Robert et al, 2000). The phase of  a wavefront can be expressed 

as 
2

( , ) ( , )x y W x y







 
where the function  W(x,y) measured in waves represents the optical 

path difference between the actual (aberrated wavefront) and a reference (non-aberrated) one. 

For an optical system that is rotationally symmetric about its optical axis, the number of 

aberration terms through a certain order i is given by (Jason, 2010),  

  
.

8

42 


ii
N

i
              (1) 

The number of aberration terms through the fourth order i = 4, is now equal to six. They 

consist of piston aberration and the terms that correspond to the five seidel aberrations.  

2.2 Seidel Aberrations 

 The Seidel or primary aberration function (n + m ≤ 4) corresponds to i = 4 and its 

reduced form is given by (Mahajan, 1998);  

  ,coscoscos,W
11

2

20

22

22

3

31

4

40
 aaaaa        (2) 

where 
nm

a  are the peak aberration coefficients representing the maximum value of the 

corresponding aberration. The aberrations together with their descriptions are listed in Table 

1. Note that the piston term with 0 mn  does not constitute an aberration although it is 

counted as such in equation (1). The indices n  and m  simply describe the function of the 

wavefront along meridians and frequency of the aberration respectively, while  gives the 

radial coordinate and   is the angular coordinate of the aberrations. 
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Table 1: Primary aberrations in a simplified form; i = 4, n + m ≤ 4, (Mahajan, 1998). 

n m Aberration Term  
n m

nm
a Cos   Aberration Name 

1 1 
11

a Cos   Distortion 

2 0 2

20
a   Defocus 

2 2 2 2

22
a C os   Astigmatism 

3 1 3

31
a C os   Coma 

4 0 4

40
a   Spherical 

 

2.3 Balanced Aberrations 

 In the absence of aberrations, the intensity is a maximum at the Gaussian image point. 

If aberrations are present, this will in general no longer be the case. The point of maximum 

intensity is called diffraction focus, and for small aberrations is obtained by finding the 

appropriate amount of tilt and defocus to be added to the wavefront so that the wavefront 

variance is a minimum. The ratio of intensity at the Gaussian image point in the presence of 

aberration, to the intensity that would be obtained if no aberrations were present, is called the 

Strehl ratio. Since the Strehl ratio is higher for smaller aberration variance, a given aberration 

is mixed with one or more lower-order aberrations to reduce its variance. This process is 

known as aberration balancing, (Mahajan, 1991). Consider, for example, balancing of 

spherical aberration with defocus:  

,)(
24


ds

BA                  (3) 

where As and Bd denotes the value of peak aberrations for spherical and defocus aberrations 

respectively. Its variance is calculated as follows (Mahajan, 1998);  

22 2
      

   

1

0

2

0

241





 ddBA
ds
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 

.
23

2

1

0

35

ds

ds

BA

dBA



  

    

  






ddBA
ds  

1

0

2

0

2242 1
 

          

 

.
235

22

22

1

0

75292

dsds

dsds

BABA

dBABA



  

 

        2
   

2 2
4

45 12 6

s d s d
A B A B

   .                (4) 

The value of Bd for minimum variance will be given by: 

     .
6

1
0

2

sd

d

AB
B








 

This implies that
d s

B A  . For balanced spherical aberration Eqn. (3) becomes, 

     ;24
 

sbs
A  

180

2

2 s

bs

A
                         (5) 

Without balancing with defocus; 

      
2

4 2 4
( ) ;

45

s

s s s

A
A      .                (6) 

From Eqn. (5), the balancing of spherical aberration with defocus reduces its variance by a 

factor of 16, or the standard deviation by a factor of 4. Hence aberration tolerance for a given 

Strehl ratio increases by a factor 4. Similarly coma can be balanced with tilt, and astigmatism 

with defocus. 

2.4 Balanced Aberrations and Zernike Circle Polynomials 

 In analysing the effect of aberrations on an imaging system, it is advantageous to 

represent the phase of the corrupted optical wave in a series of simple orthogonal functions. 

This approach was first used in the description of fixed aberrations where the phase was 
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expanded using the lower order polynomials (Wang and Markey, 1977). Zernike polynomials 

are mathematical expressions fitted to three dimensional data to describe the aberrations of 

wavefront measurements. A formula containing Zernike polynomials is fitted to a wavefront 

with unknown optical properties i.e. one emanating from an arbitrary lens. To fit the formula 

the coefficients of best fit are found for each polynomial. These coefficients can then be 

thought of as the amount of specific aberrations in the wavefront (Tripoli, 2002). The Zernike 

polynomials as introduced by Noll (1976), represent a set of functions of two variables that 

are orthogonal over a circle with unit radius a . It is customary to define these polynomials as 

a product of two functions, one depending on a radial coordinate   and the other depending 

only on the angular coordinate  .  Each Zernike term can be represented by, 

  ),()(),( 
m

m

n

m

n

m

n
RCZ                     (7) 

where both m  and n  are integers, 0n , ,nmn   ,10     20   and mn   is 

even. The radial polynomial is defined by, (Larry and Ronald, 2005): 

   
















2

0

2

.

)!
2

()!
2

(!

)()1(
)(

mn

k

knk

n

m

k
mn

k
mn

k

kn
R


                    (8) 

The index n  represents the radial degree or order of the polynomial since it represents the 

highest power of   in the polynomial and m is the azimuthal frequency. The polynomial is 

even if m  is even and odd if m  is odd. The orthogonality property of this polynomial is  

   .
1

),(),(
),1/(

,0

1

0

2

0

* nkn

nknk

m

k

m

n
n

ddZZ






 







                    (9) 

where * denotes complex conjugate and 
nk

  is the kronecker delta. Virtually any realistic 

wavefront phase ( , )   can be represented in a 2 dimensional series of Zernike polynomials 

as; 

   






 



2 0 1

0

000
),()()(),(

n n

n

m

m

nmnmnnn
RSinmBCosmARAA               (10) 

where 
nm

A  and 
nm

B  are individual polynomial coefficients referred to as the even and odd 

terms respectively. They are given by; 
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Because of their orthogonality, the aberration terms of a Zernike polynomial expansion are 

referred to as the orthogonal aberrations. The aberration function may also be written in terms 

of orthonormal Zernike circle polynomials ( , )
j

Z   in the form (Mahajan, 1994), 

 






1

),,(2),(

j

jj
ZC                       (11) 

where the index j is a polynomial-ordering number, which is a function of both n and m, Cj is 

the expansion or aberration coefficient, and 

   ( , ) 2( 1) ( )
m

evenj n
Z n R Cosm        m≠0,   (12a) 

   ( , ) 2( 1) ( )
m

oddj n
Z n R Sinm         m≠0,   (12b) 

   
0

( , ) 1 ( )
j n

Z n R                    m=0.   (12c) 

The orthonormality of Zernike polynomials implies that  

   
1 2

0 0
( , ) ( , )

j j
Z Z d d



      
   / 

1 2

0 0
jj

d d


   


                 (13) 

The expansion coefficients Cj are given by 

    



1

0

2

0

1
.),(),(



 ddZC
jj

                    (14) 

Table 2 shows the ordering of the third order aberrations and the relationships among the 

indices j, n and m. For a given value of n, a polynomial with a lower value of m is ordered 

first.  

Each orthogonal aberration is made up of one or more classical aberrations of a higher degree 

which is optimally balanced with those of equal or lower degree such that its variance across 

the pupil is balanced. For this reason Zernike polynomial aberration may also be referred to 

as a balanced aberration. 
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Table 2: Aberrations corresponding to the orthonormal Zernike circle polynomials ( , )
j

Z    

(Mahajan, 2007). 

j n m Orthonormal Zernike Polynomial 

1/ 2

0

2( 1)
( , ) ( , ) ( )

1

m m

j n n

m

n
Z Z R Cosm     



 
   

 

 

Zernike Aberration Name 

1 0 0 1 Piston 

2 1 1 2 cos   Distortion (x-tilt) 

3 1 1 2 sin   Distortion (y-tilt) 

4 2 0 2
3 (2 1)   Field curvature (defocus) 

5 2 2 2
6 sin 2   Primary astigmatism at 450 

6 2 2 2
6 cos 2   Primary astigmatism at 00 

7 3 1 3
8 (3 2 ) sin    Primary y coma 

8 3 1 3
8 (3 2 ) cos    Primary x coma 

9 3 3 3
8 sin 3   y-Triangular astigmatism 

10 3 3 3
8 cos 3   x-Triangular astigmatism 

11 4 0 4 2
5 (6 6 1)    Primary spherical 

 

For example, the Zernike primary spherical aberration 
0

4
( )R   consists of a classical primary 

spherical aberration (
4

 term) optimally balanced with defocus (
2

  term) to minimize its 

variance. It may be called balanced primary spherical aberration. The Zernike primary coma 

3

1
( )R C os  consists of classical primary coma (

3
Cos   term) optimally balanced with tilt (

C os  term) and may be called balanced coma while the Zernike primary astigmatism 

2

2
( ) 2R Cos  consists of classical primary astigmatism (

2 2
Cos   term) optimally balanced 

with defocus.  
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The Zernike polynomials are unique in that they are the only complete set of polynomials in 

two coordinate variables ρ and θ that are (a) orthogonal over a unit circle, (b) are invariant in 

form with respect to rotation of the axes about the origin, and (c) includes a polynomial for 

each permissible pair of n and m values (Mahajan, 2007). 

2.5 Aberration Variance 

            A useful property of the Zernike series Eqn. (10) is that the root mean square (rms) 

wavefront error due to primary (low-order) aberrations can readily be calculated. If all the 

coefficients in Eqn.(10) are known, the geometric sum of the non-piston terms yields the 

wavefront variance or mean square deformation  (Larry and Ronald, 2005), 

    
1 2 2

2

0 0

1
( ) ( , ) ( , ) d d



         


        

    


  


1

2

.
1n

n

nm

mn

n

C
                     (15) 

The square root of which gives the rms wavefront error. 

2.6 Combination of Field Curvature and the Rest of Primary Aberrations 

            Field curvature (defocus) is inherent in every optical system and is related to the lens 

surface and its index of refraction. Field curvature is an image defect that causes off axis 

image wavefronts to focus in different focal planes other than the ideal image plane. Positive 

lens exhibit ‘inward’ field curvature i.e. the image formed has an out of focus condition at the 

edge of the field when the lens is sharply focused on the axis. Negative lenses have outward 

curving fields. This defect can be corrected to some extent by combining positive and 

negative lens elements. If no other aberrations are present the images formed are true point 

images on a curved image surface called the Petzval surface.  

      

 Figure. 1 Field curvature (defocus). 
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In the presence of astigmatism aberration, the elliptical distortion of the image point increases 

with increasing off-axial distance. Two separate astigmatic focal surfaces corresponding to 

both the tangential and sagittal conjugates will be formed. Both the tangential and sagittal 

image surfaces are on the same side of the Petzval surfaces with the tangential image surface 

three times as far from the Petzval surface as the sagittal image surface. 

     

Figure.2 Imaging in presence of defocus and astigmatism, (James and Katherine, 1992). 

         Geometrical distortion is an aberration that does not affect image sharpness but instead 

the parts of an extended image are just in the wrong places. In a distorted image straight lines 

in an object are imaged as curved lines therefore distortion only applies when a lens is 

imaging a flat object surface onto a flat image surface. In the presence of field curvature the 

image surface formed is a curved plane, so distortion is not defined but a mapping function 

can instead be determined.  

  

Figure.3 (a) Rectangular object while (b) and (c) are images with barrel and pincushion 

distortion, respectively. 

         Spherical aberration is a failure of focus caused when rays that are parallel to the optical 

axis have different focal lengths at different image field heights. This aberration usually has a 

uniform effect across the entire image area even in the presence of field curvature aberration. 
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          Figure4. Spherical aberration of a concave spherical lens, (Telescope-optics.net). 

            Coma is a failure to magnify equally the rays of light passing through opposite sides 

of the lens objective or eyepiece. Coma is absent on the optical axis and becomes more 

severe as image field height increases. It also produces elongated and expanded ‘tails’ that 

extend radially from point images or luminance edges in off-axis light and that increases in 

size with field height. In the presence of field curvature the image retains its ‘comatic’ shape, 

since the image plane is already curved and this matches the curved plane caused by the field 

curvature. 

                          

Figure 5. Illustration of the comatic wavefront deformation, and how it causes rays to spread 

into a comatic blur, (Telescope-optics.net). 
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CHAPTER THREE 

3.0 MATERIALS AND METHODS 

The experimental part of this work was done at the National Laser Centre 

Laboratories located in the Council for Scientific and Industrial Research (CSIR), Pretoria 

South Africa. This involved the use of a phase only Spatial Light Modulator (SLM) and a two 

dimensional wavefront sensor (Shack-Hartmann).  

3.1 Spatial Light Modulator  

The model used was PLUTO SLM shown in Figure 6. The SLM is a device that 

consists of a liquid crystal display (LCD) which is programmed and addressed by an 

electronic circuit. The LCD is the most essential part of the SLM and comprises of 1920 by 

1080 pixels each having a dimension of 8µm. The mechanism of the display is based on 

electrically controlled birefringence (Karim, 1990). Each pixel is addressed by two electrodes 

and the molecules making up the pixels are aligned parallel to the electrodes. When an 

electric field is applied to the electrodes, the molecules are forced to tilt in the direction of the 

field. The size of the field is mostly in a range of zero to a given maximum. The incident light 

is polarized linearly parallel to the axis of the liquid crystal molecules. When the molecules 

tilt in the direction of the applied field, the refractive index seen by the light changes 

accordingly and consequently so does its phase (Konforti et.al, 1988). Zero electric field 

would correspond to no change in phase while a maximum electric field gives a 2  radian 

phase change. 

                                          

Figure. 6 The PLUTO Spatial Light Modulator, (Holoeye photonics). 

The phase screens of the primary Zernike aberrations described in Table 2 section 2.4, were 

obtained using a Mathematica code shown in Appendix A. These were then programmed on 
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the SLM and imprinted on the laser beam reflected off the LCD. The Zernike coefficients 

were then obtained by using a wavefront sensor. 

3.2 Shack-Hartmann Two Dimensional Wavefront Sensor 

 At any point in time, the electric field of a coherent light travelling along the z-axis 

can be represented by )),,(exp()exp(
2

),(
22

4

1

2

2





 i

a
E 














  where γ is the truncation 

parameter, a is the aperture radius and   is the phase measured with reference to a point on 

the z-axis. Because of rapid oscillations at various optical frequencies it is not possible to 

directly measure the electric field. However, by using a Shack-Hartmann wavefront sensor, 

the electric field at a given plane normal to the z-axis is indirectly reconstructed and 

approximated by measuring both the phase and intensity of an incident light wave, (Neal et 

al, 2002). The basic geometry of a Shack-Hartmann wavefront sensor is illustrated in Figure 

7 (a). The sensor consists of two basic parts: a lenslet array and a CCD detector. For an 

incoming incident light the lenslet array creates a number of separated focal spots on the 

detector which determines the exact position of the focal spots. The position of these focal 

spots is directly related to the average wavefront slope over each lenslet aperture. Thus the 

pattern of the spots at the focal plane gives information about the spatially resolved wavefront 

that can be integrated to reconstruct the wavefront (Neal et al, 1997). 

(a) (b)        

Figure.7 (a) Basic configuration of a wavefront sensor and (b) Wavefront sciences CLASS 

2D Shack-Hartmann wavefront sensor, (AMO wavefront sciences). 
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There are three basic steps to the analysis process; determination of the focal spots position, 

conversion to wavefront slopes and wavefront reconstruction (Neal et al, 1996). 

(i) Spot Position 

 This is determined by using the centre of mass algorithm to measure photon 

concentration or light intensity, I, on the detector array. For a given irradiance distribution the 

spot positions xi and yi are found by, 

    
i i

i

i

x I

x
I






  and  .






i

ii

i
I

Iy
y                      (16) 

(ii) Wavefront Slope 

 This is determined by comparison of the measured centroids to a reference wavefront. 

For a set of measured centroids (xi,yi) and reference centroids (xj,yj) the wavefront slope 

distribution is given by 

    
/ 1

/

i j

i j

x xw dx

y yw y f

   
   

    

 , where  f  is the lenslet focal length.       (17) 

      (iii) Wavefront Reconstruction 

 The wavefront is related to the slope through the definition of the gradient, i.e. 

   .ˆˆ j
y

w
i

x

w
w









                         (18) 

The derivatives are approximated by the average over the lenslet area. One method of 

reconstructing the wavefront from the slope measurement is the modal (polynomial fitting) 

method. Here, the method is described in terms of functions that have analytic derivatives. 

The measured slope data is then fitted to the derivatives of these functions, allowing a direct 

determination of the wavefront from the fitted coefficients. For example if the wavefront at a 

point (x,y) is written in terms of the Zernike polynomial ( , )
m

n
Z x y then the phase   may be 

described by a series of polynomials i.e.  

  
00 01 01 11 11

( , ) ( , ) ( , ) ......... ( , ) ......
mn mn

x y C C Z x y C Z x y C Z x y       ,          (19) 
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Once the phase is described in this manner then the derivatives of the phase can be easily 

determined from, 

   01 11

01 11
........ ..........,

m n

m n

z zz
C C C

x x x x

  
    

   
              (20) 

with a similar expression for the y  derivative. Eqn. (20) is then fitted to the wavefront slope 

data using a least squares method. This determines the complete wavefront slope. 

3.3 Experimental Set Up 

A block diagram of the experimental set up used is shown in Figure. 8. A laser beam 

from a Helium-Neon source (λ = 633nm) was passed through a telescopic lens system 

consisting of two lenses and onto an SLM liquid crystal display which was in reflective mode 

only. The first lens had a focal length of 50mm and the second 200mm. The laser beam 

therefore underwent a magnification of four to make its size big enough on the SLM screen 

width. The reflected beam with the aberration coefficients imprinted on it was then imaged 

onto the detector grid of a two dimensional Shack-Hartmann wavefront sensor using a 4f lens 

imaging system.  

   Figure. 8 A block diagram for measuring the focal length of a lens generating aberrations: 

PC- Computer, SLM- Spatial light modulator and f- focal length.  

The sensor was connected to a computer which showed the wavefront properties e.g. phase 

and intensity distribution of the laser beam, together with the aberration coefficients fitted 
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into Zernike polynomials. Care was taken to make sure that the Zernike polynomials 

programmed onto the SLM agreed within reasonable error margin, with those measured by 

the sensor. This was achieved by using a calibration process. The experimental process was 

then carried out with coefficients between -3.1 and +3.1 λ of each aberration i.e. defocus, x 

and y astigmatism, x and y triangular astigmatism, x and y coma, x and y tilt and spherical 

aberration. To improve accuracy of the results, some twenty frames of each aberration 

measurement were acquired and averaged out by the sensor software. 

Figures 9 through 13 shows examples of a 2D plot of the primary aberrations phase screens 

which were programmed onto the Spatial Light Modulator. The Zernike radius used was 

1.44mm. 

Figure 9 (a)                             Figure 9 (b)  

Figure 10 (a)                           Figure 10 (b)  

Figure 11 (a)                           Figure 11 (b)  

  Figure 12 (a)                         Figure 12 (b)  

Figure 13 (a)                       Figure 13 (b)     

Figures 9 through 13 shows, 9 (a) X-Tilt for A = 0.5, d = 3, 9 (b) Y-Tilt for A = 0.5, d = 3,  

10 (a) X-Astigmatism for A = 0.2, d = 3, 10 (b) Y-Astigmatism for A = 0.2, d = 3, 11 (a) X 

Coma for A = 0.01, d = 3, 11 (b) Y Coma for A = 0.01, d = 3, 12 (a) X-Triangular for A = 
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0.2, d = 3, 12 (b) Y-Triangular for A = 0.2, d = 3, 13 (a) Spherical Aberration for A = 0.001, 

d = 3 and 13 (b) Defocus for A = 0.2, d = 3. 
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CHAPTER FOUR 

4.0 RESULTS AND DISCUSSIONS. 

4.1 Derivation of the Tensor Formulation Used To Calculate Beam Size and Curvature   

4.1.1 Cartesian Coordinates 

            The cartesian plane with a horizontal and vertical planes can be described using the 

variables x and y. Normalizing each variable with a square aperture of length 2a gives new 

variables /x x a  and /y y a . This means that both x and y have a magnitude of  1 at 

the edge of the aperture and 0 at the centre. For a totally coherent laser beam, the beam size 

becomes a tensorial parameter that can be defined as a 2x2 matrix (Alda, 2003). This matrix 

involves the calculation of the moments of irradiance distribution in the plane of interest. The 

generalised beam size tensor is therefore given as;  

 

2

2 2

2
4

x xy x
w a x y

yxy y

    
     
      

.          (21)                               

Since a, is the actual radius of the circular aperture, w2 is a dimensional quantity. The vectors 

x  and y
 

represent mean values, defined in terms of the moments of the intensity 

distribution. They also describe any possible decentralization of the beam. The normalized 

moment used is;  

,
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


       (22) 

Where       Idxdyyx
2

,  denotes the total irradiance of the beam. The second term of 

the matrix in Eqn. (21) involves the first-order moments that cancel only if the intensity 

distribution is centered with respect to the coordinate system used. 

Any arbitrary laser field can be fitted with an average curvature, R. The  term 
R

w
2

 can be 

defined as:  
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where   is the phase of the amplitude distribution and  ( , ) ( , ) exp ( , )x y x y i x y   . The 

phase term does not appear in the calculation of the beam size hence the beam size is 

independent  of the beams aberrations. 

4.1.2 Cylindrical  Coordinates 

          Most laser beams, have a cylindrical geometry i.e. they have a circular cross section 

and propagate through a circular aperture. This implies that the equations in section 4.1.1  

have to be converted into cylindrical coordinates. To do this a circular aperture of radius a is 

fitted inside the square one described in section 4.1.2, and shown in Figure. 14. 

                                        

        Figure. 14 Circular aperture of radius a , fitted inside a square aperture of length a2 . 

This means that Eqns. (21), (22) and (23) can be converted to cylindrical form and solved in 

the new aperture while maintaining the solutions for the basic laser beam parameters in x and 

y configurations. 

Taking the main diagonal elements of  Eqn. (23) and using x Cos  , y Sin   and 

   , ,x y     then 
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 where 

 0 1  and  0 2π  .  
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    (24) 

At the same time, the beam size main diagonal elements are given as: 
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4.2 Analytical Computation 

 The cylindrical model presented in section 4.1.2 can be applied to a laser beam whose 

circular aperture has a Zernike radius a. To include the effects of truncation, the truncation 

parameter is defined as 
w

a
 , where w  is the beam size. The parameter will be used to 

analyze the effect of different aperture sizes on the propagated laser beam properties. In terms 

of the truncation parameter the electric field of a light beam can be described as; 
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where phase  , is given in terms of the Zernike polynomials. According to Gaussian beam 

theory, beam radius w  is defined as the size of two standard deviations of a Gaussian 

distribution.  Any aperture radius, with respect to the beam size is important in that it shows 

the amount of diffraction due to the aperture. Large aperture implies that most of the energy 

of the beam goes through, therefore the distribution is a pure Gaussian beam, and on the other 

hand a small aperture implies that the beam is uniform. The first case is known as a hard 

aperture while the latter as a soft aperture. For the laser beam, the radius of curvature in both 

the horizontal and vertical planes can be deduced from Eqn. (24) by substituting in the value 

of field Eqn. (26) and phase Eqn. (10) and dividing by beam size as defined by Eqn. (25). 

This then becomes, 
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From Eqn. (27), it can be seen that the curvature of the field is directly proportional to 

individual amounts of defocus, x-astigmatism and spherical aberration. Curvature is 

represented by
a

K
f

 . 

 

                            

          Figure. 15: Wavefronts converging to a point of distance equal to a lens focal length f. 

If a positive lens of focal length f is placed in the path of a propagating beam such that the 

waist of the beam is just in front of the lens, the curvature at that particular point will be zero, 

(see Figure. 15). Using the lens equation 
1 1 1

f i
R R f

   where Ri and Rf   denotes the 

curvature of the field in front and behind the lens respectively, then 
1

i
R

= 0 and 
1 1

f
R f

 . 

This implies that the general focal length is given by; 
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Eqn. (28) gives the theoretical formulation for calculating the focal length in both x  and y

axis given a lens generating aberrations. The aberrations are seen to be inversely related to 

the focal lengths. The formulation also clearly shows that the only aberrations which have an 

effect on the focal length and hence on the imaging properties of a lens are defocus, x-

astigmatism and spherical aberration. 
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4.3 Special Cases 

(a) For a hard aperture i.e. very large  , the terms  
1

222
214

2 

 


e  and 
2

2


 approaches 

zero. This means that the Gaussian source approximates a uniform field, therefore the lens 

power becomes 
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(b) In the case of a soft aperture i.e. if the aperture radius a  is greater than 2  or 2 , then 

the term  
1

222
214

2 

 


e  approaches zero. Lens power becomes;  
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4.4 Theoretical Results  

 From the theoretical model developed in section 4.2, Eqn. (28), the difference in the 

two set of equations can be observed in the horizontal and vertical axes of the three 

aberrations i.e. defocus, X- astigmatism and spherical aberrations. From equation (28), for a 

laser beam to converge, the focal length must be positive. This means that defocus (A20) must 

always be negative for a positive lens. A positive value would do the opposite. On the other 

hand X-astigmatism has different polarities in the two planes i.e. one is positive and the other 

negative. This has the effect of splitting the focal plane in the two axes; the axis with the 

positive value shifting its plane forward in the direction of propagation, while the other 

backwards, both by the same distance. Spherical aberration is the only one whose effect on 

the lens focal length is not constant since its coefficient is dependent on the truncation 

parameter γ. It converges the beam for γ < 1.15931 and diverges it when γ > 1.15931. For γ = 

1.15931 spherical aberration has no effect on the lens’ focal length since its zero i.e.  

2

2

2 2 2

2 4
1 0

1 2e
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Figure 16 shows four pairs of graphs, one for each pair of x and y axis for γ = 0.3, 1, 2 and 3. 

The values of γ are chosen randomly such that two values i.e. 0.3 and 1 are less than 1.15931 

while the other two i.e. 2 and 3 are greater than 1.15931. On each graph it is assumed that the 

other two primary aberrations are zero. 

 (a) γ = 0.3 

  

(b) γ = 1     

           

(c) γ = 2 

  

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.4 -0.2 0 0.2 0.4

1/fx (m-1)

Anm (λ)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.4 -0.2 0 0.2 0.4

Anm (λ)

1/fy  (m-1)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.4 -0.2 0 0.2 0.4

Anm (λ)

1/fx  (m-1)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.4 -0.2 0 0.2 0.4

Anm (λ)

1/fy (m-1)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.4 -0.2 0 0.2 0.4

Anm (λ)

1/fx  (m-1)
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.4 -0.2 0 0.2 0.4

Anm (λ)

1/fy  (m-1)



26 

 

 (d) γ = 3     

  

Figure 16 Generalised focal length variation with individual amounts of defocus (   ), x-

astigmatism (    ) and spherical aberration (      ) in the x and y axis for γ = 0.3, 1, 2 and 3.  

4.5 Experimental Results  

4.5.1 Calibration Results 

 The calibration procedure for the SLM is achieved by an interferometric measurement 

of two coherent beams with one modulated in phase by the SLM, after which the 

programmed gray scale is assigned to a particular phase value from 0 (white) to 2π (black). 

This particular SLM (Pluto SLM) has a poor response at low phase values, as shown in 

Figure 17, where the calibration curve has a “threshold” phase value prior to becoming 

responsive. 

Since each Zernike coefficient is a measure of how much each aberration contributes 

to the laser beam wavefront, care was therefore taken to ensure that the Zernike polynomial 

system used in both the SLM phase patterns and Shack-Hartmann sensor software matched. 

Therefore the wavefront sensor was calibrated using the phase only SLM. First a reference 

frame was created without a phase pattern being loaded onto the SLM. This was done to 

subtract the effects of the curvature of the screen and remove the aberrations in the laser 

beam. Since the plots are mod-2π, the Zernike coefficient programmed in each case is the 

coefficient of each polynomial divided by 2π. Various coefficients of each of the primary 

Zernike polynomials were recorded onto the SLM. The nominal coefficients ranged from -2 

to 2, in steps of 0.2. This means that the nominal root mean square (rms) value of Zernike 

coefficients ranged from -2/2π to 2/2π waves, in steps of  0.2/2π, or -0.318 to 0.318 waves, in 

steps of 0.0318. For each phase pattern, at least 10 frames were measured by the sensor from 
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which an average was acquired. Plots for each aberration were prepared showing the 

relationship between the SLM values on the x-axis and the corresponding sensor values on 

the y-axis. The aberrations calibrated for are all the primary aberrations except x- and y-tilt. 

Figure 17 shows the calibration curve for defocus. Only the curve for defocus is shown since 

all the curves of each aberration calibrated are identical.   

  

                                        Figure.17 Calibration plot of the primary aberrations.  

4.5.2 Data Collection 

The measurements taken by the class 2D wavefront sensor included phase parameters 

in the form of Zernike coefficients and laser beam parameters in the form of beam quality M2, 

beam size w, divergence θ and waist location Z0. This meant that the experiment was able to 

ascertain any phase changes to the accompanying change in the other parameters. The SLM 

was therefore used as a lens since the primary aberrations with selected coefficients were 

programmed onto it. The experimental data are presented in Appendix A, (Tables A1-A10). 

From the data tables, radius of curvature was calculated using the formula below, 
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where λ, is the wavelength of the laser beam used. The focal length was calculated from, 
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where 
r

R  is the reference radius of curvature and 
yx

R
,  is the radius of curvature in the x  and 

y  axis, respectively. 

4.4.3 Data Analysis 

 The control Zernike coefficients in the theoretical model were replaced with 

respective experimental coefficients so as to get the correct theoretical curve. This is what 

was used to compare with the experimental results. From the data collected in Tables A1 – 

A10, the value of the lens power i.e. 
f

1
 was calculated and the graphs of 

f

1
 against each 

aberration for both the experimental results and the theoretical model were plotted on the 

same axis for comparison purposes. The results for each of the third order primary 

aberrations are presented in Figures. 18(a) – 18(d). 

 (a) Defocus aberration. 

            

                  

Figure 18 (a). Curvature dependence for both theoretical (     ) and experimental (      ) results 

on defocus. 
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(b) X-Astigmatism aberration. 

                  

 

 Figure 18 (b). Curvature dependence for both theoretical (     ) and experimental (      ) results 

on X-Astigmatism aberration.  

(c) Spherical aberration. 
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Figure 18 (c). Curvature dependence for both theoretical (     ) and experimental (      ) results 

on Spherical aberration.  

 (d) The rest of the primary aberrations. 
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Where;  

 

Figure.18 (d) Curvature dependence for both theoretical (     ) and experimental (      ) results 

on other primary aberrations. 

 Figures 18 (a) and (c) show the results for defocus and spherical aberration 

respectively, which are the same in both axes. The model agrees well with the experimental 

results with the exception that the experimental results exhibit no phase response at the origin 

(since no phase was imparted to the device). This is as a result of calibration of the SLM 

which accounts for the deviation of the theory and experimental data in all the graphs. The 

data plotted followed the same trend as shown in the calibration curve of the SLM in Figure 

17. In Figure 18 (b) there are two focal planes for each amount of x-astigmatism. Figure 18 

(d) shows that the focal length is constant as different amounts of the aberrations are added 

thus confirming the theoretical model formulated in section 4.1.2. 

4.6 Discussions 

The theoretical model derived in section 4.2 gives a formula that allows any aberrated 

lens to be described and equated to a single focal length, regardless of the type or origin of 

the aberrations. Our posed problem is how to use the deformed, cracked or imperfect lenses 

in our laboratories, research institutions as well as in industries. It may not be easy to say 

what impact these deformations may have on a particular optical system without the details of 

the lens design parameters, however, the analysis presented in this thesis readily allows for 

the assessment of the error in the focal length given some contribution from one or more 

aberrations. From the theoretical results shown in Figure 16, the effect of varying the 

truncation parameter has been presented. Out of the three aberrations i.e. spherical, x- 

astigmatism and defocus, only spherical aberration effect on the focal length is not constant. 

It converges the beam for γ <1.15931 and diverges it when γ > 1.15931. For γ = 1.15931 

spherical aberration has no effect on the lens’ focal length since its zero. 

experimental y-coma1/fx
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The data collection tables given in the Appendix A section outlines different lens 

imaging properties, most important being the divergence and beam quality of the laser beam 

after it has passed through an aberrated lens. Taking the x-plane it can be seen that generally, 

divergence increases with increase in the aberration coefficients. If we consider the three 

aberrations that have an effect on the lens focal length then for aberration coefficient -2, 

divergence for spherical aberration (0.4785) is greater than that of defocus aberration 

(0.4449) and x-astigmatism aberration (0.237). The same trend applies to all the other 

aberration coefficients. It is also observed that for aberration coefficient -2, the beam quality 

in the x- plane deteriorates more for spherical aberration (13.755) followed by x-astigmatism 

(2.216) and lastly defocus (1.397). The same trend applies to the rest of the aberrations both 

in the x and y planes. 

 The predicted model has been experimentally verified by introducing the aberrated 

lens in the form of digital holograms shown in Figures 9 - 13. The results confirm the model 

quite satisfactorily except for spherical and x-astigmatism aberrations. This is because all the 

measurements were made in the plane where Seidel defocus is zero. To correct for this, extra 

defocus would have to be added to the experimental results. The formulae for doing this are 

derived in Appendix B. After the corrections for defocus aberration which is inherent in 

every lens, the experimental results follows the same trend that is predicted by  the theoretical 

model as seen in Figure 18. 
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CHAPTER FIVE 

5.0 CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

According to the results only astigmatism was adversely affected in that two separate 

astigmatic focal surfaces were formed to correspond to the tangential and sagittal conjugates. 

This blurred the image even more. In the case of spherical aberration, the images formed on 

the two focal planes appeared curved. For coma, distortion and defocus, the image formed 

were not changed by the presence of field curvature aberration, since the image plane formed 

by the respective aberrations was already curved. 

 A model for calculating the focal length given an aberrated lens has been presented. 

This approach has led to a solution expressed as a function of low-order Zernike polynomials, 

which corresponds to third order aberrations. It has been shown that there are three primary 

Zernike coefficients related to defocus, spherical and x-astigmatism which should be known 

if the focal length of an aberrated lens is to be determined. These three aberrations 

individually or collectively are inversely related to the focal length and are the only ones 

which require defocus to balance them. This is a possible formulation which can be used for 

any aberrated lens of any size focussing a Gaussian beam of any size with an arbitrary choice 

of aperture. 

5.2 Recommendations 

 More studies should be carried out on this subject using higher order aberrations.  

 The calibration procedure for the SLM (Pluto) should be improved such that the poor 

response at low phase values does not occur. Since this tends to have an impact on the 

results. 
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APPENDIX A 

The primary aberrations shown in Table 2 section 2.4, can be programmed on a 

spatial light modulator (SLM) using a Wolfram Mathematica program code (Wolfram 

research Inc., 2007) shown below to give several phase screens by adjusting the values of 

Zernike coefficient A which is in radians and d, which shows the scaling used to specify the 

Zernike circle for each aberration. The command used is Mod 2 , since the liquid crystal 

display in the SLM works with phase shift from 0 to 2 . We therefore calculate the 

remainder after dividing the selected Zernike coefficient by 2 . This means that the actual 

coefficient being programmed is the nominal coefficient, say A/ 2 . 
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Fig A1: A Mathematica program for creating an x-tilt phase screen on the   SLM.  

Tables A1 through A10 shows the data collected for the various primary aberrations. 
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Table A1: Data for defocus aberration. 

Aberration coefficients Beam Quality (M^2) x Beam Quality (M^2) y Divergence, θx Divergence, θy Waist location, Z x Waist location, Zy

-2 1.397 1.368 0.4449 0.4486 -1.218 -1.246

-1.8 1.315 1.34 0.3902 0.4012 -1.34 -1.351

-1.6 1.287 1.218 0.3254 0.3421 -1.774 -1.806

-1.4 1.376 1.319 0.2833 0.2966 -1.698 -1.72

-1.2 1.286 1.343 0.2287 0.245 -1.787 -1.729

-1 1.194 1.22 0.1776 0.1999 -3.057 -2.828

-0.8 1.185 1.204 0.1334 0.1455 -3.455 -3.359

-0.6 1.264 1.302 0.0727 0.0904 -3.024 -3.322

-0.4 1.217 1.267 0.0366 0.054 -2.258 -2.843

-0.2 1.148 1.18 0.0025 0.025 -0.102 -0.887

0 1.133 1.15 -0.0097 0.0034 0.382 0

0.2 1.193 1.21 -0.0181 -0.0137 0.83 0.834

0.4 1.243 1.34 -0.0657 -0.0506 2.867 0

0.6 1.239 1.371 -0.1111 -0.0949 3.847 2.955

0.8 1.242 1.335 -0.1518 -0.1396 3.437 3.51

1 1.237 1.441 -0.215 -0.1911 2.801 2.874

1.2 1.27 1.434 -0.2697 -0.243 1.753 1.897

1.4 1.241 1.443 -0.3219 -0.2942 1.607 1.723

1.6 1.231 1.446 -0.3683 -0.347 1.574 1.613

1.8 1.236 1.398 -0.4177 -0.4015 1.362 1.382

2 1.269 1.315 -0.4745 -0.4512 1.204 1.26

  

Table A2: Data for x-astigmatism aberration. 

Aberration coefficients Beam Quality (M^2) x Beam Quality (M^2) y Divergence, θx Divergence, θy Waist location, Z x Waist location, Zy

-2 2.216 8.983 0.2937 -0.3058 -1.637 0

-1.8 2.132 7.871 0.2609 -0.2709 -1.746 0

-1.6 1.999 6.995 0.2289 -0.2367 -1.93 0

-1.4 1.897 5.995 0.1923 -0.203 -2.149 0

-1.2 1.767 5.13 0.1626 -0.1702 -2.397 0

-1 1.548 3.935 0.117 -0.1282 -2.72 0

-0.8 1.373 3.134 0.0877 -0.0979 -2.97 0

-0.6 1.227 2.073 0.0543 -0.0599 -2.829 0

-0.4 1.239 1.392 0.0168 -0.0251 -1.271 0

-0.2 1.154 1.201 -0.0031 -0.0019 0.317 0.054

0 1.141 1.194 -0.0184 0.0041 1.442 0

0.2 1.188 1.359 -0.0242 0.0204 1.703 0

0.4 1.232 1.667 -0.046 0.0417 2.737 0

0.6 1.387 2.212 -0.0739 0.0732 3.258 0

0.8 1.548 3.137 -0.1175 0.1033 3.055 0

1 1.645 3.965 -0.1468 0.1355 2.749 0

1.2 1.732 5.176 -0.1865 0.1761 2.48 0

1.4 1.884 5.979 -0.2179 0.2108 2.189 0

1.6 2.034 6.944 -0.2548 0.2414 1.902 0

1.8 2.338 8.133 -0.3027 0.28 1.621 0

2 2.259 8.81 -0.3199 0.304 1.571 0
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 Table A3: Data for y- astigmatism aberration. 

Aberration coefficients Beam Quality (M^2) x Beam Quality (M^2) y Divergence, θx Divergence, θy Waist location, Z x Waist location, Zy

-2 4.819 8.983 -0.0044 -0.0076 0.035 0.047

-1.8 4.253 7.871 -0.0037 -0.0039 0.048 0.055

-1.6 3.829 6.995 -0.0047 0.0001 0.062 0.01

-1.4 3.224 5.995 -0.0054 -0.0006 0.111 0.025

-1.2 2.743 5.13 -0.0081 0.0007 0.212 -0.003

-1 2.383 3.935 -0.0146 0.0053 0.488 -0.097

-0.8 1.923 3.134 -0.014 0.0028 0.711 -0.185

-0.6 1.615 2.073 -0.0132 0.0074 0.813 -0.007

-0.4 1.364 1.392 -0.0172 0.0089 0.438 0

-0.2 1.261 1.201 -0.0153 0.0068 0.963 0

0 1.138 1.194 -0.0192 0.0039 1.372 0

0.2 1.192 1.359 -0.0116 0.0068 1.041 0

0.4 1.343 1.667 -0.0121 0.0069 0.668 0

0.6 1.549 2.212 -0.0185 0.0073 1.147 0

0.8 1.994 3.137 -0.0157 0.012 0.683 -0.006

1 2.408 3.965 -0.0155 0.0129 0.479 -0.015

1.2 2.86 5.176 -0.0223 0.0112 0.415 -0.007

1.4 3.439 5.979 -0.0133 0.0196 0.227 -0.008

1.6 3.836 6.944 -0.018 0.0201 0.208 -0.011

1.8 4.501 8.133 -0.0239 0.0201 0.193 0

2 4.821 8.81 -0.0251 0.0212 0.159 0

  

Table A4: Data for x- triangular astigmatism aberration. 

Aberration coefficients Beam Quality (M^2) x Beam Quality (M^2) y Divergence, θx Divergence, θy Waist location, Z x Waist location, Zy

-2 5.981 6.322 0.0053 -0.0358 0.001 0.002

-1.8 5.641 5.787 0.0135 -0.0326 0 0

-1.6 4.828 4.962 0.0074 -0.0313 -0.043 0

-1.4 4.324 4.364 0.0112 -0.0315 -0.077 0

-1.2 3.462 3.674 0.003 -0.0227 -0.035 0.02

-1 2.839 2.965 -0.001 -0.0138 0.02 0.076

-0.8 2.246 2.346 -0.0017 -0.0135 0.082 0.137

-0.6 1.656 1.814 -0.0084 -0.0077 0.433 0.377

-0.4 1.39 1.379 -0.0045 -0.0035 0.2 0.028

-0.2 1.218 1.245 -0.0134 0.0069 0.671 0

0 1.14 1.196 -0.0184 0.0045 1.184 0

0.2 1.248 1.316 -0.0138 0.0107 0.554 0

0.4 1.538 1.417 -0.0216 0.0075 0.745 0

0.6 2.099 1.718 -0.0238 0.0157 0.529 0

0.8 2.666 2.19 -0.0296 0.0169 0.525 0

1 3.225 2.811 -0.0342 0.0242 0.385 0

1.2 4.18 3.629 -0.0376 0.0242 0.295 0

1.4 4.821 4.338 -0.0423 0.0233 0.251 0

1.6 5.418 4.866 -0.0465 0.0288 0.163 0

1.8 6.079 5.531 -0.0559 0.0291 0.209 0

2 6.68 6.018 -0.0613 0.0331 0.179 0
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 Table A5: Data for y- triangular astigmatism aberration. 

Aberration coefficients Beam Quality (M^2) x Beam Quality (M^2) y Divergence, θx Divergence, θy Waist location, Z x Waist location, Zy

-2 6.348 6.547 0.0501 -0.079 -0.131 0

-1.8 5.619 5.789 0.0462 -0.0699 -0.203 0

-1.6 5.054 5.232 0.0352 -0.0592 -0.169 0

-1.4 4.331 4.54 0.0322 -0.0507 -0.162 0

-1.2 3.605 3.765 0.0277 -0.045 -0.236 0

-1 3.129 3.179 0.0188 -0.037 -0.042 0

-0.8 2.415 2.471 0.0145 -0.0265 -0.179 0

-0.6 1.826 1.836 0.0043 -0.0165 -0.069 0

-0.4 1.342 1.377 -0.0004 -0.0071 -0.056 0.188

-0.2 1.212 1.221 -0.0092 0.0022 0.332 0

0 1.138 1.178 -0.0158 0.0035 1.352 0

0.2 1.202 1.287 -0.0109 0.0138 0.457 0

0.4 1.416 1.501 -0.0206 0.0182 0.463 0

0.6 1.76 1.892 -0.0357 0.0221 1.253 0

0.8 2.255 2.415 -0.0427 0.0264 1.071 0

1 2.871 3.115 -0.052 0.0341 0.632 0

1.2 3.673 3.874 -0.0571 0.0415 0.491 0

1.4 4.219 4.557 -0.0684 0.0567 0.495 0

1.6 4.907 5.207 -0.0675 0.057 0.382 0

1.8 5.441 5.673 -0.0852 0.063 0.379 0

2 6.281 6.655 -0.0883 0.0685 0.219 0

  

Table A6: Data for x- coma aberration. 

Aberration coefficients Beam Quality (M^2) x Beam Quality (M^2) y Divergence, θx Divergence, θy Waist location, Z x Waist location, Zy

-2 12.24 6.764 0.1297 0.0469 -0.131 -0.06

-1.8 10.744 6.112 0.1263 0.0413 -0.152 -0.035

-1.6 9.454 5.147 0.1003 0.0321 -0.141 -0.122

-1.4 7.824 4.313 0.0837 0.0285 -0.097 -0.014

-1.2 6.664 3.624 0.0715 0.0185 -0.152 0

-1 5.639 2.949 0.0564 0.0167 -0.238 -0.029

-0.8 4.442 2.302 0.0457 0.0126 -0.338 -0.014

-0.6 3.153 1.749 0.0186 0.0032 -0.304 -0.067

-0.4 1.928 1.369 0.0122 0.001 -0.622 0.006

-0.2 1.231 1.192 -0.0011 -0.0017 -0.054 0.14

0 1.135 1.191 -0.0193 0.0029 1.538 0

0.2 1.446 1.301 -0.0292 -0.0005 0.362 0

0.4 1.848 1.438 -0.0373 -0.0059 0.985 0

0.6 3.089 1.812 -0.0466 -0.0106 0.514 0

0.8 4.34 2.252 -0.0586 -0.0159 0.29 0

1 5.805 2.953 -0.0856 -0.0235 0.223 0

1.2 7.238 3.708 -0.0774 -0.0268 0.123 0

1.4 8.715 4.553 -0.0936 -0.0283 0.086 0.086

1.6 10.378 5.555 -0.0901 -0.0308 0.068 0.043

1.8 11.455 6.302 -0.1093 -0.0333 0.088 0.006

2 12.72 7.274 -0.1173 -0.0299 0.042 0
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 Table A7: Data for y- coma aberration. 

Aberration coefficients Beam Quality (M^2) x Beam Quality (M^2) y Divergence, θx Divergence, θy Waist location, Z x Waist location, Zy

-2 6.566 11.926 0.0685 0.2356 -0.215 -0.131

-1.8 5.846 10.944 0.0627 0.221 -0.222 -0.138

-1.6 4.993 9.122 0.044 0.1685 -0.319 -0.158

-1.4 4.176 8.064 0.0391 0.1675 -0.368 -0.171

-1.2 3.482 6.883 0.0336 0.1385 -0.476 -0.208

-1 2.783 5.726 0.0233 0.1194 -0.631 -0.275

-0.8 2.2 4.256 0.0126 0.0852 -0.545 -0.328

-0.6 1.727 3.235 0.0018 0.0691 -0.286 -0.192

-0.4 1.42 2.089 -0.0072 0.0481 0 0

-0.2 1.246 1.531 -0.0186 0.0237 0.679 0

0 1.139 1.19 -0.0176 0.0054 1.454 0

0.2 1.171 1.262 -0.0255 -0.0121 2.004 0.041

0.4 1.319 1.807 -0.0368 -0.0427 1.904 1.434

0.6 1.662 2.855 -0.043 -0.0574 1.35 0.883

0.8 1.937 3.874 -0.0463 -0.0791 1.413 0.635

1 2.59 5.234 -0.0552 -0.1164 0.894 0.434

1.2 3.387 6.966 -0.0669 -0.1277 0.64 0.248

1.4 4.003 8.12 -0.0704 -0.1337 0.523 0.178

1.6 4.757 9.363 -0.0764 -0.175 0.397 0.155

1.8 5.766 10.84 -0.0874 -0.2014 0.263 0.108

2 6.655 12.452 -0.0968 -0.2076 0.218 0.084

  

Table A8: Data for spherical aberration. 

Aberration coefficients Beam Quality (M^2) x Beam Quality (M^2) y Divergence, θx Divergence, θy Waist location, Z x Waist location, Zy

-2 13.755 14.246 0.4785 0.5124 -0.187 -0.189

-1.8 12.756 13.092 0.4885 0.524 -0.225 -0.231

-1.6 11.559 12.166 0.4693 0.4983 -0.275 -0.274

-1.4 10.338 10.817 0.4475 0.4622 -0.326 -0.315

-1.2 8.675 8.989 0.4284 0.4543 -0.299 -0.283

-1 7.773 7.894 0.3893 0.4103 -0.08 -0.049

-0.8 5.695 5.896 0.3246 0.3529 -0.451 -0.482

-0.6 4.048 4.441 0.2529 0.2872 -0.72 -0.865

-0.4 2.628 2.577 0.1671 0.1962 -0.099 -0.878

-0.2 1.565 1.433 0.0713 0.0964 0 0

0 1.131 1.178 -0.0177 0.0046 1.292 0

0.2 1.558 1.7 -0.0968 -0.0847 0.042 0

0.4 2.543 2.85 -0.1946 -0.1822 0.914 0.701

0.6 4.092 4.724 -0.2807 -0.2847 0.807 0.745

0.8 5.456 6.13 -0.3272 -0.3314 0.495 0.386

1 6.998 8.013 -0.3625 -0.3787 0.071 0

1.2 8.416 9.081 -0.4016 -0.4034 0.037 0.024

1.4 9.523 10.397 -0.427 -0.4514 0.336 0.322

1.6 10.874 11.718 -0.4529 -0.4904 0.267 0.249

1.8 12.229 12.823 -0.4741 -0.5033 0.21 0.192

2 12.861 13.277 -0.4598 -0.476 0.169 0.169
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Table A9: Data for x- tilt aberration. 

 

 Table A10: Data for y- tilt aberration. 

Aberration coefficients Beam Quality (M^2) x Beam Quality (M^2) y Divergence, θx Divergence, θy Waist location, Z x Waist location, Zy

-2 1.267 1.552 -0.0023 0.012 0.313 0

-1.8 1.226 1.429 -0.0027 0.0054 0.269 0

-1.6 1.312 1.846 -0.0028 0.0102 0.241 0

-1.4 1.226 1.537 -0.0029 0.0077 0.013 0

-1.2 1.22 1.433 -0.004 0.0174 0 0

-1 1.206 1.384 -0.0049 0.0062 0.251 -0.093

-0.8 1.188 1.41 -0.0042 0.0125 0.202 0

-0.6 1.167 1.253 -0.0041 0.0053 0.283 -0.12

-0.4 1.189 1.346 -0.0054 0.0116 0.395 -0.037

-0.2 1.155 1.231 -0.0043 0.0079 0.319 0

0 1.123 1.131 -0.0022 0.0022 0.211 0

0.2 1.151 1.197 -0.0062 0.0021 0.431 0

0.4 1.157 1.218 -0.0073 0.0078 0.703 -0.03

0.6 1.159 1.196 -0.0073 -0.001 0.601 0.034

0.8 1.159 1.201 -0.006 0.0059 0.635 0

1 1.202 1.307 -0.0052 0.0019 0.425 0

1.2 1.195 1.265 -0.0047 0.0103 0.404 0

1.4 1.233 1.398 -0.004 0.0008 0.328 0.008

1.6 1.24 1.304 -0.0051 0.001 0.346 -0.002

1.8 1.265 1.538 -0.0057 -0.0081 0.376 0.076

2 1.385 1.794 -0.0046 -0.0046 0.44 0.274

  

Aberration coefficients Beam Quality (M^2) x Beam Quality (M^2) y Divergence, θx Divergence, θy Waist location, Z x Waist location, Zy

-2 1.938 1.488 -0.0351 0.0005 0.931 0

-1.8 1.798 1.41 -0.0252 -0.0035 0.703 0

-1.6 1.934 1.381 -0.0244 -0.0008 0 0

-1.4 1.51 1.3 -0.0202 0.0007 1.315 0.043

-1.2 1.474 1.243 -0.0171 0.001 1.363 0.036

-1 1.302 1.261 -0.0218 0.0048 1.329 0

-0.8 1.255 1.221 -0.0195 0.0014 1.655 0

-0.6 1.201 1.204 -0.0171 0.0021 1.045 0

-0.4 1.183 1.185 -0.0131 0.002 1.25 0.05

-0.2 1.221 1.216 -0.0218 0.0014 0.882 0

0 1.137 1.188 -0.0193 0.0041 1.366 0

0.2 1.327 1.234 -0.0147 -0.001 0.817 0

0.4 1.343 1.229 -0.0146 0.0013 1.054 0

0.6 1.217 1.21 -0.0147 0.0009 1.343 0.009

0.8 1.493 1.284 -0.0157 0.0029 1.254 0

1 1.489 1.29 -0.017 0.0009 1.094 -0.049

1.2 1.388 1.31 -0.024 0.0011 1.555 0

1.4 1.631 1.319 -0.0115 0.0001 0.786 0.076

1.6 1.738 1.359 -0.0106 0.0064 0.115 -0.117

1.8 2.082 1.455 -0.0155 0.0034 0.012 0

2 2.033 1.486 0.0008 0.0045 0.053 -0.07
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APPENDIX B 

Balancing of Astigmatism and Spherical Aberration with Defocus 

In order to work out the plane of measurement of a beam, a correction factor is required for 

all aberrations other than defocus due to a shifting of the Gaussian plane. Defocus simply 

means to observe a beam in a plane other than the plane of focus, the focal plane which is a 

distance z from the aperture. The focal plane occurs at a distance equal to the radius of 

curvature of the field or in this case a lens focal length  f.  

 

Fig B1: A beam focussed at a distance f but observed at a distance z. 

At an arbitrary distance z from the focal plane, balanced defocus (Bd) is given by the seidel 

term (Mahajan, 1998): 
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which has a value of zero when z = f and is positive closer to the aperture and negative 

further from it. This means that the lens power 1/f, is adjusted as: 
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From Eqn. (B2), if the defocus coefficient can be worked out then the new focal length z of 

the lens can be determined correctly. The correction factors are: 



44 

 

 Spherical aberration, 
2

40
51211

a

A

fz
 ; 

 Astigmatism, 
2

22
6211

a

A

fz
 . 

Substituting these conditions gives the Zernike balanced astigmatism and spherical 

aberrations. 

 

 

 

 

 


