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ABSTRACT 

Modelling of stock market data has witnessed a significant increase in literature over the past 

two decades. Focus has been mainly on the use of the ARCH model with its various extensions 

due to its ability to capture heteroscedasticity prevalent in the financial and monetary variables. 

However, other suitable models like the bilinear models have not been exploited to model stock 

market data so as to determine the most efficient model between the ARCH and bilinear models. 

The underlying problem is that of identifying the most efficient model that can be applied to 

stock exchange data for forecasting and prediction. The purpose of this study was to determine 

the most efficient model between the two models namely, ARCH and bilinear models when 

applied to stock market data. The data was obtained from the Nairobi Stock Exchange (NSE) for 

the period between 3rd June 1996 to 31st December 2007 for the company share prices while for 

the NSE 20-share index data was for period between 2nd March 1998 to 31st December 2007.The 

share prices for three companies; Bamburi Cement, National Bank of Kenya and Kenya Airways 

which were selected at random from each of the three main sectors as categorized in the Nairobi 

Stock Exchange were used. Specifically, the different extensions of ARCH-type models were 

utilized with ARMA and bilinear models for modelling the weekly mean of the chosen data set. 

The model efficiency was determined based on the minimal mean squared error (MSE). The 

results show that the Bilinear-GARCH model with the normal distribution assumption and the 

AR-Integrated GARCH (IGARCH) model with student’s t-distribution are the best models for 

modelling volatility in the Nairobi Stock Market data. The results also indicate that the volatility 

in Nairobi Stock Exchange is statistically significant and persistent with the positive return 

innovations having a greater impact than the negative ones. This implies that the leverage effect 

experienced in most developed countries is not applicable to Nairobi Stock Market. The results 

obtained are significant for planning, prediction and management of investments on shares in the 

Nairobi Stock Exchange. The chosen models are also helpful for decision making especially by 

the investors, stockbrokers and financial advisors regarding the trading in shares at the Nairobi 

Stock Exchange. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

Stock market volatility is one of the most important aspects of financial market developments, 

providing an important input for portfolio management, option pricing and market regulation 

(Poon and Granger, 2003). An investor’s choice of portfolio is intended to maximize his 

expected return subject to a risk constraint, or to minimize his risk subject to a return constraint. 

An efficient model for forecasting of an asset’s price volatility provides a starting point for the 

assessment of investment risk. To price an option, one needs to know the volatility of the 

underlying asset. This can only be achieved through modelling the volatility. Volatility also has a 

great effect on the macro-economy. High volatility beyond a certain threshold will increase the 

risk of investor losses and raise concerns about the stability of the market and the wider economy 

(Hongyu and Zhichao, 2006). 

 
Financial time series modelling has been a subject of considerable research both in theoretical 

and empirical statistics and econometrics. In recent literature, numerous parametric 

specifications of ARCH models have been considered for the description of the characteristics of 

financial markets. Engle (1982) introduced the Autoregressive Conditional Heteroscedasticity 

(ARCH) for modelling financial time series while Bollerslev (1986) came up with the 

Generalized ARCH (GARCH) to parsimoniously represent the higher order ARCH model. 

Owing to the empirical success of the ARCH and GARCH models, researchers have 

concentrated on the two models due to their ability to model heteroscedasticity. There is a 

significant amount of research on volatility of stock markets of developed countries. Gary and 

Mingyuon (2004) applied the GARCH model to the Shanghai Stock Exchange while Bertram 

(2004) modelled Australian Stock Exchange using ARCH models. Other studies include, 

Baudouhat (2004) who utilized the GARCH model in analyzing the Nordic financial market 

integration, Walter (2005) applied the structural GARCH model to portfolio risk management for 

the South African equity market. Hongyu and Zhichao (2006) forecasted the volatility of the 

Chinese stock market using the GARCH-type models.  
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The Sub-Saharan Africa has been under-researched as far as volatility modelling is concerned. 

Studies carried out in the African stock markets include, Frimpong and Oteng-Abayie (2006) 

who applied GARCH models to the Ghana Stock Exchange, Brooks et al., (1997) examined the 

effect of political change in the South African Stock market, Appiah-Kusi and Pascetto (1998) 

investigated the volatility and volatility spillovers in the emerging markets in Africa. More 

recently, Ogum et al., (2006) applied the EGARCH model to the Kenyan and Nigerian Stock 

Market returns. From the available literature, the NSE just like other Sub Saharan Africa Equity 

Markets has been clearly under-researched as far as market volatility is concerned and therefore 

this study contributes to the limited literature available on the Nairobi stock market. 

 

 Mandelbrot (1963) utilized the infinite variance distributions when considering the models for 

stock market price changes. Fama (1965) when modelling stock market prices attributed their 

discrepancies to the possibility of the process having stable innovations and thus fitted an 

adequate model on this basis. These developments in financial econometrics suggest the use of 

nonlinear time series models in analyzing the stock market prices and the expected returns.  

 

The focus of financial time series modelling has mainly been on the ARCH model and its various 

extensions thereby ignoring the other suitable nonlinear models like the bilinear class of models. 

As a matter of fact, the subject of the efficiency of the models for financial modelling has 

received little attention as far as econometric modelling is concerned. This study therefore aims 

at finding the most efficient model from amongst the nonlinear models namely, bilinear models 

and the autoregressive conditional heteroscedasticity models. 

1.2 The Nairobi Stock Exchange 

The Nairobi Stock Exchange (N.S.E) was formed in 1954 as a voluntary organization of Stock 

brokers. It is now one of the most active capital markets and a model for the emerging markets in 

Africa in view of its high returns on investments and a well developed market structure (Ogum et 

al., 2005). The Nairobi Stock Exchange is a market place where shares (also known as equities) 

and bonds (also known as debt instruments) are traded. The ordinary shares are also known as 

variable income securities since they have no fixed rate of dividend payable, as the dividend is 

dependent upon both the profitability of the company and what the board of directors decides. 

The bonds are also known as the fixed income securities and include Treasury and Corporate 
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Bonds, preference shares, debenture stocks; these have a fixed rate of interest/dividend, which is 

not dependent on profitability. 

 

As a capital market institution, the Stock Exchange plays an important role in the process of 

economic development. The major role that the Nairobi stock exchange has played, and 

continues to play is that it promotes a culture of thrift, or saving. The NSE also assists in the 

transfer of savings to investment in productive enterprises thereby utilizing the money that would 

otherwise lie idle in savings. This helps in avoiding economic stagnation. It also assists in the 

rational and efficient allocation of capital. An efficient stock market sector will have the 

expertise, the institutions and the means to prioritize access to capital by competing users so that 

an economy manages to realize maximum output at the least cost. The NSE promotes higher 

standards of accounting, resource management and transparency in the management of business. 

In addition, the stock exchange improves the access of finance to different types of users by 

providing the flexibility for customization. Finally, the stock exchange provides investors with 

an efficient mechanism to liquidate their investments in securities. The investors are able to sell 

out what they hold, as and when they want. This is a major incentive for investment as it 

guarantees mobility of capital in the purchase of assets. 

1.3 Statement of the problem 

The last two decades have witnessed an increase in the modelling of stock market data using the 

ARCH models and its various extensions. However, efficiencies of competing models such as 

the bilinear models has so far not been determined for modelling equity market data. This study 

therefore seeks to determine the most efficient model for application to the Nairobi stock market 

data from the two classes of models. 

1.4 Objectives of the study 

1.4.1 Main objective 

The overall objective of this study was to determine the most efficient model from the two 

classes of models namely; ARCH, bilinear and bilinear-ARCH.  
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1.4.2 Specific objectives 

The weekly mean for the NSE 20-share index and the average weekly share prices for the 

following companies; National Bank of Kenya, Kenya Airways and Bamburi Cement Ltd were 

used to achieve the following specific objectives; 

i) To model the Nairobi Stock Exchange stock data using ARCH-type models. 

ii) To apply Bilinear models in fitting the Nairobi Stock Exchange data. 

iii) To compare the efficiency of the two classes of models and make recommendations  

regarding the best model for modelling volatility. 

1.5 Justification 

The establishment of an efficient stock market is indispensable for an economy that is keen on 

utilizing scarce capital resources to achieve its economic growth. It is therefore prudent to 

determine the most efficient model that will help in predicting volatility which in turn is 

important in pricing financial derivatives, selecting portfolios, measuring and managing risks 

more accurately. The efficient model will not only be useful in long term forecasting and short 

term prediction but also in helping the investors on decisions regarding which shares to sell, hold 

or buy. 

1.6 Definition of terms used 

Bonds are financial instruments that serve as an “i owe you”; an investor loans an issuer, and 

returns are fixed and guaranteed, no voting rights and no benefits from exceptional performance 

by a company. 

Shares are financial instruments where one acquires ownership stakes of a company. Returns are 

neither fixed nor guaranteed. One acquires voting rights and shares the company’s profits and 

losses. 

Volatility is the variance or variation of a given time series data. 

Returns are transformations given by )ln()ln( 1−−= ttt PPX , where tX  and tP  represents the 

return and weekly average value for each series respectively. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Financial Data 

Financial time series data often exhibit some common characteristics. Fan and Yao (2003) 

summarizes the most important features of financial time series as; the series tend to have 

leptokurtic distribution, i.e they have heavy tailed distribution with high probability of extreme 

values. In addition, changes in stock prices tend to be negatively correlated with changes in 

volatility, that is; volatility is higher after negative shocks than after positive shocks of the same 

magnitude. This is referred to as the leverage effect. The sample autocorrelations of the data are 

small whereas the sample autocorrelations of the absolute and squared values are significantly 

different from zero even for large lags. This behaviour suggests some kind of long range 

dependence in the data. The distribution of log returns over large periods of time (such as a 

month, a half a year, a year) is closer to a normal distribution than for hourly or daily log-returns. 

Finally, the variances change over time and large (small) changes of either sign tend to be 

followed by large (small) changes of either sign (Mandelbrot, 1963). This characteristic is known 

as volatility clustering. These are facts characterizing many economic and financial variables. 

2.2 Models for Stock Market Data 

Researchers have applied different models to the stocks data from time to time. Mandelbrot 

(1963) utilized the infinite variance distributions when considering the models for stock market 

price changes. Fama (1965) similarly pointed out initially, their application in cases of 

economics particularly in modelling stock market prices. Fama et al., (1969) used a random walk 

to model the price changes. Andrew and Whitney (1986) tested the random walk hypothesis for 

weekly stock market returns by comparing the variance estimators. Here the random walk model 

was strongly rejected. Omosa (1989) applied the ARIMA model to the NSE data and used the 

models for forecasting. Muhanji (2000) studied the efficiency of the Nairobi Stock Exchange and 

concluded that the NSE had a weak form of efficiency implying that the market is efficient at a 

particular period and becomes inefficient at another time. 
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In recent studies, various specifications of ARCH models have been considered for the 

description of the characteristics of financial markets. Some studies in which ARCH-type models 

were utilized include; Gary and Mingyuon (2004) who applied the GARCH model to Shanghai 

Stock Exchange, Bertram (2004) modelled Australian Stock Exchange using ARCH models and 

Baudouhat (2004) used the GARCH model in analyzing the Nordic financial market integration. 

In addition, Curto (2002) employed the GARCH model to explain the volatility of the 

Portuguese equity market, Walter (2005) applied the structural GARCH model to portfolio risk 

management while Frimpong and Oteng-Abayie (2006) modelled the Ghana Stock Exchange 

volatility using the GARCH models. More recently, Ogum et al., (2006) applied EGARCH 

model to the Kenyan and Nigeria daily stock market data. 

 

Simple regression models have also been utilized in modelling stock market data. Bodicha 

(2003) applied regression models to the NSE data and found out that the regression models are 

only appropriate for short term prediction and not for long term forecasting. The analysis of the 

general linear regression model forms the basis of every standard econometric model. Mills 

(1999) applied the simple linear relationship in modelling the expected risk and return in holding 

a portfolio while Gujarati (2003) applied econometric modelling to the NYSE data. 

2.3 Linear Time Series Models 

Let ς  be a subset of the real numbers. For every ς∈t , let )(ωtX  be a random variable defined 

on a probability space { }Ω∈Ω ω: ; then the stochastic process }:)({ ςω ∈tX t is called a time 

series. Here,{ },...1,0, ±=tX t  is a realization at time t for any given ω . A time series model for 

the observed data {Xt} is specification of the joint distributions (or possibly only the means and 

covariances) of a sequence of random variables {Xt}. A time series model accounts for patterns 

in the past movements of a variable data and that information is used to control and predict its 

future movements. 

 

The autoregressive moving average (ARMA) processes are the most widely known and applied 

set of linear time series models. For the ARMA(p,q) process, the observation Xt is linearly 

related to the p most recent observations (Xt-1 ,…, Xt-p), q most recent forecast errors  

),...,( 1 qtt −− εε  and the current disturbance tε  by the relation: 



 7

∑ ∑
= =

−− ++=
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t

q

i
itiitit XX

1 1
εεθφ , ),0(~ 2σε WNt     2.3.1 

where iφ and iθ  are model parameters. The equation in 2.3.1 represents an ARMA (p,q) process. 

Alternatively, using the backshift operator, an ARMA (p,q) process is represented as 

tt BwB ε)()( Θ=Φ ,where B is a backshift operator such that BXt=Xt-1, }{ tε  is a sequence of 

uncorrelated random variables with zero mean and variance σ2 .The polynomials: 
p

p BBBB φφφ ++++=Φ ...1)( 2
21       2.3.2 

q
q BBBB θθθ ++++=Θ ...1)( 2

21       2.3.3 

represent the autoregressive and the moving average operators of order p and q respectively. The 

coefficients in )(BΦ and )(BΘ  represent some of the model parameters. 

 

A special case of the ARMA(p,q)  process is known as the autoregressive process which date 

back to the work of Yule (1927) where he developed the first order autoregressive process 

(AR(1)) which is given by the relation ttt XX εφ += −1  where φ  is a model parameter and 

),0(~ 2σε WNt . In general, the AR(p) process is represented as  

tit

p

i
it XX εφ += −

=
∑

1
        2.3.4 

 where iφ  are constants and ),0(~ 2σε WNt  

Another type of linear time series model is known as the moving average (MA) process which 

was developed by Slutzky (1937). The functional form for the first order moving average process 

(MA (1)) process is given by the equation tttX εθε += −1 , where θ  is model parameter and 

),0(~ 2σε WNt . The general representation of an MA(q) process is given as  

∑
=

− +=
q

i
tititX

1
εεθ         2.3.5 

where iθ  are model parameters and ),0(~ 2σε WNt  . Here tε  is not observable. 

  

When the stationarity condition is assumed, i.e. when the mean, variance and autocovariances of 

a process are invariant under time translations, then the process is modelled using the ARMA 

models. The ARMA models have been applied to modeling the UK interest rates, returns on the 
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FTA All share index, S&P 500 stock index and the dollar/sterling exchange rate (Mills, 1999). 

Fan and Yao (2003) also modelled the German Egg prices using the Autoregressive Integrated 

Moving Average (ARIMA) models. In addition Gujarati (2003) applied the Box Jenkins 

approach to model the money supply in the United States.  

 

The stationarity condition restricts the mean and the variance to be constant and requires the 

autocovariances to depend only on the time lag. However, this is not true in many financial time 

series, they are certainly non stationary and have a tendency to exhibit time changing means and 

variances. Box and Jenkins (1976), suggested differencing as a means of transforming a non-

stationary ARMA (p,q) process into a stationary ARMA(p,q) process known as the 

autoregressive integrated moving average (ARIMA) process. This is applicable to the financial 

time series model building. 

2.3.1 The Box and Jenkins Approach to ARIMA Modelling  

Box and Jenkins (1976) proposed three major stages in ARIMA modelling, namely; 

identification, estimation, diagnostic checking and forecasting. The approach is as follows; 

 

a) Identification Stage 

 In this stage the model selection is done. The simplest and most basic tool for identification is 

the time series plot, which is simply a graph in which data values are arranged sequentially in 

time. A plot is an effective way of quickly perceiving the evolution of a single or a group of time 

series. The plots are useful in detecting outliers, the seasonal, cyclic and the trend components of 

a time series data. 

 

The next criterion for identification is the Autocorrelation Function (A.C.F). The autocorrelation 

is given by, 

ρ = 2/1)]().([
),(

ktt

ktt

xvxv
xxCov

−

− =
0γ

γ k        2.3.6 

The autocorrelations considered as a function of k is referred to as the autocorrelation function 

ACF or sometimes the correlogram. The ACF plays a major role in modelling the dependencies 

among observations. It indicates, by measuring the extent to which one value of the process is 

correlated with the previous, the length and strength of the ‘memory’ of the process. In general, 
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the correlation between two random variables is often due to both variables being correlated with 

a third one. In the context of time series, a large portion of the correlation between Xt and Xt-k can 

be due to the correlation between Xt-1,Xt-2,…,Xt-k+1. To adjust for this correlation, the partial 

autocorrelation function (PACF) may be calculated. The PACF measures the additional 

autocorrelations between Xt and Xt-k after adjustments have been made for intervening lags. The 

ACF and PACF are useful in the identification of orders in the ARMA processes. An AR(p) 

process has a declining ACF, exponentially decaying to zero and the PACF is zero for lags greater 

than p. An MA(q) process on the other hand has an ACF that is zero for lags greater than q and 

PACF that declines exponentially. However, if the decay in the ACF starts after a few lags lags then the 

process could be an ARMA(p,q). If the series is non-stationary, then it is transformed by differencing 

to attain stationarity. The decision about differencing is based on the visual examination of the 

correlogram.  

 

The adequacy of the fitted model or an indication of potential improvements is determined using 

the following diagnostic checks. These checks include the Final Prediction Error (FPE) criterion 

which was developed by Akaike (1969) for selecting the appropriate order of an AR process. The 

idea here is to select the model for {Xt} in such a way as to minimize the one-step mean squared 

error when the model fitted to {Xt} is used to predict an independent realization {Yt} of the same 

process that generated {Xt}. The FPE for order p is given as,  

FPEp =
pn
pn

−
+2σ̂          2.3.7 

To apply the FPE criterion, p is chosen such that it minimizes the value of FPEp.  

 

Another criterion is the Akaike information criterion (AIC) which is more generally applicable 

for model selection. The AIC was developed by Akaike (1974).The AIC is defined by: 

AIC (p,q) = 12 )(2ˆlog −++ Tqpσ        2.3.8 

 where 2σ̂ is the estimate of the error variance of an ARMA (p,q) and T is the total number of 

observations. For fitting autoregressive models, the AIC has a tendency to overestimate p, i.e. for 

AIC an over parameterized model is more likely to be obtained.  

 

Schwarz (1978) suggested the Bayesian Information Criteria (BIC) defined as  
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BIC (p, q) = TTqp log)(ˆlog 12 −++σ      2.3.9 

The BIC attempts to solve the over parameterization of AIC and is thus strongly consistent, in 

that it determines the true model asymptotically. 

 

These procedures entail the comparison of the sample values with the corresponding theoretical 

values. 

 

b) Estimation of Parameters  

Once a tentative formulation of the time series models has been accomplished, estimation of 

model parameters follows. The estimation techniques used include the Yule-Walker estimation 

criterion. The Yule-Walker estimates are obtained by matching patterns in the sample 

autocorrelations with theoretical patterns. For instance, consider AR(P) process, 

Xt = ttXB εφ +)(         2.3.10 

Here )()(
0

1 tit

p

i
titit XEXXXE εφ −

=
−− =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∑  for i=0,…,p ⇔  2)0( σγφγ =′− p  and 0=Γ− φγ pp  

where ),...,( 1 ′= pφφφ . Now, choose φ  so that γγ ˆ= . The Yule Walker equations can be written 

in a matrix form as φρ Rp=  where Rp  is a covariance matrix. The Yule Walker equations 

can also be presented as 
⎪⎩

⎪
⎨
⎧

′−=
=Γ

p

pp

γφγσ
γφ

ˆˆ)0(ˆˆ
ˆˆˆ

2  where Гp is the covariance matrix 
1

)]1([
=

− p
jiγ  and 

)](),...,2(),1([ p
p

γγγγ = . This further leads to 
pp γφ Γ= ˆˆ  where pp R=Γ̂  and φ̂  is the Yule-

Walker estimate.  

 

The next estimation method is the maximum likelihood procedure. This method is more 

appropriate for small samples and especially when the parameter values approach the invertible 

boundaries. In the maximum likelihood estimation (MLE) of time series models, two types of 

MLEs are computed. The first type is based on maximizing the conditional log-likelihood 

function. These estimates are the conditional MLEs defined by; 
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),/(lnmaxargˆ
1

1... ∑
+=

−=
T

pt
ttelmc IXf θφ

θ
. The second type is based on maximizing the exact log-

likelihood function. These exact estimates are called exact MLEs, and defined by; 

);,...,(ln),/(lnmaxargˆ
1

1
1.. θθφ

θ
p

T

pt
ttelm yyfIYf += ∑

+=
−    2.3.11 

For stationary models, elmc ...φ̂  and elm ..φ̂  are consistent and have the same limiting normal 

distribution. In finite samples however, elmc ...φ̂  and elm ..φ̂  are generally not equal and may differ 

by a substantial amount if the data are close to being non-stationary or non-invertible. 

Consider an AR (1) process ttt XcX εφ ++= −1  where tε ~ WN (0, σ2) t=1,2,3,…,T and c a 

constant. The exact log-likelihood function is then; 

2
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The exact log-likelihood function is a non-linear function of parameters φ  and so there is no 

closed form solution for the exact MLEs. 

 

The next estimation criterion is the conditional least squares estimation (CLSE) method. These 

estimates are easier to compute compared to MLE. This procedure entails minimizing the sum of 

squares ∑
=

=
n

t
tQ

1

2ε . Thus for an AR (P) process, ∑ ∑
= =

−−=
n

t

p

i
itit XXQ

1

2

1

)( φ . Now, for p=1, 

∑

∑

=
−

=
−

= n

t
t

n

t
tt

X

XX

1

2
1

1
1

1̂φ         2.3.12 

The optimal estimation technique is also useful in estimation and was initially studied by 

Godambe (1960) in comparison to the MLE. The optimal estimates for stochastic process are 

obtained as follows: Consider an AR (1) process:  

ttt XX εφ += −1  where ),0(~ 2σε WNt      2.3.13 

Let 1−−= ttt XXh φ   be a linear function such that  0)/( 1 =ℑ −tthE  where 1−ℑt  is the sigma 

algebra up to time t-1 i.e. σ-algebra on which (x1, x2,…,xn) is defined. 

The optimal estimating function (Godambe, 1985) is obtained as; 
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*          2.3.14 

where   
)/(
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1
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1
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∂

=
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a φ     )( 12
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g φ
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   2.3.15 

 and by setting 0* =tg  leads to the optimal estimate of φ  as  

∑

∑

=
−

=
−

= n

t
t

n

t
tt

X

XX

1

2
1

1
1

φ̂          2.3.16 

 which is the same as the CLSE. 

 

c) Forecasting 

When a time series model has been identified and parameter estimates obtained, it can be used 

for forecasting. The most common forecasting criterion is based on minimizing the mean square 

error, that is, for the process Xt, the aim is to obtain the forecast Xt, such that 2
11 ]ˆ[ ++ − tt XXE  is 

minimized. ARIMA modelling is popular because of its success in forecasting. In many cases, 

the forecasts obtained by this method are more reliable than those obtained by econometric 

modelling (Gujarati, 2003).  

 

Mathematically, linear time series models are the simplest type of difference equations and a 

complete theory of Gaussian sequences are readily understood. The theory of statistical inference 

is also most developed for linear Gaussian models. The computation time required for obtaining 

a parsimonious ARMA model for the data is well within the reach of most practitioners. These 

models have been reasonably successful in analysis, forecasting and control of various time 

series data. Linear time series models are easy to compute and manipulate. The assumption of 

stationarity makes modelling in them simple. The estimation procedures for the linear models are 

also not complicated.  

 

Some of the limitations of linear time series models include the fact that linear difference 

equations do not permit stable periodic solutions independent of initial value. Having symmetric 

joint distributions, stationary linear Gaussian models are not ideally suited for data exhibiting 
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strong asymmetry, i.e. they are dependent on the symmetric systems. The ARMA models are not 

ideally suited for data exhibiting sudden bursts of very large amplitude at irregular time epochs. 

Linear time series models do not capture series that exhibit cyclicity. In practice linear time 

series models are assumed to be Gaussian and thus have short tails. However, this is not true in 

most time series data especially the financial data which usually follow non-normal distributions. 

Linear models are also unable to utilize higher moments and assume only the first two moments 

while in some cases, there exist a third or even a fourth moment. In series that are time 

irreversible, linear models are of no use ( Tong ,1990; Kantz and Schreiber, 2005; Zivot and Wang, 

2005). 

2.4 Non Linear Time Series Models 

In trying to address the limitations of linear time series models, many non-linear time series models 

have been developed (Kantz and Schreiber, 2005; Zivot and Wang, 2005). Non-linear time series 

models can be used to model series that show cyclicity. They are also useful in series having 

outliers. Non-linear models are useful for higher moment utilization since they are able to 

capture higher moments. They are also useful in series that are time irreversible. Extreme non-

stationarity especially in the variance makes non-linear models more appropriate. They are also 

useful in modelling data that are asymmetric (Tong, 1990).  

 

In the recent years, a few non-linear time series models have been proposed. In many cases, the 

results are still incomplete and much research is going on at present. An example of a non-linear 

time series model is that of non-linear autoregression models. This class of models is motivated 

directly by dynamical system (Tong, 1990). The next class of non-linear models is the 

amplitude-dependent exponential autoregressive (EXPAR) models. These models were 

independently introduced by Jones (1976) and Ozaki and Oda (1978). The EXPAR models are 

useful in modelling ecological/population data (Ozaki, 1982), wolf’s sunspot numbers (Haggan 

and Ozaki, 1981) and to a small extent, the economics data (Tong, 1990).  

 

Another important class of non-linear time series models is the Fractional Autoregressive (FAR) 

models. This class of models has not so far been exploited conclusively to find their best area of 

application. Random coefficient autoregressive (RCA) models have been applied to areas such 

as, ecology/population (Nicholls and Quinn 1982) and Medical data (Robinson, 1978).There 
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exist a subclass of RCA models with the marginal distribution that is exponential. They are 

known as the Newer exponential autoregressive (NEAR) models. The NEAR models were 

applied to Geophysics by Lawrence and Lewis (1985). The other class of non-linear time series 

models is the Threshold models which were introduced by Tong (1978).These models have a 

wide range of applications for instance in finance ( Petruccelli and Davies, 1986; Wecker, 1981; 

Tyssedal and Tjøstheim ,1988), population dynamics (Stenseth et al., 1999), economics (Tiao 

and Tsay, 1994). They are also applicable in ecology/population data (Li and Liu, 1985). In 

addition, they have been used in geodynamics (Zheng and Chen, 1982) and also in neural science 

(Brillinger and Segundo, 1979). 

 

2.5 Autoregressive Conditional Heteroscedasticity (ARCH) models 

An ARCH process is a mechanism that includes past variances in the explanation of future 

variances (Engle, 2004). The Autoregressive property describes a feedback mechanism that 

incorporates past observations into the present while Conditionality implies a dependence on the 

observations of the immediate past and Heteroscedasticity means time-varying variance 

(volatility). These models were first introduced by Engle (1982) when modelling the United 

Kingdom inflation. In contrast to the ARMA models which focuses on modelling the first 

moment. ARCH models specifically take the dependence of the conditional second moments in 

modelling consideration. This accommodates the increasingly important demand to explain and 

to model risk and uncertainty in financial time series (Degiannakis and Xekalaki, 2004; Engle, 

2004; Fan and Yao, 2003). 

 

An ARCH process can be defined in terms of the distribution of the errors of a dynamic linear 

regression model. The dependent variable ty  is assumed to be generated by 

ttt xy εξ +′=  t =1,…,T       2.5.1 

where tx′  is a kx1 vector of exogenous variables, which may include lagged values of the 

dependent variable and ξ  is a kx1 vector of regression parameters. The ARCH model 

characterizes the distribution of the stochastic error tε  conditional on the realized values of the 

set of variables ,...},,,{ 22111 −−−−− = ttttt xyxyψ . Specifically, Engle’s (1982) model assumes 

1/ −tt ψε ~ ),0( thN         2.5.2 
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where  
22

110 ... qtqtth −− +++= εαεαα        2.5.3 

with 0α >0 and qii ,...,1,0 =≥α  to ensure that the conditional variance is positive. 

An explicit generating equation for an ARCH process is  

ttt hηε =          2.5.4 

where tη  ~i.i.d N (0,1) and th  is given by equation (2.5.3). Since th  is a function of 1−tψ  and is 

therefore fixed when conditioning on 1−tψ , it is clear that tε  as given in (2.5.4) will be 

conditionally normal with 0)/()/( 11 == −− ttttt EhE ψηψε  and ttt hVar =− )/( 1ψε , 

ttt hVar =− )/( 1ψη . Hence the process (2.5.4) is identical to the ARCH process (2.5.2). 

 

Engle (1982, 1983) found that a large lag q was required in the conditional variance function 

when applying the ARCH model to the relationship between the level and volatility of inflation. 

This would necessitate estimating a large number of parameters, subject to inequality restriction. 

To reduce the computational burden, Engle (1982, 1983) parameterized the conditional variance 

as; 

∑
=

−+=
q

i
itit wh

1

2
10 εαα         2.5.5 

where the weights 
)1(5.0

)1(
+
−+

=
qq

iqwi  decline linearly and are constructed so that∑
=

=
q

i
iw

1
1. With 

this parameterization, a large lag can be specified and yet only two parameters are required in the 

conditional variance function. 

 

Despite the importance of the ARCH model for many financial time series, a relatively long lag 

length in the variance equation with the problem of estimation of parameters subject to inequality 

restrictions is often called for to capture the long memory typical of financial data. 

 

The ARCH model has been extended to various generalizations. Some of the generalizations are 

given in the following sections. 
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2.5.1 Generalized Autoregressive Conditional Heteroscedasticity (GARCH) 

The GARCH model was developed by Bollerslev (1986) and is today one of the most widely 

used ARCH-type model (Engle, 2004). He proposed an extension of the conditional variance 

function (2.5.3) which he termed as the generalized ARCH (GARCH) and suggested that 

conditional variance be specified as,  

  ptptqtqtt hhh −−−− ++++++= ββεαεαα ...... 11
22

110     2.5.6 

with the inequality conditions 0α > 0 , 0≥iα  for i=1,…,q, 0≥iβ  for i= 1,…,p to ensure that the 

conditional variance is strictly positive. A GARCH process with orders p and q is denoted as 

GARCH (p,q) and this essentially generalizes the purely autoregressive ARCH to an 

autoregressive moving average model. The motivation for the GARCH process can be seen by 

expressing (2.5.5) as  

  ttt hBBh )()( 2
0 βεαα ++=        2.5.7 

where q
q BBB ααα ++= ...)( 1  and  q

q BBB βββ ++= ...)( 1   are polynomials in the backshift 

operator B. Now, if the roots of )(1 Zβ−  lie outside the unit circle, equation 2.5.7 be written as  

  ∑
∞

=
−+=

−
+

−
=

1

2*
0

20

)(1
)(

)1(1 i
ititt B

Bh εδαε
β

α
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α

     2.5.8 

where 
)]1(1[

0*
0 β

α
α

−
=  and the co-efficient iδ  is the co-efficient of Bi in the expression of 

1)](1)[( −− BB βα .  

The slope parameter β  measures the combined marginal impacts of the lagged innovations 

whileα , on the other hand captures the marginal impact of the most recent innovation in the 

conditional variance. When 1
11

<+∑∑
==

q

j
j

p

i
i βα , then the process is weakly stationary and the 

conditional variance ( 2
tσ ) approaches the unconditional variance ( 2σ ) as time goes to infinity i.e 

22 )( σσ →+stE  as ∞→s . However, when 1
11

>+∑∑
==

q

j
j

p

i
i βα  then the process is non stationary.  

There exists some situations whereby parameter estimates in GARCH (p,q) models are close to 

the unit root but not less than unit, i.e 1
11

=+∑∑
==

q

j
j

p

i
i βα , for the GARCH process. Here, the 

multi-step forecasts of the conditional variance do not approach the unconditional variance. 
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These processes exhibit the persistence in variance/volatility whereby the current information 

remains important in forecasting the conditional variance. Engle and Bollerslev (1986) refer to 

these processes as the Integrated GARCH or IGARCH. The IGARCH process does not possess a 

finite variance but are stationary in the strong sense (Nelson, 1990).  

 

From 2.5.8, it is easy to see that a GARCH (p,q) process is an infinite order ARCH with a 

rational lag structure imposed on the co-efficient. The intention is that the GARCH process can 

parsimoniously represent a high-order ARCH-process (Bera and Higgins, 1993; Engle, 2004; 

Degiannakis and Xekalaki, 2004). The simplest GARCH(1,1) is often found to be the benchmark 

of financial time series modelling because such simplicity does not significantly affect the 

preciseness of the outcome. 

 

A GARCH model can be applied with the assumption of normal, student t or general error 

distributions. Besides the empirical success, GARCH models have two major draw backs: First, 

they are unable to model asymmetry because in a GARCH model, positive and negative shocks 

of the same magnitude produce the same amount of volatility (i.e only the magnitude and not the 

sign of the lagged residuals determines the conditional variance). However, volatility tends to 

rise in response to “bad” news and fall in response to “good” news (Nelson, 1991). The second 

disadvantage of GARCH models is the non-negativity constraints imposed on the parameters 

which are often violated by estimated parameters (Curto, 2002). 

2.5.2 GARCH-in-Mean (GARCH-M) model 

The GARCH-M model was developed by Engle et al., (1987) whose key postulate was that time 

varying premia on different term instruments can be modelled as risk premia where the risk is 

due to unanticipated interest rates and is measured by the conditional variance of the one period 

holding yield. The GARCH (1,1)-M model is presented by, 

  tttt hyx εγβ ++= −1         2.5.9 

where tx  and th are defined as before while 1−ty  is a vector of additional explanatory variables. 

The residual tε can be decomposed as in equation 2.5.4. 

Just like the GARCH model, the GARCH-M is unable to capture asymmetric characteristics of 

financial data. 



 18

2.5.3 Exponential GARCH (EGARCH) model 

EGARCH models were introduced by Nelson (1991) in an attempt to address the two major 

limitations of the GARCH models.  Here the volatility depends not only on the magnitude of the 

shock but also on their corresponding signs. The non-negativity restrictions are not imposed as in 

the case of GARCH since the EGARCH model describes the logarithm of the conditional 

variance which will always be positive. The specification for the conditional variance (Nelson, 

1991) is given as, 
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2

1
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2 log    2.5.10  

Note that ttt σηε =  where ~tη i.i.d N(0,1).  

The parameter ( iα ) in equation (2.5.10) measures the impact of innovation on volatility at time t 

while parameter ( iβ ) is the auto-regressive term on lagged conditional volatility, reflecting the 

weight given to previous period’s conditional volatility t. It measures the persistence of shocks to 

the conditional variance. The stationarity requirement is that the roots of the auto-regressive 

polynomial lie outside the unit circle. For EGARCH (1,1) this translates into 1β  <1 (Ogum et 

al., 2006). Unlike the linear GARCH, in the EGARCH model a negative shock can have a 

different impact compared to a positive shock if the asymmetry parameter iγ is non-zero. 

2.5.4 Quadratic GARCH (QGARCH) model 

The QGARCH model was introduced by Sentana (1995). The model can be interpreted as a 

second order Taylor approximation to the unknown conditional variance function and hence it is 

called a quadratic GARCH. The model of order p=q=1 is as follows,  

  1
2

11 −−− +++= tttt hh βαεξεγ        2.5.11 

where ttt hηε = , ~tη i.i.d N(0,1) and αξγ ,,  and β  are parameters to be estimated.  In this 

model, if 01 >−tε , its impact on th is greater than in the case if 01 <−tε  (assuming αξγ ,,  and β  

are positive). Thus it captures the asymmetric effects from another point of view. 

 

The stationarity in QGARCH is covariance based whenever the sum of α  and β  is less than 

one. This sum also provides a measure of persistence of shocks to the variance process. 
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2.5.5. Threshold GARCH (TGARCH) model 

Threshold GARCH models were introduced by Zakoian (1994). The generalized specification of 

the conditional variance equation is given by, 

−
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==
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∑∑∑ +++= ktkt
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k
k

p

i
itijt

q

j
jt Ihh 2

11

2

1
0 εγεαβα     2.5.12 

where ttt hηε = and 1=−
tI , if 0<tε and zero otherwise. In this model, good news, 0>−itε , 

and bad news 0<−itε  , have differential effects on the conditional variance. Good news has an 

impact of iα , while bad news has an impact of ii γα + . If 0>iγ , bad news increases volatility 

while if 0≠iγ , the news impact is asymmetric. When the threshold term −
−ktI  is set to zero, then 

equation 2.5.12 becomes a GARCH (p,q) model. 

2.5.6 Glosten, Jagannathan and Runkle (GJR) model 

This is a modified GARCH-M model developed by Glosten et al., (1993). The GJR model 

allows positive and negative innovations to returns to have different impacts on the conditional 

variance. This is achieved by the introduction of a dummy variable into the conditional variance 

equation. The GJR-GARCH(1,1) model is given by, 

  1
2

11
2

110 −−
−
−− +++= ttttt hSh βεϖεαα       2.5.13 

where ttt hηε = , ~tη i.i.d (0,1) and −S denotes an indicator (dummy) function that takes the 

value one when 01 ≥−tε and zero otherwise. 

2.5.7 Parameter Estimation of ARCH models 
 In this study, the focus is on the Maximum likelihood approach which is the most commonly 

used estimation procedure for the ARCH models. This is based on the normality assumption of 

the conditional distribution. Following Bera and Higgins (1993), consider the standard ARCH- 

regression model 1/ −tty ψ ~ ),( tt hxN ξ′  with its log likelihood function is given by, 

∑
=

=
T

t
tlT

l
1
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t
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θ −−=  and ),( γξθ ′′= . Here ξ  and γ  denote the 

conditional mean and conditional variance parameters respectively. One attractive feature of this 

normal likelihood function is that the information matrix is block diagonal between the 
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parameters ξ  andγ . Now, the (i,j)th element of the off-diagonal block of the information can be 

written as 
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If th is an asymmetric function of the lagged errors in the sense of Engle (1982), then the last 

expression in the square brackets is anti-symmetric and therefore has expectation zero. When the 

block is diagonal, under the likelihood frame work, estimation and testing for the mean and 

variance parameters can be carried out separately (Engle, 1982; Bollerslev, 1986; Bera and 

Higgins, 1993; Fan and Yao, 2003; Davidson, 2008). 

Most of the applied work on ARCH models uses the Berndt et al, (1974) algorithm to maximize 

the log likelihood function [ )(θl ]. Starting from estimates of the rth iteration, the (r+1)th step of 

the algorithm can be written as 
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where derivatives are evaluated at )(rξ and )(rγ . 

When tε is Student’s t-distributed with v>2 degrees of freedom, the criterion function maximized 

is given by; 
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where 2>v controls the tail behaviour. The student’s t distribution approaches normality as 

∞→v . To improve numerical stability, the parameter estimated is 2
1

v  (Davidson, 2008). For the 

GED, 2.5.14 can be written as 
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where 0>v controls the tail behaviour . The GED corresponds to the Gaussian distribution if 

2=v  and is leptokurtic (fat tailed) when 2<v . 

2.5.8 Model identification for the ARCH-type models 

The selection of the appropriate model is one of the most challenging areas in statistical 

modelling using ARCH models. This area has had very little development. 

 

The portmanteau Q-test statistics based on the squared residuals is used to test for the 

independence of the series (McLeod and Li, 1983). This Q-statistics is used to test the ARCH 

effects present in the residuals. Since it is calculated from the squared residuals, it can be used to 

identify the order of the ARCH process. The Lagrange Multiplier test proposed by Engle (1982) 

is also used in a similar manner as the Q-statistic. 

 

The Akaike information criterion (Akaike, 1974) and the Schwarz Bayesian criterion (Schwarz, 

1978) model selection methods have widely been used in the ARCH literature, despite the fact 

that their statistical properties in the ARCH context are unknown. These selection methods are 

based on the maximized value of the log-likelihood function and evaluate the ability of the 

models to describe the data as discussed in section 2.3.  

2.6 Bilinear Models (BL) 

Following Granger and Anderson (1978) , Subba (1981), Subba and Gabr (1984), a  time series 

}{ tX  is said to follow a bilinear time series denoted by BL(p,q,m,k) if it satisfies the equation 
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j
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= =
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=
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1 1 10
    2.6.1 

where }{ tε  is a sequence of i.i.d random variable, usually but not always with zero mean and 

variance 2
εσ  and c0=1, ai ,bij and cj are model parameters. It is easy to see that bilinear model is a 

special case of ARMA (p,q) model. 

 

Using lag (Backshift) operator, equation 2.6.1 can be specified as 

  tttt BwBBwB εθψελφ )()())(()( 11 += −−       2.6.2 
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where 

t
d

t XBw 1)1( −= , ),0(~ 2
εσε WNt       2.6.3 

In equation 2.6.2, 1
21 ...)( −+++= p

pBBB ψψψψ and 1
1 ...1)( −+++= k

k BBB λλλ .This is 

equivalent to the Subba (1981) BL(p,q,m,k) class of models (Davidson, 2008). 

 

Bilinear models have been applied in geophysics data (Subba, 1988), Spanish economic data  

(Maravall, 1983) and in solar physics data by (Subba and Gabr, 1984 ). These models are 

particularly attractive in modelling processes with sample paths of occasional sharp spikes 

(Subba and Gabr, 1984).These phenomena are found in financial time series data. 

 

2.6.1 Estimation of parameters in bilinear models 

Consider the BL(p,0,m,k) model of the form  

  tjtit

m

i

k

j
ijptptt XbXaXaX εεα ++=+++ −−
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−− ∑∑

1 1
11 ....     2.6.4 

where }{ tε ~N ),0( 2
εσ . (Here the, MA terms have been dropped and a constant α  has been 

added to the R.H.S to facilitate the fitting of such models to non mean corrected data). 

 

The likelihood function of the unknown parameters is constructed, given N observations 

NXXX ,...,, 21 . Since the model involves lagged values of the }{ tX , one cannot evaluate the 

residuals for the initial stretch of data. The conditional likelihood based on NXXX ,...,, 21 ++ γγ , 

given NXXX ,...,, 21  where ),,max( kmp=γ  is thus considered. 

Let θ = ),...,,( 21 nθθθ denote the complete set of parameters {ai}, {bij},α  i.e. set 

piaii ,...,2,1, ==θ , 111 bp =+θ , αθθθ === ++++ 1122 ,,..., mkpmkmkpp bb  and write n=p+mk+1 to 

denote the total number of parameters.  

The joint probability density function of Nεεε γγ ,...,, 21 ++  is given by  
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and since the Jacobian of the transformation from }{ tX  to }{ tε  is unity, equation 2.6.5 also 

represents the likelihood function of θ, given },...,1;{ NtX t += γ . The (conditional) maximum 

likelihood estimates of nθθθ ,...,, 21  are thus given by maximizing (2.6.5) or equivalently by 

minimizing  

  Q (θ) = ∑
+=

N

t
t

1

2

γ

ε          2.6.6 

The minimization is performed numerically: for a given set of values ),...,,( 21 nθθθ  then }{ tε  is 

evaluated recursively from equation 2.6.1 and then the Newton-Raphson method is used to 

minimize Q(θ) ( Subba, 1981). The Newton-Raphson iterative equations for minimization of  

Q (θ) are given by, 

  θ(i+1)= θ(i)- H-1(θ(i))G(θ(i))       2.6.7 

where θ(i) is the vector of parameter estimates obtained at the ith iteration, and gradient vector G 

and Hessian matrix H are given respectively as,  
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Subba and Gabr (1984) developed a neat set of recursive equations for these derivatives as 

follows. Differentiating equation (2.6.1) with respect to each of the parameters the following are 

obtained 
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Assuming the initial conditions  
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For a given set of parameter valuesα ,{ai}, {bij} the first and the second derivatives  of Q can be 

evaluated from the above equations and hence the vector G and matrix H evaluated. The 

iteration equation 2.6.7 is then implemented.  

 

When the final parameter estimate θ̂  have been obtained, 2
eσ  is obtained as, 
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2.6.2 Least squares estimation of model parameters for bilinear models 

Following the approach of Tong (1990), consider the bilinear model (equation 2.6.1). Rewriting 

it in a Markovian representation with monor changes in notation. Set p=max(p,q,m,k). 

ξt=(A+Bεt)ξt-1+cεt+d( 22 σε −t ) 

Xt=Hξt-1+εt         2.6.10 
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where ξt is a p-vector and  

A=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

0
1

0
0

0
0

0
0

10
01

1

2

1

M

L

L

MMM

L

L

p

p

a

a

a
a

 B=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0

0

0

01

M

L

L

M

pb

b
   

c=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

+

pp ca

ca
M

11

    d=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

pb

b
M
1

  H= [ ]001 L  

By convention, cj=0 if j>q, bjk=0 if j>m.  Diagonality of the model implies the relation 

B=dH. The converse is not true.  

Following Guegan and Pham (1989), take θ=(a1,…,ap, c1,…,cp, b1,…,bp) as the fundamental 

parameter vector and assume that the representation in equation (2.6.6) is quasiminimal in the 

sense that there is no other Markovian representation with the same noise structure but with a 

state vector which is a linear transformation of the original state vector and has a smaller 

dimension. Further, assume that the model is invertible and stationary. 

 

Let (X1,…,XN) denote the observations. It is plausible to estimate θ by minimizing 

)/~( 0
1

2 ξθε∑
=

N

t
t  w.r.t NΘ∈θ~  where )/~( 0ξθε t  is the )/( 0ξθε t  given by )/~( 0ξθε t = Xt -Hξt-1(ξ0) 

with θ~  as the parameter vector. Intuitively, for this to make sense the effect of ξ0 on )/~( 0ξθε t  

should diminish as ∞→t (see Tong,1990). Let there exist a stationary time series )}~({ θε t such 

that )/~( 0ξθε t - )~(θε t 0→ as ∞→t . Note that )~(θε t is then measurable w.r.t σ -algebra 

generated by Xs, s≤t. Here, the model (2.6.6) is said to be invertible at θ~ relative to the 

observation {Xt}. A sufficient condition for this is  

0)]~~~~~(ln[ <−−
φθ tXHdHcAE , where A~ , c~ , d~ and H~  are given by θ.  

A reasonable choice of NΘ  is suggested by the above sufficient condition and given as 
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where 0Θ is a given compact set and δ  is a small positive number. The set 0Θ is chosen large 

enough to include θ, the true parameter and the set of parameters satisfying the stationarity 

condition. 

Let   )/~()~( 0
1

2 ξθεθ ∑
=

=
N

t
tNQ        2.6.12 

Let Nθ̂  be the minimizer of )~(θNQ  over the set δ,NΘ . This is the LSE of θ (Tong,1990). 

2.6.3 Order selection for Bilinear models 

Suitable values of p,m,k are determined by fitting a range of models covering various values of 

p,m,k and then selecting the model with the minimum value of the AIC defined as; 

2ˆlog)( 2 +−= eNAIC σγ (number of fitted parameters) (Akaike, 1977). 

Note that (N-γ) is the effective number of observations to which each model has been fitted. In 

using the AIC criterion, the goal is to strike a balance between reducing the magnitude of the 

residual variance and increasing the number of model parameters. This method requires that the 

upper bounds be set to p,m,k and then search for the various combinations within this bound.  

This is clearly a nested search procedure. The Subba (1981) algorithm is used to accomplish this 

as follows; 

1. For a given value of p, fit a linear AR(p) model. 

2. Using the AR coefficients as initial values for the {ai}, {bij} and α, and setting initially 

b11=0, fit a BL(p,0,1,1) model using the Newton-Raphson technique. 

3. Fit BL(p,0,1,2) and BL(p,0,2,1) models using the parameters  of the BL(p,0,1,1) model as 

the initial values and setting initially the remaining bilinear coefficients to zero. 

4. Of the two models fitted in step 3, choose the one which has the smaller residual variance 

and use its parameters as starting values of fitting the BL (p, 0,2,2) model. 

5. The procedure is continued until m,k have reached a common upper bound Γ. At each 

stage, a bilinear term of order (m,k) is fitted by considering bilinear terms of orders (m-

1,k) , (m,k-1) , and choosing whichever model has smaller residual variance to provide 

the starting values, with initial values for the remaining coefficients set to zero. 

6. All previous steps are repeated for p=1,2,…,Γ. and the procedure terminates when the 

residual variance 2ˆ eσ starts to increase as m,k increases. As a working rule, Γ should be at 
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least as large as the order of the best AR model selected by the AIC criterion. The final 

choice of model is then made by selecting the model for which the AIC value is smallest. 
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CHAPTER THREE 

METHODOLOGY 

3.1 The scope of the study 

This study was focused on modelling the weekly NSE 20-share index and share prices for the 

three chosen companies namely, National Bank of Kenya Limited (NBK), Bamburi Cement and 

Kenya Airways from Nairobi Stock Exchange using ARCH, Bilinear (BL) and BL-ARCH 

models. The companies selected have been consistent in the NSE and are representative of the 

three sectors namely, Finance & Investment, Industrial & Allied and Commercial & Services 

categorized in the NSE. The two models chosen are able to capture the properties of financial 

data discussed in section 2.1.  

3.2 Data collection  

Secondary data was collected from the NSE. The NSE 20-share index was used in addition to the 

individual company share prices because the behaviour of the volatility of individual stocks has 

received far less attention in the literature when compared with studies on market indices. 

Furthermore, individual investors are more interested in the specific risk of the securities they 

hold rather than the market index; this justifies the need to study stock level data. Moreover, it 

has also been identified in the literature that basing an analysis on index data can lead to false 

perceptions of price change dependence, even when price changes of individual shares 

represented by the index are independent, because stocks which are not traded frequently affect 

the market index (Baudouhat, 2004). The three companies were randomly selected from the three 

sectors. These are the major sectors which are consistent and contribute a lot to the Nairobi stock 

market. The average weekly share prices for the following companies were used: National Bank 

of Kenya Limited (NBK), Bamburi Cement and Kenya Airways (KQ) for the period between 3rd 

June 1996 to 31st December 2007. The NSE 20-share index was for period between 2nd March 

1998 to 31st December 2007 was also modelled. 

3.3 Data analysis 

Time plots for the data were obtained in order to check the empirical characteristics of the data. 

MLE procedure assuming Gaussian, t-distributions and GED were tested for each series when 

fitting ARCH models while for the Bilinear models, the maximum likelihood estimation 
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assuming a normal distribution was utilized. The models were diagnosed using the Log 

likelihood ratio test, AIC and the BIC. Model adequacy was carried out for all cases by 

examining the standardized residuals and squared residual correlations through Ljung-Pierce Q-

statistics. The MSE was used to check on the efficiency of various models in addition to the 

residual plots. The analysis was facilitated by use of computer softwares namely E-Views 5.0 

(Quantitative Micro Software, 2004) and TSMod 4.25 (Davidson, 2008). 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1 Preliminary Analysis 

In this study, four sets of data were used for modelling. They include the weekly average share 

prices for Bamburi Cement Ltd, National Bank of Kenya Limited (NBK), Kenya Airways (KQ) 

Ltd as well as the weekly average NSE 20 share index. 

 

The NSE 20-share index is a weighted mean with 1966 as the base year at 100. It was originally 

based on 17 companies and was calculated on a weekly basis. In 1992, the number of companies 

was increased to 20 to represent nearly 90% of the NSE market capitalization and computation 

changed from weekly to a daily basis. The index is useful in determining the performance of the 

NSE by measuring the general price movement in the listed shares of the stock exchange.  

 
Bamburi Cement, Ltd. was founded in 1951 and manufactures cement in sub-Saharan Africa. 

The company reported earnings results for the six months ended June 30, 2006. For the period, 

the company reported that the profit increased by 32.7% from KES 1.03 billion that was posted 

in a similar period the previous year. The firm improved in profitability with the turnover rising 

by 12% to KSH. 7.9 billion from KSH. 7 billion. 

 

The Kenya Airways’ principal activities include passengers and cargo carriage. It was 

incorporated in 1977 as the East African Airways Corporation (EAA). The company was listed 

in the NSE in 1996 and has been a major player in the Nairobi stock market. 

 

The National Bank of Kenya Limited (NBK) was incorporated on 19th, June 1968 and officially 

opened on Thursday 14th, November 1968. Its main objective was to help Kenyans to get access 

to credit and control their economy after independence. NBK’s current shareholding is 

distributed as: National Social Security Fund (NSSF) 48.06%, General Public 29.44%, and 

Kenya Government 22.5%. During the 34th, AGM held on 25th, April 2003, the bank increased 

its Share Capital by Kshs. 6 Billion. NBK is a major player in Kenya's banking industry and is 

one of the largest bank in the country giving financial services to all sectors of the economy. 
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NBK is also involved in the stock market playing multiple roles as an arranger, underwriter and 

placing agent.  

 

The preliminary analysis was done by use of time plots for the various series. Figures 4.1 to 4.4 

represents the time plots for the four series. 
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Figure 4.1:Time plot for weekly NSE- Index 
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Figure 4.2: Time plot for weekly average NBK prices 
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Figure 4.3: Time plot for weekly Bamburi prices 
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Figure 4.4: Time plot for weekly Kenya Airways (KQ) prices 
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A visual inspection of the time plots clearly shows that the mean and variance are not constant, 

implying non-stationarity of the data. The non-constant mean and variance suggests the 

utilization of a nonlinear model and preferably a non-normal distribution for modelling the data.  

 

The series were transformed by taking the first differences of the natural logarithms of the values 

in each the series. The transformation was aimed at attaining stationarity in the first moment. The 

equation representing the transformation is given by )ln()ln( 1−−= ttt PPX ,where tP  represents 

the weekly average value for each series. The sequence plots for the returns are presented in 

Figures 4.5 to 4.8. 
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Figure 4.5: Time plot for the Log differenced NSE-Index  
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Figure 4.6: Time plot for the Log differenced NBK prices 
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Figure 4.7: Time plot for the Log differenced Bamburi prices 
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Figure 4.8: Time plot for the Log differenced Kenya Airways (KQ) prices 
 
 
A closer examination of the return series plots reveals well known characteristics of high 

frequency data. It is easy to see that “large changes tend to be followed by large changes of 

either sign, and small changes tend to be followed by small changes of either sign, a 

characteristic first noted by Mandelbrot (1963). There is also an alternation between periods of 

high and low volatility. Large (small) changes are followed by large (small) changes, but of 

unpredictable sign as noted by Fama (1965). In general, all the series under study exhibits ARCH 

effects (also referred to as the heteroscedasticity) prevalent in many financial time series data. 

 

The basic statistical properties of the data are presented in Table 4.1. The mean returns are all 

positive and close to zero a characteristic common in the financial return series. All the four 

series have very heavy tails showing a strong departure from the Gaussian assumption. The 

Jarque-Bera test also clearly rejects the null hypothesis of normality. Notable is the fact that all 

the four series exhibit positive Skewness estimate. This means that there are more observations 

on the right hand side.  
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Table 4.1: Basic statistical properties of returns 
 

 NSE INDEX NBK BAMBURI
KENYA 

AIRWAYS 
 Mean  0.000919  0.001650  0.003070  0.002587 
 Median -0.000116  0.000000  0.000395  0.000536 
 Maximum  0.609314  0.601761  0.604465  2.244758 
 Minimum -0.602485 -0.440545 -0.608999 -2.240928 
 Std. Dev.  0.044259  0.086715  0.058789  0.139903 
 Skewness  0.208853  1.287552  0.165014  0.046429 
 Kurtosis  139.1245  15.20180  42.97123  220.4956 
 Jarque-Bera 
 Probability 

 393763.8 
 0.000000 

 3900.838 
 0.000000 

 40078.36 
 0.000000 

 1186550 
 0.000000 

 Observations  510  602  602  602 
 
 
The series having exhibited heteroscedasticity as shown by the time plots were tested for the 

ARCH disturbances using Engle’s (1982) Lagrange Multiplier (LM) while the Portmanteau Q 

test (McLeod and Li, 1983) based on the squared residuals was used to test for the independence 

of the series. Since both the Q statistic and the LM are calculated from the squared residuals, 

they were used to identify the order of the ARCH process. 

 

For all the return series, the Q statistics and the Lagrange Multiplier (LM) tests indicated strong 

heteroscedasticity for all the lags from 1 to 12.This suggested an ARCH model of order q=8. 

 

4.2 Empirical Results and Discussions 

a) ARCH models 

Before an ARCH model was fitted, the ACF was used to detect autocorrelation while the PACF 

was used to determine the orders of the ARMA models that could capture any autocorrelation 

present in the data. The four series studied exhibited some autocorrelation up to different lags 

and it was therefore important to model the series using both the AR models in addition to the 

variance equation (ARCH model). The ARCH orders were determined by the PACF of the 

squared returns in addition to the LM test. 
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The first set of models implemented in this study was the original Engle’s (1982) ARCH models. 

Tables 4.2 and 4.3 presents the MLEs for the parameters of the Autoregressive and ARCH 

models respectively for the best selected models with the student’s t distribution in all cases. 

 

Table 4.2: Maximum likelihood estimates for the AR(p) 
 
 NSE INDEX NBK BAMBURI KQ 

C 0.001280(0.4606) -0.000556 (0.6463) 0.001653(0.1456) 0.000351(0.8502)
θ1 0.287924(0.0001) 0.063694 (0.1424) 0.13071 (0.0005) 0.138328(0.0084)
θ2 0.009555(0.8777) -0.096911 (0.0005) 0.045581(0.1739) -0.09848(0.0269)
θ3 -0.01552(0.8442) ------------ -0.01648(0.5277) -0.00712 (0.822) 
θ4 -0.0303(0.6621) ------------ ------------- ----------- 
θ5 -0.02445(0.7031) ------------ ------------- -------------- 

P-values in the brackets 
 
 

Table 4.3: Maximum likelihood estimates for the Variance Equation (ARCH) 
 

 NSE INDEX NBK BAMBURI KQ 
C 0.000468(0.0000) 0.002493 (0.275) 0.001281 (0.0386) 0.001084 (0.000) 
α1 0.223091(0.0026) 4.282614 (0.285) 0.830275 (0.0574) 0.40954 (0.0000) 
α2 -0.032588(0.354) 0.530357 (0.352) 0.245715 ((0.1192) 0.121081 (0.006) 
α3 0.135125(0.0183) -0.10449 (0.430) 0.074612 (0.2819) -0.00096 (0.923) 
α4 0.009933(0.7744) 0.615525 (0.322) 0.027413 (0.5522) -0.00608 (0.564) 
α5 0.000338(0.9878) 0.06252 (0.6357) 0.045551 (0.2838) 0.00726 (0.5863) 
α6 -0.002823(0.922) 0.18422 (0.4053) 0.007415 (0.7293) -0.00052 (0.915) 
α7 0.023609(0.4975) 0.12481 (0.3839) -0.003954 (0.8243) -0.00026 (0.889) 
α8 0.001971(0.8204) -0.04717 (0.065) -0.000210 (0.9878) -0.00012 (0.894) 
α9 -------------- 0.132368 (0.331) -------------- -------------- 

P-values in the brackets 
 

As shown in Table 4.3, the ARCH model required a relatively bigger lag to model the volatility. 

The relative fit of the models were assessed using the Log likelihood, Schwarz Bayesian 

Information Criterion (BIC) , Akaike Information Criterion (AIC) and the Likelihood Ratio (LR) 

test, i.e the models that minimized the BIC and AIC but maximized the log likelihood were 

considered to be the best. The final model specifications however, were decided on by looking at 

the standardized residuals and the squared standardized residuals through Ljung-Box Q statistics 

in addition to the residual time plots and the residual correlogram. The goodness of fit statistics 

are presented in Table 4.4. The key for Table 4.4 and subsequent Tables is given as; 
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LR- Represents Log likelihood Ratio test 
JB- Represents Jarque-Bera statistics for normality  
Q(12) - Represents Ljung-Box Q statistics for the standardized residuals 
Q2(12) - Represents Ljung-Box Q statistics for squared standardized residuals 
P-Values are given in the brackets 

 
 

Table 4.4: The goodness of fit statistics for ARCH models 
 

 

 

 

 

 

 

 

 

 

 

Diagnostic checks are presented in Table 4.5. The student’s t-distribution and the General Error 

Distribution (GED) were tested for all the series. In all the cases, the student’s t distribution 

assumption provided a better model than the GED. This could be due to the fact the financial 

data is highly heavy tailed and is better captured by the student’s t-distribution since the GED 

distribution has a higher peak than the student’s t-distribution. Although the GED distribution 

may be better able to capture peaks, it is far worse for capturing fat tails. The Jarque-Bera (1980) 

statistic also strongly rejected the normality assumption in the standardized residuals for all the 

series. The fitted models were adequate since their standardized residuals were not significantly 

correlated in all the four series basing on the Ljung-Box Q statistics. The squared residuals were 

also not significantly correlated for lags up to 12 for all the four series.  

 

 ARCH (q)   t GED 
LR 1234.183 1186.69
AIC -4.8249 -4.63639NSE 

INDEX BIC -4.69064 -4.50254
LR 888.5304 894.4222
AIC -2.9151 -2.93474NBK 
BIC -2.8125 -2.83215
LR 1173.448 1131.428
AIC -3.87128 -3.73098BAMBURI
BIC -3.76855 -3.62825
LR 1056.460 877.2675
AIC -3.48067 -2.88236KQ 
BIC -3.37794 -2.77964
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Table 4.5: Diagnostic Tests for Standardized Residuals for ARCH models 
 

 
Series Statistics ARCH(q) 

Skewness 13.10924 
Kurtosis 247.6270 
JB 1273648(0.0) 
Q(12) 9.1250 (0.244) 

NSE 
INDEX 

Q2(12) 0.2561(1.00) 
Skewness 0.440471 
Kurtosis 12.88964 
JB 2464.525 (0.00)
Q(12) 12.153 (0.275) 

NBK 

Q2(12) 7.7550 (0.653) 
Skewness -2.206949 
Kurtosis 46.14442 
JB 46944.72(0.00)
Q(12) 13.073 (0.159) 

BAMBURI

Q2(12) 0.5454 (1.000) 
Skewness -19.56340 
Kurtosis 445.6521 
JB 4928567(0.00) 
Q(12) 3.8591 (0.920) 

KQ 

Q2(12) 0.0250(1.00) 
 

b) GARCH models 

 The next class of models implemented was the GARCH models. The autoregressive models 

were applied to capture the autocorrelation present in the series. The GARCH models for 

different values of p and q were fitted to the data, diagnosed and from the diagnosis and 

goodness of fit statistics, the GARCH (1,1) was found to be the best choice. This is consistent 

with most empirical studies involving the application of GARCH models in financial time series 

data. The Maximum Likelihood Estimation (MLE) method was employed in the parameter 

estimation. The model parameter estimates are presented in Tables 4.6 and 4.7. 
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Table 4.6: Maximum Likelihood Parameter Estimates for the AR(p) model 
 

 NSE INDEX NBK BAMBURI KQ 
C -0.00067 (0.511) 0.000451 (0.4341) 6.45E-06 (0.984) 0.000311 (0.489)
θ1 0.397699(0.0000) 0.066623 (0.0025) 0.000203 (0.984) 0.13101 (0.0000)
θ2 -0.041552(0.328) -0.098898 (0.0000) -2.21E-05 (0.997) -0.07271 (0.000) 
θ3 0.068505(0.1041) ------------- -2.80E-05 (0.997) 0.022187 (0.025)
θ4 0.025138(0.4778) ------------- ------------- --------- 
θ5 -2.22E-05(0.999) ------------ ------------- --------- 

P-values are given in the brackets. 
 
 

Table 4.7: Maximum likelihood estimates for the Variance Equation (GARCH) 
 

 NSE INDEX NBK BAMBURI KQ 
α0 0.000188(0.0301) 0.000839 (0.0002) 0.000476 (0.0005) 0.00068 (0.0000)
α1 1.012761(0.0528) 0.820734 (0.0002) 1.746631 (0.0007) 1.28820 (0.0003)
β1 0.337890(0.0000) 0.402620 (0.0000) 0.246922 (0.0006) 0.15924 (0.0298)

  P-values are given in the brackets. 
 
 
The GARCH parameter estimates for the variance equation was significant for all the series except for 

the NSE Index in which α1 was not statistically significant. In the GARCH model, the parameters α  

and β  must satisfy 111 <+ βα  for stationarity. However, the GARCH (1,1) estimates violated the 

restriction imposed i.e. in all cases, 111 >+ βα . This implies that the fitted GARCH model is not 

weakly stationary and the conditional variance )( 2
tσ  does not approach the unconditional variance 

)( 2σ  and thus the series might not have finite unconditional variance. This calls for the 

implementation of Integrated GARCH (1,1) model since it is capable of being stationary in the strong 

sense even though 111 =+ βα  (Nelson,1990).  

 

Two distributions were tested (i.e student’s t and GED) for the specific GARCH (p,q) model and 

the best distribution choice was determined based on the BIC, AIC and the Log likelihood Ratio 

test in all the cases (see Table 4.8). For the NSE index, the distribution of choice was the 

student’s t-distribution while for NBK, Bamburi and KQ, the Generalized Error Distribution was 

chosen. This shows that the NSE index data had fatter tails as compared to NBK, Bamburi and 

KQ. The model adequacy was checked using the Ljung-Box Q statistics for residuals and 

squared residuals in which the null hypothesis of no significant correlations was not rejected for 
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all the series implying that the fitted models were adequate. The JB statistics rejected the null 

hypothesis of normality in the standardized residuals. This implies that the models with the 

respective distributions failed to normalize the residuals. The Goodness of fit statistics and 

Diagnostic tests are presented in Tables 4.8 and 4.9 respectively. 

 

Table 4.8: Goodness of fit Statistics for GARCH(1,1) 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

GARCH(1,1)  t GED 
LR 1330.525 1311.209 
AIC -5.22980 -5.1533 NSE 

INDEX BIC -5.14615 -5.06965 
LR 874.3381 886.1993 
AIC -2.89113 -2.93066 NBK 
BIC -2.83983 -2.87937 
LR 1183.842 1224.82 
AIC -3.92602 -4.06284 BAMBURI
BIC -3.8672 -4.00414 
LR 1121.227 1102.199 
AIC -3.71695 -3.65342 KQ 
BIC -3.65825 -3.59472 
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Table 4.9: The Diagnostic tests on the standardized residuals for the GARCH models 
 

 
Series Statistics GARCH(1,1) 

Skewness 16.55941 
Kurtosis 336.4305 
JB 2362405(0.00) 
Q(12) 1.7414 (0.973) 

NSE 
INDEX 

Q2(12) 0.0362 (1.00) 
Skewness 0.826570 
Kurtosis 12.59127 
JB 2368.132 (0.00) 
Q(12) 13.956 (0.175) 

NBK 

Q2(12) 3.3475 (0.972) 
Skewness -1.431525 
Kurtosis 36.27621 
JB 27841.11 (0.00) 
Q(12) 16.192 (0.063) 

BAMBURI

Q2(12) 1.0873 (0.999) 
Skewness -20.21615 
Kurtosis 465.1099 
JB 537054(0.00) 
Q(12) 1.8585 (0.994) 

KQ 

Q2(12) 0.0264 (1.00) 
 

c) Integrated GARCH (IGARCH) Model 

Since the parameter estimates in GARCH (1,1) models were close to the unit root but not less 

than unit, i.e 1
11

=+ ∑∑
===

q

j
j

p

i
i βα ,the IGARCH model was fitted. The MLE method was utilized 

for parameter estimation. The parameter estimates for the mean and variance equations are 

presented in Tables 4.10 and 4.11 respectively. 
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Table 4.10: Maximum Likelihood Parameter Estimates for the AR(p) model 
 

 NSE INDEX NBK BAMBURI KQ 
C -0.0057 (0.0017) -0.003828 (0.2012) 0.000229 (0.9138) -0.002113 (0.3421) 
θ1 -0.3821 (0.0001) -0.0789 (0.0409) -0.0863 (0.0303) -0.1530 (0.0003) 
θ2 0.0538 (0.2101) 0.1326 (0.0002) -0.0262 (0.4602) 0.0907 (0.0081) 
θ3 -0.0413 (0.3398) ------------- 0.004685 (0.8632) -0.0173 (0.5225) 
θ4 -0.0234 (0.5312) ------------- ------------- --------- 
θ5 0.0128 (0.7034) ------------ ------------- --------- 

P-values are given in the brackets. 
 

Table 4.11: Maximum likelihood estimates for the Variance Equation (IGARCH) 
 

 NSE INDEX NBK BAMBURI KQ 
α0 0.00013 (0.0004) 0.000988 (0.0005)  0.000542 (0.0001) 0.000686 (0.0001) 
α1 0.6022 (0.0001) 0.5034 (0.0001)  0.6762 (0.0001) 0.7948 (0.0001) 
β1 0.3978 ((0.0001))  0.4966 (0.0001) 0.3238 (0.0001) 0.2052 (0.0014) 

 P-values are given in the brackets. 
 

The mean equation was applied to capture the autocorrelation in the data. The parameter 

estimates for the variance equation were statistically significant at 0.05 significance level in all the 

series. In addition, 111 =+ βα  for all the cases; implying that multi-step forecasts of the 

conditional variance do not approach the unconditional variance (i.e the unconditional variance 

is infinite). Despite the infinite unconditional variance, one attractive feature of the IGARCH 

model is that it is strongly stationary even though it is not weakly stationary. The results indicate 

that the data sets used exhibit the persistence in variance/volatility whereby the current 

information remains important in forecasting the conditional variance, i.e. the current 

information in the NSE remains important in forecasting the conditional variance.  

 

Two distribution assumptions namely, the normal and t-distributions were tested. The Gaussian 

distribution was implemented since it has been used as a benchmark for IGARCH models. The 

student’s t-distribution provided the best fit for the data and captured the heavy tail properties 

more adequately than the Gaussian distribution. The models were fitted and diagnosed using the 

AIC, BIC and the Log likelihood ratio test. However, the final model was considered adequate if 

its standardized residuals and squared residuals were not significantly correlated at 5% 

significance level. The residual correlation was tested using the Ljung-Box Q statistics. All the 
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fitted IGARCH models were adequate since their residuals were not significantly correlated. 

Further, the standardized residuals were still non-normal as shown by the JB statistics for 

normality. The goodness of fit statistics for the IGARCH(1,1) model is presented in Table 4.12 

while the diagnostic tests are presented in Table 4.13. 

  

Table 4.12: Goodness of fit Statistics for IGARCH (1,1) 
 

IGARCH(1,1)   Gaussian t 
LR 1025.48985 1639.12862 
AIC -2032.9797 -3258.257 NSE 

INDEX BIC -1994.87 -3215.9131 
LR 750.632822 1219.04801 
AIC -1489.2656 -2424.096 NBK 
BIC -1462.8541 -2393.2826 
LR 978.83866 1521.84383 
AIC -1943.6773 -3027.6877 BAMBURI 
BIC -1912.8755 -2992.4856 
LR 652.581675 1463.09986 
AIC -1291.1634 -2910.1997 KQ 
BIC -1260.3615 -2874.9977 
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Table 4.13: The Diagnostic tests on the standardized residuals for the IGARCH models 
 

 
Series Statistics IGARCH(1,1) 

Skewness -4.5528489 
Kurtosis 164.221066 
JB 2372988.14 (0.0001) 
Q(12) 181.363 (0.500) 

NSE 
INDEX 

Q2(12) 127.096 (0.444) 
Skewness 1.25458426 
Kurtosis 12.1746324 
JB 2209.2269 (0.0001) 
Q(12) 16.48 (0.170) 

NBK 

Q2(12) 40.21 (1.0000) 
Skewness 0.56088418 
Kurtosis 45.6729539 
JB 52802.3806  (0.0001)
Q(12) 26.49 (0.670) 

BAMBURI

Q2(12) 136.98 (0.988) 
Skewness 2.82266654 
Kurtosis 221.9130 
JB 5313541.27 (0.0001) 
Q(12) 197.66(0.664) 

KQ 

Q2(12) 87.453 (0.442) 
 
In order to capture the leverage effects, two asymmetric ARCH-type models; the Exponential GARCH 

(EGARCH) and Threshold GARCH (TGARCH) were fitted. 

 
d) EGARCH models 
 Despite the popularity and apparent success of GARCH models in practical applications, they 

cannot capture asymmetric response of volatility to news since the sign of the returns play no 

role in the model specification. Statistically, the asymmetric effect occurs when an unexpected 

decrease in price resulting from bad news increases volatility more than an unexpected increase 

in price of similar magnitude following good news. 

Accordingly, Nelson’s (1991) EGARCH model was fitted.  Unlike the GARCH (p,q) model, a 

negative shock can have a different impact on future volatility when compared to the positive 

shock if asymmetry parameter γ1 is not zero for the EGARCH model. It also does not need 

restrictions to be imposed on the parameters to ensure the non-negativity. 
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In the EGARCH model estimation, the MLE criterion was employed. Different orders for p and 

q in the variance equation were tested with the best results being achieved for p=q=1. The 

student’s t-distribution also emerged to be the best for the NSE Index and Kenya Airways series 

while the Generalized Error Distribution provided the best results for NBK and Bamburi series. 

In this case, the distributional implication is that the NSE index and Kenya Airways series have 

long tails and are closer to symmetry while the Bamburi and NBK series have long tail but are 

asymmetric. Model parameter estimates for the mean and variance equations are presented in 

Tables 4.14 and 4.15 respectively. 

 

Table 4.14: Maximum Likelihood Parameter Estimates for the AR(p) model 
 

 NSE INDEX NBK BAMBURI KQ 
C -0.00034 (0.752) 0.001272 (0.0628) 1.57E-06 (0.995) 0.000524 (0.6492) 
θ1 0.367256 (0.000) 0.072864 (0.0004) 0.000736 (0.949) 0.153554 (0.0000) 
θ2 -0.01234 (0.741) -0.087534 (0.000) 8.36E-05 (0.981) -0.081792 (0.0119) 
θ3 0.054319 (0.153) ------------ 4.77E-05 (0.993) 6.46E-05 (0.9981) 
θ4 0.036511 (0.249) ----------- ----------- ----------- 
θ5 0.005672 (0.854) ---------- ---------- ---------- 

P-values are given in the brackets 
 

Table 4.15: Maximum likelihood estimates for the Variance Equation (EGARCH (1, 1)) 
 

 NSE INDEX NBK BAMBURI KQ 
ω -2.31720 (0.000) -1.923399 (0.0000) -1.93642 (0.000) -1.698545 (0.0020) 

1β  0.71009 (0.0000) 0.736037 (0.0000) 0.764633 (0.000) 0.703361 (0.000) 
α1 0.43426 (0.0022) 0.837917 (0.000) 0.90602 (0.000) 1.429443 (0.2394) 
γ1 -0.0309 (0.7116) 0.085966 (0.3613) 0.18791 (0.1125) 0.809205 (0.2497) 

P-values are given in the brackets 
 
The EGARCH model parameter estimates also reveal the persistence in volatility of the Nairobi 

equity market. This is because the sum of α1 and 1β  is approximately 1 in all the data sets. The 

asymmetric parameter γ1 is positive and not significant for three series namely NBK, Bamburi 

and KQ. The positivity of γ1 indicates that positive shocks increase volatility more than the 

negative shocks of an equal magnitude. This shows that the concept of “leverage effect” (i.e the 

negative shocks increasing volatility more than a positive shock of the same magnitude) is not 

applicable to the individual company stocks. However, for the NSE Index, the asymmetric 

parameter γ1 is negative implying that negative shocks increase volatility more than a positive 

shock of the same magnitude. This contradicts the earlier studies on the Nairobi Stock Exchange 
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for instance Ogum et al., (2005, 2006) who found the asymmetry parameter γ1 to be positive 

when modelling the daily NSE 20 Share Index using the EGARCH models. This could arise 

from the fact that the weekly return series were used in this study while Ogum et al., (2005, 

2006) modelled the daily returns. Some information could have been lost when using the weekly 

average for the NSE index and the share prices for the companies. In addition, the flow of 

information in NSE might not be as efficient as in the developed equity markets. 

 

The model diagnostics and goodness of fit statistics are presented in Tables 4.16 and 4.17 

respectively. The diagnostics included the autocorrelation of the standardized residuals and 

squared residuals respectively. The Ljung-Box Q statistics represented by Q(12) and Q2(12) for 

residuals and squared residuals respectively were used which were not significant in all cases 

confirming the adequacy of the fitted models. The models could thus explain the non-linear 

dependence in the residuals i.e the models captured the dependence in the variance shown by the 

original series of returns. 
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Table 4.16: The Diagnostic tests on the standardized residuals for the EGARCH models 
 

 
Series Statistics EGARCH(1,1) 

Skewness 14.48218 
Kurtosis 281.5813 
JB 1650644 (0.000) 
Q(12) 1.9366 (0.963) 

NSE 
INDEX 

Q2(12) 0.0488 (1.00) 
Skewness 0.829323 
Kurtosis 12.18049 
JB 2175.813 (0.00) 
Q(12) 12.569 (0.249) 

NBK 

Q2(12) 2.5460 (0.990) 
Skewness -1.465635 
Kurtosis 25.31122 
JB 12638.47 (0.00) 
Q(12) 18.489 (0.300) 

BAMBURI

Q2(12) 2.1275 (0.989) 
Skewness -16.57644 
Kurtosis 357.2894 
JB 3160227 (0.00) 
Q(12) 2.5214 (0.98) 

KQ 

Q2(12) 0.391 (1.00) 
 
 
 

Table 4.17: Goodness of fit Statistics for the EGARCH models 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 EGARCH(1,1)   t GED 
LR 1329.191 1311.049
AIC -5.22056 -5.14871NSE 

INDEX BIC -5.12854 -5.05669
LR 880.8376 891.695 
AIC -2.90946 -2.94565NBK 
BIC -2.85083 -2.88703
LR 1188.800 1229.910
AIC -3.93923 -4.07650BAMBURI
BIC -3.87319 -4.01046
LR 1112.958 1100.172
AIC -3.68600 -3.64331KQ 
BIC -3.61996 -3.57727
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The EGARCH model, in all cases showed a smaller Kurtosis compared to the ARCH and 

GARCH models. In addition, the student’s t-distribution and Generalized Error Distributions 

also captured the tail properties of the data better than the Gaussian distribution in all the four 

cases. The JB statistics also strongly rejected the null hypothesis of normality in the standardized 

residuals in all the series under consideration. 

 

e) Threshold GARCH (1,1) 

The TGARCH (1,1) model which falls in the asymmetric class of ARCH-type models was also 

used. The model was fitted, estimated and diagnosed just like the previous models. From the two 

distributions tested, the student’s t distribution emerged the best for the NSE index while GED 

was considered the best for the NBK, Bamburi and KQ. This is because the GED and the 

students’s t-distributions were able to capture the tail properties of the data. It is worth noting 

that under the student’s t distribution, the convergence during estimation was a major problem. 

The algorithm converged very slowly and sometimes weakly. This casts doubts on the stability 

of the parameter estimates.  

 

The parameter estimates for the mean and variance equations are presented in Tables 4.18 and 

4.19 respectively. In the variance equation, the asymmetry parameter γ1 was less than zero for all 

the four series. This implies that good news increases volatility more than bad news. This is 

consistent with the findings of Ogum et al., (2005, 2006) who applied EGARCH models to the 

daily NSE 20 Share Index. Hence the leverage effect experienced in developed markets might 

not be a universal phenomenon. 

 

Table 4.18 : Maximum Likelihood Estimates for the AR(p) 

 
 NSE INDEX NBK BAMBURI KQ 

C -0.00029 (0.781) 0.000230 (0.7662) 4.89E-07 (0.999) 0.000321 (0.4778) 
θ1 0.398891 (0.000) 0.074302 (0.0025) 0.091467 (0.000) 0.130972 (0.0000) 
θ2 -0.03898 (0.350) -0.092697 (0.0000) -0.00016 (0.987) -0.072987 (0.0000)
θ3 0.06793 (0.1052) 0.006025 (0.6790) 5.97E-05 (0.983) 0.022427 (0.0872) 
θ4 0.02378 (0.4985) ---------- ----------- ----------- 
θ5 0.00251 (0.9347) ---------- ---------- ---------- 

P-values are given in the brackets 
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Table 4.19:  Maximum likelihood estimates for the Variance Equation (TGARCH (1, 1)) 
 

 NSE INDEX NBK BAMBURI KQ 
0α  0.00019 (0.0215) 0.000755 (0.0002) 0.00042 (0.0004) 0.000682 (0.0000) 

1α  1.40972 (0.0488)  0.916490 (0.0029) 1.92241 (0.0027) 1.800201 (0.0013) 
γ1 -0.82608 (0.148) -0.127722 (0.7188) -0.90175 (0.176) -0.865160 (0.1709) 

1β  0.318458 (0.000) 0.406304 (0.0000) 0.28212 (0.0001) 0.157956 (0.0333) 
P-values are given in the brackets 

 

The diagnostic tests and goodness of fit statistics for the TGARCH models are presented in 

Tables 4.20 and 4.21. Just like the previous models, the best distributions were GED and the 

student’s t-distribution. Also, based on the Ljung-Box Q statistics, both the residuals and the 

squared residuals were not significantly (5% level) correlated implying that the models were 

adequate. The JB statistic for normality also rejected the normality assumption in the 

standardized residuals. 
 

Table 4.20 : The goodness of fit statistics for the TGARCH models 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 TGARCH(1,1)   t GED 
LR 1332.741 1312.929
AIC -5.234619 -5.156153NSE 

INDEX BIC -5.142599 -5.064133
LR 871.7255 883.5855 
AIC -2.880553 -2.920152NBK 
BIC -2.814514 -2.854113
LR 1185.886 1217.043
AIC -3.929502 -4.033532BAMBURI
BIC -3.863463 -3.967493
LR 992.3657 1104.419
AIC -3.283358 -3.657492KQ 
BIC -3.217319 -3.591453
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Table 4.21: The Diagnostic Tests in Standardized Residuals for the TGARCH models 
 

 
Series Statistics TGARCH(1,1)

Skewness 16.46073 
Kurtosis 334.0355 
JB 2328646 (0.00) 
Q(12) 2.050 (0.957) 

NSE 
INDEX 

Q2(12) 0.357 (1.00) 
Skewness 0.788546 
Kurtosis 12.80236 
JB 2460.232 (0.0) 
Q(12) 13.468 (0.143) 

NBK 

Q2(12) 3.3146 (0.951) 
Skewness -1.488381 
Kurtosis 30.07995 
JB 18523.7 (0.00) 
Q(12) 14.448 (0.107) 

BAMBURI

Q2(12) 1.4251(0.998) 
Skewness -19.87371 
Kurtosis 454.4961 
JB 5127155 
Q(12) 1.8733 (0.993) 

KQ 

Q2(12) 0.0273 (1.00) 
 

4.3 Efficiency Comparison between the ARCH-type Models 

Model efficiencies for each of the ARCH-type models implemented were evaluated using the 

various MSE.  The MSE for the chosen models are presented in Table 4.22. 

 
Table 4.22: MSE for the fitted ARCH-type models 

 
Series ARCH GARCH(1,1) EGARCH(1,1) TGARCH(1,1) IGARCH(1,1)

NSE INDEX 0.002481 0.002804 0.002695 0.0028045 0.00274 
NBK 0.007418 0.007379 0.0073909 0.007386 0.00736 

BAMBURI 0.003593 0.003453 0.003476 0.0035650 0.00354 
KQ 0.022491 0.022411 0.022929 0.022412 0.02290 

 

Considering the MSE values in Table 4.22, it is clear that ARCH, GARCH, EGARCH and 

IGARCH are all equally efficient in modelling volatility based on the MSEs only, since the 

different ARCH-type models are almost equal for the respective data sets. The disadvantage with 

the ARCH model is that so many parameters are to be estimated. The GARCH, IGARCH, 

EGARCH and TGARCH models are able to parsimoniously model the series and hence are 
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preferred to the original ARCH model. Considering the asymmetric properties of the data and the 

respective MSEs, the EGARCH (1,1) emerged as the best model for the NSE Index and 

Bamburi. For the NBK, both the EGARCH and the TGARCH are equally good but EGARCH is 

considered the best since the parameter estimates for the TGARCH are unstable due to weak 

convergence. The best model for Kenya Airways was the GARCH model.  

 

The respective models chosen are justified by their relatively lower values of residual Kurtosis 

and MSE in addition to the other diagnostics considered as well as the asymmetric parameter that 

captures the leverage effect. However, in terms of stationarity, the IGARCH model emerged as 

the best ARCH-type model since it was strongly stationary thus being more stable. This makes 

the IGARCH model to be the preferred model from the ARCH-type models for modelling the 

Nairobi Stock Exchange data for the periods between 2nd March 1998 to 31st December 2007 for 

NSE 20-Share index while and 3rd June 1996 to 31st December 2007 for company share prices 

(i.e NBK, Bamburi and Kenya Airways). 

 

e) Bilinear models. 

The next class of models under consideration was the bilinear models. The MLE method 

assuming a Gaussian distribution was used for parameter estimation for the data studied. Order 

selection was done using the ACF and PACF.  

 

The model adequacy was checked via Ljung-Box Q statistics as well as checking the residual 

and squared residuals, ACF and PACF which all showed that all the residuals for bilinear models 

were not significantly correlated to lag 12 except the squared residual for NBK which was 

significantly correlated at lag 12. This implies that the fitted bilinear models were adequate 

except the one for NBK.  

 

The Jarque-Bera (1980) statistics rejected the null hypothesis of normality in all the residuals i.e 

the residuals are not normally distributed. Residual plots were further employed to check the 

model adequacy. In all the series, the residuals showed sharp spikes outside the standard error 

bands. This suggests that there could be problems ahead and casts doubts on the models’ stability 

(Tong, 1990). The fitted bilinear models and model diagnostics are presented in Tables 4.23 and 

4.24 respectively. 
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Table 4.23: Maximum Likelihood Estimates for the bilinear models 

 
NSE 20-SHARE INDEX 

tttttttttt XXXXX εεεεε +−−−−+= −−−−−−−− 12)0.991(11)00.0(2)0.973(1)0.033(2(0.535))0.81(
1 0.016692.03221 0.00279 0.33080.020520.05227-

, ),0(~ 2
εσε WNt  

NBK 

tttttttttttt XXXXXXX εεεεε +−−++−= −−−−−−−−−− 2
)0.002(

212)0717.0(210.000495) ()000177.0(
112)0.04 ()0.094 (

1 0.58890.852222 0.2566 3713.00.109730.25431-  

),0(~ 2
εσε WNt  

BAMBURI CEMENT LTD 

tttttttttt XXXXX εεεεε ++++−−= −−−−−−−− 12)0.033 (11)0.028(2)0.019(1)0.033(2)0.048()0.025(
1 0.445211.4483 0.398640.445210.31609 0.41221 

, ),0(~ 2
εσε WNt  

KENYA AIRWAYS (KQ) 

tttttttttttt XXXXXXX εεεεε +−+−+−= −−−−−−−−−− 2
)0.2172 (

22
)644.0(

112)0.226 (11)4838.0(2)0.106(1)0.804(
0.080980.068480.032780.45340.130010.01995

),0(~ 2
εσε WNt  

The p-values for the parameter estimates are given in the parenthesis. 

 

From Table 4.23, basing on a significance level of 0.05, it is clear that for the NSE index, the 

dependence is significant for errors at lag 1 only and not the observations. The bilinear terms are 

also significant at lag (1,1) for the same series. The remaining bilinear term at lag (2,1) is not 

significant. For the NBK, the observations are significant at the second lag and also the 

interaction between the observations and errors at lags (1,1), (1,2) and (2,2) i.e. the bilinearity is 

significant at (1,1),(1,2) and (2,2). 

 

In case of the Bamburi series, the observations and the errors as well as their interactions are 

significant at all the lags for the fitted model. However, for the Kenya Airways series, all the 

estimated parameters are not statistically significant i.e the dependence on the observations and 

errors are not significant. This implies that the model for the Kenya Airways is not useful and 

hence should be discarded but it was kept for comparison purposes with the other models. 
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It is worth noting that in the bilinear model, a lot of parameters have been estimated. This goes 

against the principle of parsimony where by models with fewer parameter estimates are 

preferred. The Goodness of fit statistics and the Diagnostics for the bilinear models are presented 

in Tables 4.24 and 4.25 respectively. All the fitted models are adequate except the one s for NBK 

and Kenya Airways which had a significant correlation in the squared standardized residuals 

 

Table 4.24: Goodness of fit statistics for the bilinear models 
 

 

 

 

 

 

 

 

 

 

 BILINEAR   (GAUSSIAN) 
LR 976.549 
AIC -969.549 NSE 

INDEX BIC -954.742 
LR 639.686 
AIC -631.686 NBK 
BIC -614.098 
LR 893.821 
AIC -886.821 BAMBURI
BIC -871.432 
LR 499.608 
AIC -492.608 KQ 
BIC -477.218 
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Table 4.25: Diagnostic Tests for the bilinear models 
 

 
Series Statistics BILINEAR  

Skewness 10.6232 
Kurtosis 178.462 
JB 661208 (0.00) 
Q(12) 4.9609 (0.959) 

NSE 
INDEX 

Q2(12) 0.0658 (1) 
Skewness 1.3731 
Kurtosis 15.1073 
JB 3853.19 (0.00) 
Q(12) 12.3522 (0.418) 

NBK 

Q2(12) 42.3188 (0.00) 
Skewness -2.4333 
Kurtosis 35.7359 
JB 27383.1 (0.00) 
Q(12) 11.9768 (0.448) 

BAMBURI

Q2(12) 8.3504 (0.757) 
Skewness -16.0448 
Kurtosis 345 
JB 2949840 (0.00) 
Q(12) 2.2569 (0.999) 

KQ 

Q2(12) 0.0348 (1) 
 

Since there was a significant correlation in the squared standardized residuals and parameter 

instability for the fitted bilinear models, Bilinear-GARCH (BL-GARCH) models were fitted to 

the respective series employing the MLE method with the Gaussian distribution assumption. The 

variance equation was aimed at capturing the second order correlation thereby improving the 

model adequacy and stability. Table 4.26 presents the estimated BL-GARCH models.  
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Table 4.26: Estimated Bilinear-GARCH models 

 

NSE 20-SHARE INDEX 

tttttttt XXXXX εεε +−−+= −−−−−− 12)00.0(11)00.0(2(0.89)1)00.0(
3.306241.617220.0070542042.0 , ),0(~ 2

εσε WNt  

1(0.038)

2
1(0.084)

0.275370.930040.01435 −− ++= ttt hh ε  

NBK 

tttttttt XXXXX εεε +++−= −−−−−− 12(0.992)(0.871)
112)004.0(1)1.0(

0.005010.069960.2022970.1402 , ),0(~ 2
εσε WNt  

1)17.0(

2
1(0.017)

0.332430.77980.03495 −− ++= ttt hh ε  

BAMBURI 

tttttttt XXXXX εεε +++−= −−−−−− 12)2024.0(11)0.1633(2)0.645(1)0.072(
2.08891.85810.04970.18462 , ),0(~ 2

εσε WNt  

 
1)00.0(

2
1(0.028)

0.576240.688020.01289 −− ++= ttt hh ε   

KENYA AIRWAYS (KQ) 

tttttttt XXXXX εεε +++−= −−−−−− 12)0.202(1
)0.00(

12)0.621()0.64 (
1 0.95030.69480.74813  0.54092   , ),0(~ 2

εσε WNt  

1(0.739)

2
1(0.423)

0.060722.9182  0.0309 −− ++= ttt hh ε   

The probability values for the parameter estimates are given in the parenthesis 

 

At 0.05 significance level, the parameter estimates for the fitted bilinear equations reveal that for 

the NSE index, observation dependence is significant for lag 1 while the interactions (bilinearity) 

of observations and errors are significant for the lags (1,1) and (2,1). The variance equation for 

the NSE index shows that the estimate for β is significant at 5% significance level while α is not 

significant. For NBK the dependence on the observations is significant for lag 2 but not 

significant for the interactions between observations and errors. For the variance equation, α is 

significant while β is not significant. 

 

The Bamburi series exhibited non significant dependence on the observations, errors and the 

interaction between observations and errors in the mean equation. However, the parameter 

estimates for the conditional variance equation were all significant at 0.05 significance level. The 

KQ series showed that the dependence in the interaction at lag (1,1) was significant at 5% level. 
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The estimates in the variance equation were not significant and this once again shows that the 

model is not useful for assessing volatility but was kept for the sake of comparison with other 

models. 

 

The variance equation in all cases gives the sum of 1α  and 1β  approximately equal to 1 or 

slightly greater than 1. The sum of the parameters α and β  gives the rate at which the response 

function decays (Frimpong and Oteng-Abayie, 2006). This implies that the volatility in the Nairobi 

Stock Market is highly persistent and all the information is important in forecasting a given stock.  

 

The fitted BL-GARCH models were diagnosed using AIC, BIC and the log likelihood ratio test. 

The Gaussian MLE criterion was used in parameter estimation for the BL-GARCH models. The 

BL-GARCH models fitted are adequate since the standardized residuals and squared residuals 

are not significantly correlated as shown by the Ljung-Box Q statistics. In addition, the J-B 

statistics strongly rejected the null hypothesis of normality in the residuals for all the series. The 

Goodness of fit statistics and the diagnostic checks for the bilinear models and the BL-GARCH 

models are presented in Tables 4.27 and 4.28 respectively. 

 

Table 4.27: Goodness of fit statistics for the BL-GARCH models 
 

 

 

 

 

 

 

 

 

 

 

 BL-GARCH   GAUSSIAN 
LR 1339.18 
AIC -1331.18 NSE 

INDEX BIC -1314.2 
LR 744.066 
AIC -737.066, NBK 
BIC -721.677 
LR 998.459 
AIC -990.459 BAMBURI
BIC -972.871 
LR 722.82 
AIC -714.82 KQ 
BIC -697.232 
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Table 4.28: Diagnostic tests for the Bilinear-GARCH models 

 
 

Series Statistics BL-GARCH(1,1) 

Skewness 16.5653 
Kurtosis 336.162 
JB 2372670 (0.00) 
Q(12) 1.8724 (1.00) 

NSE 
INDEX 

Q2(12) 0.0376 (1.00) 
Skewness 0.7773 
Kurtosis 11.0246 
JB 1670.27 (0.00) 
Q(12) 11.22 (0.51) 

NBK 

Q2(12) 2.3501 (0.999) 
Skewness 0.1698 
Kurtosis 15.2302 
JB 3742.31 (0.00) 
Q(12) 19.9837 (0.067) 

BAMBURI

Q2(12) 3.2934 (0.993) 
Skewness -5.0986 
Kurtosis 93.705 
JB 208284 
Q(12) 19.9507 (0.068) 

KQ 

Q2(12) 0.3643 (1.00) 

 

4.4 Efficiency Evaluation in Bilinear and Bilinear-GARCH Models 

The model efficiencies were once more evaluated using the Mean Squared Errors. The models 

that had the minimal MSE were considered the most efficient. However, other statistical 

properties especially the diagnostics and goodness of fit tests were considered in choosing the 

most efficient models. The MSE for the bilinear and bilinear-GARCH models are presented in 

Table 4.29. 
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Table 4.29: MSE for bilinear and bilinear-GARCH models 

 
Series BILINEAR BL-GARCH(1,1)

NSE INDEX 0.0012526 0.0014120 
NBK 0.006942 0.0075091 

BAMBURI 0.0029757 0.003564 
KQ 0.0110732 0.015044 

 

Despite the bilinear models having a relatively smaller MSE, they are unstable as manifested by 

the residual time plots and hence could be unsuitable for modelling stocks data. However, this 

problem is easily solved by the inclusion of GARCH models. This is because the GARCH model 

captures the heteroscedastic properties of the series. 

 

The Kurtosis for the BL-GARCH models are the lowest compared to the ones for ARMA-ARCH 

and bilinear models. This means that the BL-GARCH has successfully captured the heavy tail in 

the conditional variance of the stock market data. This could be due to interactions between past 

shocks and volatility in the data.  The BL-GARCH is a better alternative to the bilinear models. 

In conclusion, the BL-GARCH models are better than the bilinear models as far as the efficiency 

and statistical properties (diagnostics and goodness of fit) are concerned when applied to the 

Nairobi Stock data. 

 

4.5 Comparison between ARMA-GARCH, Bilinear and Bilinear-GARCH models 

A comparison between the three classes of models was done based on the diagnostic test, 

goodness of fit statistics in addition to the MSE which showed the efficiency for each model. 

The AR-IGARCH with student’s t-distribution and the bilinear-GARCH models assuming 

Gaussian distribution emerged as the most efficient models for modelling stock market data 

while the pure bilinear models were the worst in terms of model adequacy and efficiency. The 

AR-IGARCH emerged as the most stable because it was strongly stationary while the bilinear-

GARCH was the most efficient. This is an indication that the non-linearity in the data sets are 

best modelled by the bilinear models while the non-stationarity are best captured by the 

IGARCH. 
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CHAPTER FIVE 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

5.1 Summary 
In this study, two classes of models namely bilinear, ARCH and their combinations were applied 

to the analysis of stock market data. This was motivated by the increasing need to explain the 

volatility experienced in the Nairobi Stock Market as well as determine the most efficient model 

for prediction and forecasting the stock market volatility. A comprehensive summary is given 

below. 

5.1.1 ARCH-type models 

The original Engle’s (1982) ARCH (p) model and its three extensions namely, standard GARCH 

(p,q), IGARCH(p,q), EGARCH (p,q) and TGARCH (p,q) were applied to the data. Different 

orders for ARCH(p) were tested in all cases where p=8 was found to be the most adequate for 

NSE index, Bamburi and KQ while for the NBK series, p=9 provided the best order for ARCH 

model. Four different p and q values were tested for GARCH(p,q), EGARCH (p,q) and 

TGARCH (p,q): (1,1), (1,2), (2,1) and (2,2). The order p, q equal to (1,1) is by far the most used 

values in GARCH research today and results obtained is also consistent with this. In all the four 

series, the order (1,1) was the best choice. Comparing the diagnostics and the goodness of fit 

statistics, the IGARCH (1,1) outperformed the ARCH, EGARCH and TGARCH models majorly 

due to its stationarity in the strong sense. However, the IGARCH model is unable to capture the 

asymmetry exhibited by the stock data. The EGARCH (1,1) and the TGARCH (1,1) are the 

preferred models to describe the dependence in variance for all the four series studied since they 

were able to model asymmetry and parsimoniously represent a higher order ARCH(p). However, 

the standardized residuals still displayed non-normality in all cases. 

Judging from the asymmetry parameter (γ1 <0) in the EGARCH model, the volatility increases 

more with the bad news (negative shocks)  than the good news (positive shocks) of the same 

magnitude for the NSE Index. This is not consistent with the findings of Ogum et al., (2005, 

2006). However, for the individual stocks the asymmetric parameter (γ1 >0) meaning that 

volatility increases for good news more than bad news of the same magnitude. This implies that 

the leverage effect may not be a universal phenomenon after all. From the different distributions 
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tested and estimated, the student’s t distribution was the best choice for NSE index while GED 

was the best for NBK, Bamburi and Kenya Airways. The Gaussian assumption provided the 

poorest results and in some cases had convergence failures.  

5.1.2 Bilinear models 

Considering the bilinear model, the Gaussian assumption was more appropriate when employing 

the MLE criterion. In addition, the models seemed to have many cases of convergence problems 

when the MLE was implemented. The residual time plots for the bilinear models manifested 

sharp spikes outside the standard error band. This implies the instability of the bilinear models. 

Interestingly, the MSE for the bilinear emerged the lowest in all cases. This is quite challenging 

since the models seem very efficient but could not be considered due to their instability. 

5.1.3 Bilinear-GARCH models 

To address the instability manifested by the residuals for bilinear models, a GARCH (1,1) was 

fitted to the residuals of the bilinear models. The results indicated an improvement as far as the 

residuals are concerned especially in the reduction of residual Kurtosis. The BL-GARCH 

captured the asymmetry better than the bilinear and the ARMA-GARCH models. 

5.2 Conclusions 
From the results obtained both in terms of efficiency in analyzing volatility and statistical 

properties, the ARCH class of models outperformed the bilinear models. The bilinear model has 

been unable to efficiently capture the volatility present in the four series. The bilinear models in 

all cases had the lowest MSE compared to the ARCH-type models but their lack of stationarity 

and thus invertibility implies that there might be problems in using them especially for long 

range forecasting. In fact subsequent analysis revealed that they gave poor long-term forecasts. The 

forecasts diverged and were not able to predict the periodic behavior observed, because bilinear models 

are not designed to reflect such behavior ( Priestly, 1988). 

A comparison of ARMA-GARCH and Bilinear-GARCH shows that the BL-GARCH models and 

the AR-IGARCH had the lowest MSE and strong convergence during the estimation process 

hence ensuring efficiency in the models and stability in the estimated model parameters. In 

essence the BL-GARCH performs as good as the AR-IGARCH. This is because in this case, the 
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bilinear model captured the conditional mean while the GARCH model captured the conditional 

variance. 

5.3 Recommendations 

When modelling the NSE Index, NBK and Bamburi series, the AR-IGARCH and BL-GARCH 

emerged as the best models while for the Kenya Airways it was the AR-IGARCH model that 

provided the best fit to the series. However, considering the models’ stationarity, the AR-

IGARCH assuming the student’s t-distribution is recommended for modelling the volatility of 

the Nairobi Stock Market both for the NSE index and the company share prices.  

5.4 Further Research 

Modelling the NSE data using the Infinite Variance stable process is recommended for further 

research. In addition, the application of Bilinear-IGARCH models using various distribution 

assumptions could also be carried so as to determine their efficiency. 
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