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ABSTRACT 

The dispersion parameter in proportions occurring in toxicology, biology, clinical medicine 

and epidemiology is important in making inference regarding the regression parameters on 

the mean. Most data in form of proportions often exhibit excess variation (extra-dispersion). 

This can arise when the data is from different sub-populations (clusters) or when the 

assumption of independence is violated. The Beta-Binomial distribution has been applied to 

model over-dispersion in binary responses in clustered samples. This parametric procedure 

involves numerical methods of finding MLEs. Many authors have also proposed among other 

non-parametric procedures, the Quasi-likelihood and Method of Moments for estimation of 

the over-dispersion parameter. However, much literature focuses discussion on point 

estimation only. Interval estimation for the over-dispersion parameter in proportions is yet to 

be done. In this thesis, estimates for the construction of asymptotic confidence interval for the 

over-dispersion parameter based on the Beta-Binomial distribution, Method of Moments and 

Quasi-Likelihood procedures were first derived using: the likelihood function in the case of 

MLE and the quadratic estimating equations for Quasi-likelihood procedure and the Method 

of Moments. We then apply Monte‟ Carlo simulation technique to perform bootstrapping 

procedures for the case of equal and un-equal cluster sizes. The asymptotic coverage 

probabilities with the lengths of confidence intervals were computed for small and large 

cluster samples. It is apparent from simulation results that confidence interval lengths reduce 

with the increase in the mean response probability or increase in the cluster size. The 

asymptotic CIs based on these three estimators have coverage below the nominal coverage 

probability (0.95). This shows that these confidence intervals are completely inadequate. 

Moreover, when the over-dispersion parameter is small, the resulting coverage probabilities 

are high. These coverage probabilities decrease as the over-dispersion parameter exceeds 0.3. 

It was observed that when the cluster size is greater than or equal to 40 , the over-dispersion 

parameter estimate performs well in the coverage probabilities except when this parameter is 

greater than 0.2. It is concluded that bootstrapping technique reduces the width of confidence 

intervals and improves coverage probabilities significantly for the case of unequal cluster 

sizes in over-dispersed data. An example of real biological proportions data was presented to 

demonstrate the above results.  

 

 

 



 
 

vii 
 

TABLE OF CONTENTS 

DECLARATION AND RECOMMENDATION ............................................................... ii 

COPY RIGHT .................................................................................................................... iii 

DEDICATION ................................................................................................................... iv 

ACKNOWLEDGEMENT .................................................................................................. v 

ABSTRACT........................................................................................................................ vi 

TABLE OF CONTENTS .................................................................................................. vii 

LIST OF TABLES ............................................................................................................. ix 

LIST OF FIGURES ............................................................................................................ x 

CHAPTER ONE ................................................................................................................. 1 

INTRODUCTION ............................................................................................................... 1 

1.1 Background Information.................................................................................................. 1 

1.2 Statement of the problem ................................................................................................. 2 

1.3 Objectives ....................................................................................................................... 3 

1.3.1 General objective................................................................................................... 3 

1.3.2 Specific objectives ................................................................................................. 3 

1.4 Assumptions .................................................................................................................... 3 

1.5 Justification ..................................................................................................................... 3 

1.6 Expected outputs ............................................................................................................. 4 

CHAPTER TWO ................................................................................................................ 5 

LITERATURE REVIEW ................................................................................................... 5 

2.1 Introduction ..................................................................................................................... 5 

2.2 Over-dispersion ............................................................................................................... 7 

2.3 The Beta-Binomial Distribution....................................................................................... 8 

2.4 Bootstrapping ................................................................................................................ 11 

2.5 The Inagaki results ........................................................................................................ 11 

2.6 Parameter estimation ..................................................................................................... 12 

2.6.1 Maximum Likelihood Estimation ........................................................................ 12 

2.6.2 Quasi-Likelihood Estimation ............................................................................... 13 

2.6.3 Method of Moments Estimation .......................................................................... 14 

2.7 Interval estimation of the dispersion parameter .............................................................. 15 

2.7.1 Maximum Likelihood Estimation ........................................................................ 16 



 
 

viii 
 

2.7.2 Method of Moments ............................................................................................ 16 

2.7.3 Quasi-Likelihood ................................................................................................. 16 

CHAPTER THREE .......................................................................................................... 17 

METHODS ........................................................................................................................ 17 

3.1 Introduction ................................................................................................................... 17 

3.2 Simulation study............................................................................................................ 17 

3.2 Moment estimates ......................................................................................................... 19 

3.2.1 Maximum Likelihood Estimation ........................................................................ 20 

3.1.2 Method of Moments ............................................................................................ 22 

3.2.3 Quasi-Likelihood method .................................................................................... 23 

CHAPTER FOUR ............................................................................................................. 25 

RESULTS AND DISCUSSION ........................................................................................ 25 

4.1 Introduction ................................................................................................................... 25 

4.2 Coverage probability estimates ...................................................................................... 25 

4.3 Bootstrap confidence intervals ....................................................................................... 32 

CHAPTER FIVE............................................................................................................... 38 

SUMMARY, CONCLUSION AND RECOMMENDATION .......................................... 38 

5.1 Introduction ................................................................................................................... 38 

5.2 Summary and Conclusion .............................................................................................. 38 

5.3 Further Research ........................................................................................................... 38 

5.4 Application.................................................................................................................... 39 

REFERENCES .................................................................................................................. 40 

APPENDIX ........................................................................................................................ 43 

 

 

 

 

 

 



 
 

ix 
 

LIST OF TABLES 

Table 1 Percentage coverage probabilities- Maximum Likelihood Estimation………24    

Table 2 Percentage coverage probabilities- Method of Moments Estimation………. 27 

Table 3 Percentage coverage probabilities- Quasi-Likelihood Estimation …………..30 

Table 4 Real data table of Whittinghill and Potthoff (1966)... …………………….... 34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

x 
 

LIST OF FIGURES 

Figure 1: Plots of bootstrap confidence intervals for simulated data in the case of equal  

    sample sized clusters ……………………………………………………………...35  

Figure 2: Plots of bootstrap confidence intervals for simulated data in the case of un-equal  

    sample size clusters) ……………………………………………………………....36 

Figure 3: Plots of actual and bootstrap confidence intervals for Pottholf and Whittinghill 

(1966) real data …………………………………………………………………...37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

xi 
 

ABBREVIATIONS 

BB   Beta-Binomial  

CI   Confidence Interval 

DEQL   Double Extended Quasi-Likelihood 

EQL   Extended Quasi-Likelihood 

MLE   Maximum Likelihood Estimator 

MME   Method of Moments Estimator 

SE   Standard Error 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

1 
 

CHAPTER ONE 

INTRODUCTION 

1.1 Background Information 

When conducting studies on discrete data, one common assumption is that the population 

under consideration is homogeneous. Under this assumption, one may try and use a single 

density function to model the population. However, sometimes using a single probability 

distribution function may lead to incorrect results. This may be due to the fact that the 

population is heterogeneous. Heterogeneity comes from the inherent characteristics possessed 

by the population. This may be brought about by clustering of the population under study. 

These inherent characteristics may vary within the population. The characteristic is known as 

over-dispersion. One common attempt to overcome this problem is to use a mixture of 

distributions, such as the negative binomial and the beta-binomial distributions for data 

presented in counts and proportions respectively.  

In toxicological studies, the number of occurrences of a certain kind in a litter of fetuses 

which may be death, malformation or mental disorder is recorded. The experimental unit is 

not the individual fetus but rather the litter itself because the mother is administered with the 

treatment and observation is made on the fetus. The mean parameter differs across litters 

even in the same treatment group and follows a beta distribution. Although each fetus within 

the same litter is assumed to have the same mean, the probability varies across litters and the 

experimental units for each count variables 
iY  are observed.    

Owing to its simplicity, many researchers have resorted to the use of the negative 

binomial distribution. Extensive work has been done on point estimation in terms of bias and 

efficiency and the test for presence of over-dispersion for both counts and proportions data. 

Saha (2010) has done exhaustive study on the dispersion parameter for counts data and 

obtained improved confidence intervals using profile likelihood. Studies on the small sample 

coverage probabilities of four different approaches; the Wald statistics, profile likelihood, 

hybrid profile variance and parametric bootstrap based on estimates of the dispersion 

parameter were performed. Convergence of parameter estimates is faster since it belongs to 

the class of exponential family. 

Paul and Islam (1998) have derived the C(α) tests for testing homogeneity of proportions 

in presence of over-dispersion. They used the method of moments, quasi-likelihood, extended 

quasi-likelihood and maximum likelihood among other procedures to estimate the mean of 
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proportions data for equal dispersion parameters. Lee (2003) extended this work to derive the 

C(α) test for such data in presence of unequal dispersion parameter and in the process gave 

estimates of both the mean and dispersion parameters. Paul (2009) estimated the mean and 

regression parameters in proportions data and has used the above estimation methods to study 

the efficiency of these estimates based on the two parameters (the mean and dispersion 

parameters). None of the above authors has performed studies on confidence intervals for the 

over-dispersion parameter for binary over-dispersed proportions data using any of the above 

estimation procedures. This study addresses the problem of construction of bootstrap 

confidence intervals for the over-dispersion parameter and in the process, variance functions 

for the parameter estimates are derived and used in the estimation of the small and large 

sample coverage probabilities of the CIs obtained based on the Inagaki (1973) results. 

 

1.2 Statement of the problem 

Many simulation studies have examined the bias and efficiency of different estimators of the 

over-dispersion parameter in over-dispersed proportions data. Point estimation of the 

parameters for the BB distribution has also been done using; MLE, MME, and quasi-

likelihood approaches. No studies have so far been made on the construction and accuracy of 

the confidence intervals for the over-dispersion parameter in over-dispersed proportions data.. 

This study is therefore geared towards obtaining confidence intervals for the over-dispersion 

parameter in over-dispersed binary response data in proportions based on the above three 

estimation procedures. This will be done by performing a Large scale Monte‟ Carlo 

simulation technique with bootstrapping. Bootstrapping is an important technique in the 

construction of confidence intervals with high coverage probabilities if applied on over-

dispersed data. Data arising from equal sample sized groups was used and generalizations 

were made for unequal sample sized groups. Furthermore, estimation was done for the 

corresponding coverage probabilities of the CIs based on the above methods for the purpose 

of performing comparative studies for the same. 
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1.3 Objectives 

1.3.1 General objective 

The overall objective of this study was to construct bootstrap confidence intervals for the 

over-dispersion parameter based on: MLE, MME, and EQL. 

 

1.3.2 Specific objectives 

1. To derive estimates for the mean and variance of the over-dispersion parameter for 

over-dispersed binary response data in proportions using; MLE, MME and EQL. 

2. To derive expressions for the construction of bootstrap CIs based on the above 

estimation procedures for over-dispersed binary response data. 

3. To estimate coverage probabilities for the obtained bootstrap CIs by simulation 

approach. 

4. To perform a comparative study on the above three methods based on widths and 

coverage probabilities of the bootstrapped confidence intervals. 

1.4 Assumptions  

i. This study assumes that the data is over-dispersed. 

ii. The data was collected by simple random sampling among litters in order to avoid 

bias. The intra-litter proportions were un-equal. 

iii. The within litter successes are correlated whereas the between litter successes are 

independent and identically distributed.  

 

1.5 Justification 

 The over-dispersion parameter is important for making inference regarding the 

regression parameters on the mean of over-dispersed binary response data in proportions. A 

confidence interval is used to determine the accuracy of a point estimate. We measure the 

strength of a confidence interval based on its width and its coverage probability on the 

parameter estimate. Extensive work has been done on point estimation of the mean and the 

over-dispersion parameter by Paul and Islam (1998) and Paul (2009). No work has been done 

on interval estimation for over-dispersed data in proportions. Bootstrapping has been known 
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to provide improved CIs and is useful even when very little is known about the underlying 

distributions.  

 The aim of this study is to derive bootstrap confidence interval estimates for the over-

dispersion parameter by a large scale Monte‟ Carlo simulation approach. The widths of CIs 

will also be presented. The results displayed are useful in the analysis of toxicological data. 

This will have an impact on policy making.  

1.6 Expected outputs  

The following outputs were derived from this work: 

(i) A procedure for obtaining bootstrap CI estimates for the over-dispersion parameter 

using computer simulation approach was developed. 

(ii) A paper for publication in referred journals. 

(iii) Master of Science degree in statistics. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

The dispersion parameter in proportions occurring in toxicology, biology, clinical 

medicine, epidemiology and other similar fields is important in making inference regarding 

the logistic regression parameters on the mean of over-dispersed data, (Paul and Islam, 1998, 

Saha, 2008). In studies where the experimental unit is a litter, it has been observed that due to 

the genetic similarity and the same treatment conditions, fetuses within the same litter tend to 

behave more similarly than those from different litters. As a consequence, littermates are 

likely to be dependent. This tendency of littermates to respond more alike than animals from 

different litters is called the „litter effect‟.  This litter effect is also known as the extra-

dispersion (over/under-dispersion) or the intra-litter correlation or the intra-class correlation.  

A common approach to modeling the extra-binomial data is to assume that the 

proportions for the binomial probability are random. The beta-binomial model (Williams, 

1961, Crowder, 1978) assumes that the responses within a cluster follow an independent 

Bernoulli process, and the Bernoulli parameter, itself a random variable, varies from cluster 

to cluster according to a beta distribution. One difficulty with the use of the likelihood-based 

beta-binomial model is the bias and instability of its MLE‟s, (Yamamoto and Yanagimoto, 

1994). The beta-binomial approach implicitly assumes an underlying variance-covariance 

structure for the intra-cluster correlation induced by the random effects.  It is well known that 

MLEs based on BB distribution may be biased when the sample size n or the total Fisher 

information is small (Paul and Islam, 1998). The bias is usually ignored in practice; the 

justification being that it is small compared with the standard errors. Williams (1975) 

proposed using the quasi-likelihood model, which assumed only the first two moments (mean 

and variance) for the distribution of the Bernoulli parameter, as an alternative to the beta-

binomial. The quasi-likelihood approach is more robust and involves easier computations 

than the maximum likelihood method under the beta-binomial. The other estimator is the 

double extended quasi-likelihood estimator. Lee and Nelder (2001) compare the efficiencies 

of; DEQL, MLE, MME and EQL based on the BB model and using simulated data from the 

BB distribution they conclude that the DEQL estimator has high efficiency.  

 In many situations the dispersion parameter or the intra-class correlation parameter 

may be of interest in its own right. Estimation of the dispersion parameter is important for 
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making inference regarding the logistic regression parameters, (Saha and Paul 2009). Much 

study has been done to estimate the mean and the over-dispersion parameters. 

 For the Beta-Binomial distribution, marginal or conditional estimation of the 

dispersion parameter is difficult. Joint estimation of the regression (mean) and the dispersion 

parameters was therefore considered. We take a parametric model, the beta-binomial or the 

extended beta-binomial model to allow over-dispersion as well as under-dispersion to obtain 

maximum likelihood estimates of the parameters. If the assumption of the parametric model 

is accurate, maximum likelihood estimates are known from classical theory to be consistent, 

asymptotically normal, and efficient. However, maximum likelihood procedure may produce 

inefficient or biased estimates when the assumed parametric model does not fit the data well.  

 Alternatively, more robust estimates such as moment estimates of Klein-man (1973), 

quasi-likelihood estimates of Moore and Tsiatis (1991), extended quasi-likelihood estimates 

of Nelder and Pregibon (1987), the Gaussian likelihood estimates of Crowder (1985), 

estimates based on the pseudo-likelihood estimating equations of Davidian and Carrol (1987) 

and estimates based on quadratic estimating functions of Crowder (1987) and Godambe and 

Thompson (1989) can be considered. Paul and Islam (1998) studied six such estimates and 

compared the small and large sample efficiency and bias properties of these estimates with 

the maximum likelihood estimates.  

 The method of moments, which requires assumptions on the form of the mean and 

variance, is an alternative approach to over dispersed data. Klein-man (1973) presented a 

moment method for proportions from a single sample. The quasi-likelihood method for over 

dispersion may also be considered as a moment method (Wedderburn, 1974). 

Saha and Paul (2009) obtained bootstrap confidence intervals for the over-dispersion 

dispersion parameter using the negative binomial model. The bootstrap procedures improved 

the coverage probabilities of the CIs obtained. 

 For the three approaches that were considered in construction of confidence intervals, 

of interest were the mean and variance estimates for the over-dispersion parameter. 

Construction of confidence intervals then followed and comparison based on coverage 

probabilities of the CIs under the three estimating procedures was done. 
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2.2 Over-dispersion 

Let 
ix  be the number of successes in 

in  trials. The respective proportions (
iY ) of successes in 

this case are random each with probability ,  1,...,ip i n . 

The following first and second moments hold for the probabilities  ip . 

( )i iE p  and var( ) (1 )i i ip , 0   

by conditional expectation, it can be proved that;  

( )i i iE Y n  and 

var( ) (1 ) 1 1i i i i iY n n  

For =0, it implies that there is no over-dispersion and thus we have the binomial mean and 

variance.  

Over-dispersion corresponds to unexpected heterogeneity in the outcomes of a toxicity test.  

It occurs when the variance of the response data is greater than the nominal variance. Discrete 

data which come in the form of counts or proportions often display greater variability than 

would be predicted by simply fitting binomial or Poisson models. Over-dispersion has been 

seen to occur when the population is clustered. Clusters in this case, are in form of house-

holds, litters and colonies which vary in size. The elements of these clusters each possess a 

random variable within itself leading to an extra variability within the clusters. The dispersion 

parameter thus depends on the cluster size and on the variability of proportions from cluster 

to cluster.  

 For data in form of counts and proportions, parameter estimates are distribution 

sensitive and may lead to incorrect statistical inference when the assumed distribution is 

incorrect, Sudhir (2009). In the context of confidence intervals, the estimated standard error 

of the parameter estimates in the analysis will be too small and thus will provide confidence 

intervals that are too narrow with very low coverage probabilities. An approach to dealing 

with this problem is to specify parametric models that accommodate over-dispersion and 

collapse to simpler models when over-dispersion is not present. Haseman and Kupper (1979) 

proposed several methods to be used with the binomial family. This has found much 

prominence in the literature. This entail: scaling the standard errors by the dispersion 

statistics, using robust variance estimators and application of mixed model techniques. 

 A common way to account for the over-dispersion is to assume that the intra-litter 

correlation is induced by some random effect shared by all the elements within the same 
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cluster. This random effect can be looked upon as the combined effect of all factors, both 

genetic and environmental, that are shared by the littermates. Given this litter specific random 

effect, the outcomes of the littermates are assumed to be conditionally independent. The use 

of a beta distribution to model the random effects results in the beta-binomial distribution 

(Williams, 1975; Haseman and Kupper, 1979). 

 

2.3 The Beta-Binomial Distribution 

 This is a mixture of the beta and binomial distributions, an extension of the binomial 

model. It assumes that the proportions in the binomial distribution have probabilities that are 

random according to a beta distribution with parameters α and β (Williams 1975, Crowder 

1978). This distribution was developed to fit over-dispersed data, Paul and Islam (1998). 

Basic theoretical properties of this distribution have been discussed by Skellam (1948) and 

Kleinman (1973).  

 The beta-binomial distribution has been adopted by among others, Robert and Bailer 

(2009), to model over-dispersed binary response data in aquatic toxicology. The beta-

binomial model assumes that the responses within a cluster follow an independent Bernoulli 

process. The Bernoulli parameter is itself a random variable that varies from cluster to cluster 

according to a beta distribution. Jiaxin and Lord (2007) have used this model to analyze car-

crash data due to its robustness and ability to handle small mean values. 

The flexibility that the Beta-Binomial exhibits is as a result of the two-parameter 

nature of the Beta-binomial distribution. It is dependent upon how well the Beta distribution 

can represent the population of 
i
‟s. It can exhibit more plasticity than the one parameter 

binomial. The  and  parameters determine the shape of the BB distribution. Taking 

values on the interval [1,0], the distribution is uni-modal if  >1 and >1. If both  and  

are 1, then the beta distribution is equivalent to the continuous uniform distribution on that 

interval. If only one of these parameters are less than one, then the distribution is J-shaped or 

reverse J-shaped. If both are less than one, then it is U-shaped. The Beta-Binomial also has 

the flexibility to model the correlation of observations from the same individual that the 

binomial distribution does not possess, Moore (1986). 
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The suitability of the Beta-Binomial distribution to account for extra-dispersion is 

demonstrated as follows. 

 Let 
ix  be the number of successes observed in 

in clusters. Then, 
ip  be the proportion 

of the successes. By conditional expectation; 

( ) ( ) ( )i i i i iVar y E Var y p Var E y p  

(1 ) ( )i i i i iE n p p Var n p  

2 2( ) ( ) ( )i i i i in E p E p n Var p  

(1 ) ( 1) ( )i i i i i in n n Var p   

The first part, (1 )i i in p p , in the final expression is variance of the binomial distribution. The 

next part represents the extra variability in the model which varies with sample (cluster) size 

and takes a value zero when there is no over-dispersion ( 0 ). 

The beta-binomial distribution is derived as follows;  

Let, 
1, , nX X  be the number of successes from different clusters under study. They are 

independent and identically distributed random variables. Then consider the binomial 

probability function ( / ) (1 )n x n x

xf x p p p  whose probability of success p  is randomly 

distributed with parameters  and . 

The proportion p  arises from the re-parameterized beta distribution ( )g p  with parameters 

 and . The marginal distribution of x is, 

( ) (1 ) ( )n x n x

xf x p p g p d p   (2.1)
 

The beta-binomial distribution thus has Bayesian probability function,
 

( , )
( )

( , )
i

i

ni i i
i x

i

x B x n x
P Y

n B
  (2.2) 

where, 
( )

( , )B  

We re-parameterize the mean and the over-dispersion parameters in terms of  and  

as;  and
1

1
 respectively. 
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We thus have the probability function for the Beta-Binomial distribution given as; 
1 1

0 0

1

0

(1 ) ((1 )(1 ) )

(1 ( 1))

i i i

i

i i

x n x

i i
ni r r

i x n

i

r

r r
x

P Y
n

r

            (2.3) 

0 1i  
and 

1
max 1

1in
 

The mean structure 
i
 is given by the logistic model ,

1

i

i

x

i i x

e
x

e
 

This conditional parameter variation on observed 
iY  is given by: 

( )i i i i iVar Y Var E Y P E Var Y P  

( ) i i
i

i i

x x
Var Y Var E E Var

n n
, where;  

1i
i

i

x
E n

n
 = (1 )i in  

and   

2 2 (1 )
i

i
i i i i

i

x
Var E n Var n

n
 

Thus, 2 2( ) ( )i i i i i i iVar Y n Var n E n E  

= 2( ( ) ( ) ( ) ( ))i i i i i in E Var E nVar  

2 2(1 ) ( ) ( (1 ) )i i i i i i i i i i in n n n n  

1 1 1i i i in n                (2.4) 

where,  
1

i

i

, and 2( ) ( ) ( )i i iE Var E  

The parameter 
i
 and  are not orthogonal except when =0. 

This is the extended beta-binomial model which takes into consideration  as positive or 

negative based on whether the data is over-dispersed or under-dispersed.  
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2.4 Bootstrapping 

Resampling methods involve the use of many samples, each taken from a single 

sample that was taken from the population of interest. Inference based on resampling makes 

use of the conditional sampling distribution of a new sample (the “resample”) drawn from a 

given sample. Resampling methods therefore can be useful even when very little is known 

about the underlying distribution. 

A basic idea in bootstrap resampling is that, because the observed sample contains 

most of the available information about the underlying population, the observed sample can 

be considered to be the population; hence, the distribution of any relevant statistic can be 

simulated by using random samples from the “population” consisting of the original sample. 

Bootstrapping improves the coverage probabilities of confidence intervals if applied to over-

dispersed data that is in form of proportions, Saha and Sen (2009). 

 

2.5 The Inagaki results 

Denote the unbiased estimating equations obtained by the method of moments and other 

semi-parametric procedures by 
1 2, ,..., ku u u and 

1ku , where ju , 1, 2,...,j k  represent 

unbiased estimates for j  and 
1ku  represents the unbiased estimating equation for . 

Let ˆ
 be an estimate for 

1 2( , ,..., , )k
. Using the method of moments or any semi-

parametric procedure, the Inagaki (1973) result obtained under the usual regularity 

conditions, such as the finite dimensional parameter space, the expected values are 

continuously differentiable, is given by 

 
1 1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
T

Var A B A                            (2.5) 

where A and B are square matrices of order 1k with entries. 

,

j

j s

s

U
A E     , 1

j

j k

U
A E  

1
1,

k
k j

j

U
A E     1

1, 1
k

k k

U
A E   

,j s j sE U U     , 1 1, 1j k k j j kE U U  

2

1, 1 1k k kE U  
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This is for all, , 1, 2,...,j s k  

2.6 Parameter estimation 

2.6.1 Maximum Likelihood Estimation 

 Maximum likelihood estimators possess the asymptotic properties; consistency, 

asymptotic normality and asymptotic efficiency. Saha and Paul (2005) noted that both MLE‟s 

and MME‟s are m  consistent estimators of 
i
 and . 

The elements of the score function in the study; testing for homogeneity of proportions with 

equal dispersion parameters have been derived (Paul and Islam, 1998).  

Saha and Paul (2005) have performed studies on the maximum likelihood estimator 

using the extended Beta-Binomial (BB) model to analyze over/under-dispersed proportions 

data. They then estimated this parameter by maximum likelihood estimation (MLE) 

procedure. They concurred with Williams (1975) in observing that the MLEs may be biased 

when the sample size n or the total Fisher information is small. This bias is usually ignored in 

practice, the justification being, it is small compared with the standard errors. Williams 

(1975) went further to derive a bias correlated Maximum likelihood estimator (BCML), with 

the view of reducing errors due to bias. 

Studies have shown that the maximum likelihood estimators do not converge earlier 

than expected for non-exponential family of distributions like the Beta-Binomial. Paul and 

Islam (1998) proposed solving equations (2.6) and (2.7) simultaneously for ˆ and ˆ . 

1 1

1 0 0

1 1
0

1 1 1

i i ix n xm

ij

i r rj i i

l

r r
            (2.6) 

and 

1 1 1

1 0 0 01

(1 ) 1
0

11 1 1

i i i ix n x nm
i i

i r r rk ii i

r rl r

rr r
        (2.7) 

where, 1i
ij i i ij

j

x  

It‟s worth noting that when there are no covariate-independent samples,  1ij . 

The estimates of the variance estimator are functions of elements obtained in the score 

function derived by, Paul and Islam (1998) and Saha, (2008). 

The maximum likelihood estimates are hereby denoted by ˆ
ml .  
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2.6.2 Quasi-Likelihood Estimation 

Let, 
2

( , )
var( )

Y u
U U u y

u
                     (2.8) 

The quasi-likelihood expression is given by  

2

( )

( , )
u

y
t

y t
Q u y dt

v
, with ( ) 0E u ,

2

( )

1
var( )

u

u
v

 and 
2

1

var( )

U
E

u u
 

This likelihood function was first introduced by Nelder and Wedderburn (1972). It is used to 

draw inferences from experiments in which there are sufficient information to construct the 

likelihood function. The quasi-likelihood does not assume the probability distribution of 

unobserved heterogeneity which causes over-dispersion. Its estimation is based on the 

iteratively re-weighed least squares (IRLS) algorithm, which only requires a relationship 

between conditional mean and variance instead of its full conditional distribution. This 

feature was noted by Wedderburn (1974).  

The main idea behind quasi-likelihood method is to avoid a fully specified 

distribution for the response variable when one is uncertain about the random mechanism by 

which the data were generated. Xu (2008) recommended quasi-likelihood with a common 

intra-litter correlation parameter be used in the analysis of clustered binary data when the 

number of litters is small. 

The assumption of independent observations warrants that ( )u must be diagonal. The quasi-

likelihood method does not require full assumption on the distribution, and the estimates of 

the dose response coefficients are generally consistent and asymptotically normal even if the 

structure of the within litter correlation is mis-specified, (Mc. Cullagh and Nelder, 1989). 

Our quasi-likelihood in this case is based on the knowledge of the first two moments of the 

random variable, i
i

i

Y
Z

n
. 

By virtue of independence between samples, the quasi-likelihood with the above means and 

variance is given by
 

1

, ,
n

i i

i

Q Q z . 

where, , ,
1 1 1

i

i

i i i

i i i

i i iz

z n
Q z

n
               (2.9) 

From the expression i i i

i

n z   two estimating equations arise; given any value of  the 

unbiased estimating equation for j  is  
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1

( )
, 0

1 1 1

m
i i i ij

j

ij i i i

z nQ
U

n
             (2.10) 

Paul (2009) suggested that there was no such estimating equation that exists for . This 

therefore calls for an unbiased estimating equation that can be obtained by using the method 

of moments when the  k  parameters are estimated. The estimating equation is given by,  

2

1

1

, 0
1 1 1

m
i i i

k

i i i i

z n
U m k

n
                       (2.11) 

Equations (2.10) and (2.11) are solved simultaneously to obtain estimates of  and . These 

estimates are denoted by ˆ
Ql  

2.6.3 Method of Moments Estimation  

The moment estimates for the parameters 
i
and  can be obtained by equating the 

first two sample moments to the corresponding population moments. Lee (2003) derived 

expressions for the mean and over-dispersion parameter estimates as follows: 

ˆ y  and 
2

2

ˆˆ
ˆ

s
   

where 
22

1

/ ( 1)
n

i

i

s y y n and ˆ  is the overall mean. 

Let
1

ˆ
k

i i

i

wY
p

w
 , where 

1 ( 1)
i

i
i

n
w

n
 represents a set of weights and w is the sum of all 

the weights. 
iY  is the proportion associated with the number of successes in a given cluster. 

Also, let 2

1

ˆ( )
k

i i

i

S w p p . Then using the method of moments, estimates of  and  are 

respectively, 

ˆ p̂  and                            (2.12) 

1

1 1

ˆ ˆ (1 )

ˆ

ˆ ˆ 1 1

n
i i

i i

mme n n
i i i

i

i i i

w w
S pq

n w

w w w
pq w

w n w

            (2.13) 

In terms of actual data observed from different clusters, let i
i

i

x
p

n
, i = 1,2, ... k, where i 

indexes the thi  cluster sampled, 
ix  is the number of successes recorded in the thi  cluster and 
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in  is the respective sample size of the thi cluster. The 
in s here may be un-equal in 

toxicological studies. 
iw is a function of the unknown parameter  and in this case, we let 

var( )
i

i
i

n
w

p
such that we can obtain an initial approximation of estimates of  and . In 

cases where  estimates are negative, they are to be set to zero. The sum of all weights w =1.  

The unbiased estimating equation is given by the expression;  

1

( ) 0
m

i i i

i

n z

 

This is generalized to the regression situation as  

1

( , ) ( ) ( ) 0
m

j j i i i ij

i

U n z               (2.14) 

22

1

1

( , ) (1 )(1 ( 1) )
m

k i i i i i i

i

U n z n            (2.15) 

where ,( )
1

i

i

x

i i i x

e
x

e
 and 

 (1 )ij i i ijx  

2.7 Interval estimation of the dispersion parameter 

In order to obtain confidence intervals, we need to find the mean and the asymptotic 

variances for the over-dispersion parameter, by MLE, MME and EQL. Paul and Islam (1998) 

verified that the asymptotic variance of the variance estimator is based on the expectation of 

the Fisher information. From results of Inagaki (1973), the estimators, let t = MM, ML and 

QL under conditions similar to those for which standard MLE asymptotics hold, are 

consistent and asymptotically normal (as m→∞) with covariance matrix, 

1 1
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

T

t t t tVar A B A  

The asymptotic variances of the estimates for the three methods based on the beta-binomial 

model were obtained. The data that was used was simulated from a Beta-binomial 

distribution with both  and  parameters taking the value one. We thus obtained 

proportions data that was over-dispersed and thus avoided misleading inference.  
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2.7.1 Maximum Likelihood Estimation 

By the asymptotic theory of the ML estimates, it can be shown that ˆ ˆ( , var )ml mlN   as 

n , (Saha and Sen, 2009). The asymptotic confidence interval of  based on ML method 

is given by:  

2

ˆ ˆvarml mlZ

  

where 
2

Z is the upper 100(1 )%  quantile of the standard normal distribution. ˆ( )mlVar  is 

obtained from the diagonal element of the variance-covariance matrix obtained.  

2.7.2 Method of Moments
 

Following the Inagaki (1973) result, it can be shown that ˆ
mm is consistent and 

asymptotically normal with ˆ ˆ( , var )mm mmN  as n . The corresponding 100(1 )%  

confidence interval for ˆ
mm  is given by,   

2

ˆ ˆvarmm mmZ  

We replace ˆ  by its moment estimate and  by ˆ
mm , with 

 
1 1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
T

mm mm mm mmVar A B A  

2.7.3 Quasi-Likelihood 

Quasi-likelihood estimators are also found to be consistent and asymptotically normal, with 

ˆ ˆ( , var )eql eqlN as n  

Consequently, the 100(1 )%  confidence interval of  based on the quasi-likelihood 

estimator is given by. 

2

ˆ ˆvareql eqlZ  

where,  

1 1
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

T

Ql Ql Ql QlVar A B A  
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CHAPTER THREE
 METHODS 

3.1 Introduction 

In this chapter we describe a simulation study for assessing the performance of the 

confidence intervals for the over-dispersion parameter based on MLE, MME and EQL. We 

first derive moment estimates and find the first and second derivatives of the estimating 

equations that will be used in the construction of the hessian matrix.  This is then integrated 

into the subroutines (as shown in the appendix) during simulation in order to obtain results on 

lengths of CIs (in parenthesis) and percentage coverage probabilities that are displayed in 

chapter four. 

 

3.2 Simulation study 

The Beta-binomial distribution assesses the variability in estimates of the parameters (  

and ) when clustered data is collected. This distribution accounts for the extra variability 

within the clusters and allows for the creation of confidence intervals. The data was 

simulated for varying ‟s and fixed  parameters. Data simulated from the Beta-

Binomial distribution was then used with the three estimation procedures to generate 

asymptotic results of coverage probabilities, relative lengths of the confidence intervals 

and asymptotic bootstrap confidence intervals based on the three estimation procedures 

under study. 

We now present expressions for the variance functions used in the estimation of confidence 

intervals based on MLE, MME and EQL. The bootstrap confidence intervals thus constructed 

are based upon asymptotic Normality. This is done in line with the Inagaki (1973) results. 

In order to evaluate the accuracy of the beta-binomial CI, a large scale Monte Carlo 

simulation was conducted. Since there are many parameters involved (n, k, π, ), a theoretical 

evaluation is difficult to conduct. Therefore, the simulation approach is adopted to study the 

coverage probability and the width of the CI of the over-dispersion parameter. We chose 

arbitrary values of  and  that meet the conditions, 0 1 and 0 1i
. For 5in , 

situations were considered where the sample sizes (K) equals  20, 30, 40, 60, 100 and 200, 

the underlying mean response probability  equals 0.1, 0.2, 0.3, 0.4, 0.6, and 0.7 and the 
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over-dispersion parameter, , takes one of five values 0.1, 0.2, 0.3, 0.4 and 0.6. These 

parameter values were used by Paul (2009). 

The simulation study was used to assess the performances of the CIs for the over-

dispersion parameter  based on MME, MLE, and EQL. All programming was implemented 

using R-language, version 2.12.1. This was integrated with its add-on packages, emdbook, 

sensR and bbmle. The data, the respective number of successes per cluster, was simulated 

from the beta-binomial distribution arbitrarily varying the size of each cluster. The random 

numbers are generated in two steps. First, the probabilities of success 
iP  were generated from 

a Beta (1,1) distribution. Next, the successes 'ix s were generated from a Binomial (5, 
iP ). 

The simulated data is termed as the sample and is assumed to contain some information about 

the underlying population. This sample is considered to be the population that can be 

resampled from. The bootstrap sample is simulated by using the random sample from the 

“population” consisting of the original sample. This is done for a thousand times. 

For various combinations of , , K  and n, we simulated beta-binomial random 

variables using Uniform (0,1) from which estimation of the parameters,  and  was 

performed for the three procedures above. A total combination of the factors; ,  and k  

was used giving a total of 180 combinations.  

Construction of bootstrap confidence intervals using the three estimation procedures 

then followed. The derivatives for the variance functions were used for estimation in 

Maximum Likelihood Estimation, the Method of Moments and Quasi-Likelihood method. 

Bootstrapping technique was applied in the construction of confidence intervals. Graphical 

presentations of these confidence intervals were displayed. For each combination of the 

parameters, 1000 valid samples were generated to compute the coverage probability of the 

bootstrap CIs, which equals the number of times the CIs by each method, contained the true 

value of 1000  and these were reported in tabular form.  

Small cluster sizes generated a high percentage of invalid samples. This situation was 

also observed when the mean parameter was outside the interval [0.3, 0.7]. Whenever the 

generated samples produced invalid samples, the sample was discarded and a new one 

generated till we obtained a total of 1000 valid samples. In addition to this, based on this 

interval, we selected samples whose mean parameter estimates were contained in the interval 

above for reasons of consistency of our confidence interval lengths. If the values of the mean 
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parameter fell outside the range, a new sample with the parameter contained in the interval 

was obtained.   

To display the property of litter effect (tendency of litter-mates to behave in a similar 

manner), the confidence intervals selected was free of negatives, i.e., the CI should consist of 

only the positive set. When the confidence interval obtained contained a negative lower 

interval boundary, simulations for the same combination was repeated. If the sample still 

produced such CI up to a maximum of 10 times, the lower bound of the CI was approximated 

to zero. This problem featured especially for small cluster size groups, 20 and 30. 

Finally, an illustration of our findings was shown by computing confidence intervals using 

the real binary data, Potthoff and Whittinghill (1966) data (Example 6.5), which was used by 

Paul (2009) in the study on efficiency of these estimators.  

 

3.2 Moment estimates 

The asymptotic variance-covariance matrix for the estimator  is obtained by using the 

Inagaki (1973) result. Based on the assumption that the Kurtosis and skewness of our beta-

binomial distribution is unknown, we have derived moment estimators and obtained:  

1 0i
 

2 (1 ){1 ( 1) }i i i i in n  

3 2 (1 2 ) 1 (2 1) (1 )i i i i in n  

4 2 2 2

1 (2 1) 1 (3 1) (1 3 (1 )) (1 )
( 1)( 3 )

1 1 1 2

i i i i

i i i i i

i

n n
n n

n

 

Based on the forms of moments above we derive the entries of the variance covariance matrix 

whose entries are derived from the Inagaki (1973) results.  
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3.2.1 Maximum Likelihood Estimation 

Maximum likelihood methods are frequently used in statistical applications. The basic 

underlying idea for ML estimation is to find the parameter value most likely to have 

produced the observed data. For a variety of distributions such as the Binomial, maximum 

likelihood estimates can be found in closed form. However, for the Beta-binomial 

distribution, no closed form solution exists. Consequently, it is necessary to use numerical 

computation to estimate  and . We can obtain standard errors for ML estimates based on 

the quantity of the log-likelihood at ˆ . This method accounts for the extraneous variability in 

the cluster and allows for the creation of confidence intervals under certain regularity 

conditions (conditions of the Inagaki (1973) result and the delta method). The data must be 

distribution specific to avoid producing biased estimates. 

The beta-binomial model function is represented by equation (2.3). We thus find the log-

likelihood to be of the form; 

1 1 1

0 0 0

log (1 ) (1 )(1 ) (1 )
i i i ix n x n

r r r

l C r r r  

Two likelihood equations arise from this log-likelihood; 

1 1

1 0 0

1 1
0

1 1 1

i i ix n xm

ij

i r rj i i

l

r r
 

and 

1 1 1

1 0 0 01

(1 ) 1
0

11 1 1

i i i ix n x nm
i i

i r r rk ii i

r rl r

rr r
 

where;  

1i
ij i i ij

j

x   

When there are no covariate-independent samples,  1ij . 

These equations are solved simultaneously by numerical methods to yield estimates of  and  

 respectively. Taking second derivatives of the equations above with respect to these 

parameters, we obtain the elements of the variance covariance matrix I. 

The asymptotic variance –covariance matrix of MLE‟s is obtained by inverting the expected 

Fisher information matrix, where, 
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BB B

B

I I
I

I I
   

2

( x )

BB

j s k k

l
I E  

 

2
'

x1

B B

j k

l
I I E   

2

2

l
I E  

 

With the assumption of no covariate structure, the second derivatives of the beta-binomial 

log-likelihood l are obtained as 

1 12

22
0 0

1 1

( ) 1

i i iy n y

r rj s i i

l

r r
  j, s=1,2,…,k 

1 12

22
0 0( 1 ) (1 )(1 )

i i iy n y

r rj i i i

l r r

r r
 j=1, 2,…,k 

1 1 12 22 2

22 2 2
1 0 0 1 0

( ) [ (1 )] ( 1)

((1 ) ) ((1 ) )(1 )(1 )

i i i iy n y nm m
i i

i r r i ri i

r rl r

r rr
 

 

Entries for the fisher information matrix are obtained as 

1 12

22
1 0 0

> >

( ) 1

i iy nm
i i i

i r rj S i i

P Y r P Y n rl
E

r r
 

1 12

2
1 0 0

(1 ) > 1 (1 ) >1

((1 ) ) (1 )(1 )

i in nm
i i i i i

i r rj i i

P Y r P Y n rl
E

r r
 

2 21 1 12 2

22 2 2 2
1 0 0 0

[(1 ) ] [(1 )(1 )]1 (1 ) 1

((1 ) ) ((1 ) )(1 )(1 )

i i i iy n y nm
i i i i i

i r r ri i

P Y r P Y n rl
E

r rr

 

ˆvar( )  is the corresponding diagonal element of 
1

,  

Then by the Delta method (Kendall and Stuart, 1986), the asymptotic variance of ˆ
 is 

obtained as 
4

ˆvar( )ˆvar( )
ˆ1
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Thus, the over-dispersion parameter is distributed as,
4

ˆvar( )ˆ,
ˆ1

N  

Computations using these results are presented in chapter four.  

 

3.1.2 Method of Moments

 
We give two estimating equations for the moment estimators of the over-dispersion 

parameter. 

1

( , ) ( ) 0
m

j j i i i ij

i

U n z   and 

22

1

1

( , ) (1 )(1 ( 1) ) 0
m

k i i i i i i i

i

U n z n n  

We propose the adoption of the point estimation procedure using the weighted least squares 

method presented by Saha (2008). We then proceeded to find the expressions for the variance 

functions based on the Inagaki (1973) results. 

The entries for the ˆA and ˆB are; 

,

1

A (1 2 )
m

j

j s i i ij

is

U
E n x  

, 1A 0
j

j k

U
E  

1
1,

1

A 1 2 1 ( 1)
m

k
k j i i i

ij

U
E n n  

1
1, 1

1

A ( (1 )) 1
m

k
k k i i i i

i

U
E n n  

33

,

1

( ) 1 (1 ( 1) )
m

j s j s i i i i ij isi
i

B E U U n n x x  

1, 1

1

1 2
( ) 1 1 1 1 2 1

1

m
i

k j k j i i i i i ij

i

E U U n n n xB  
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2 4 2

1, 1 1 4 2

1

( ) ( )
m

k k k i

i

B E nU  

Thus, variance estimates are found by using the variance covariance matrix; 

 

1 1

, 1,

, 1 1, 1 , 1 1, 1 , 1 1, 1

0 0
ˆvar( )

T

js j s k j js

MM

j k k k j k k k j k k k

A B B A

A A B B A A
where  

, 1 1, 1

0js

j k k k

A
A

A A
 

, 1,

, 1 1, 1

B=
j s k j

j k k k

B B

B B
 

 

3.2.3 Quasi-Likelihood method 

Two estimating equations are involved, 

1

( )
, 0

1 1 1

m
i i i ij

j

ij i i i

z nQ
U

n
  and 

2

1

1

, 0
1 1 1

m
i i i

k

i i i i

z n
U m k

n
 

We solve the two equations simultaneously and denote estimates of  and  by ˆ
Ql .  

Based on these estimating equations, the Inagaki (1973) results give the expressions for the 

asymptotic variances of the quasi-likelihood estimate whose elements, ˆA and ˆB  are 

components of the Hessian matrix. We derived these expressions and obtained: 

,

1

A
1 ( 1)

m
j i ij

j s

is i

U n x
E

n
 

, 1A 0
j

j k

U
E  
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1
1,

1 2

1 2 (1 ( 1) ) 1
A (1 )

m
i ik i

k j i

ij i i

nU w
E w

wn
 

1
1, 1

1 1

1
A 1 (1 )( 1)

1 ( 1)

m m
ik i i

k k i i i

i i i i

nU w w
E n

n w n
 

,

1

1
( )

(1 ( 1) )

m
i i i ij is

j s j s

i i

n x x
B E U U

n
 

1, , 1 1

1

1 2 1 2 1
( )

1

m
i i

k j j k k j

i i

n
B B E U U

n
 

2

2 2 24
1, 1 1 2 22

1 1 12

( ) 2 (1 ) (1 )
m m m

i i
k k k i i i i

i i i

w w
B E w n w n

w w
U  

The entries of matrices A and B are; 

1

0
A=

k

A

a a
    

1

B=
k

A b

b b
 

Thus, substituting the above matrices into the asymptotic variance equation yields the 

expression below:  

1 1

1 1 1

0 0
ˆvar( )

T

Qm

k k k

A A b A

a a b b a a
 

The A‟s and B‟s in this case are the first and second derivatives of the estimating equations 

respectively. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Introduction 

In this chapter, we display our findings on coverage probability estimates and the widths of 

bootstrap confidence intervals (in parenthesis). A detailed discussion of the results is given 

based on observation on the tables displayed for MLE, MME and Quasi-likelihood 

estimators. Tables (1), (2) and (3) display results for MLE, MME and Quasi-likelihood 

procedures respectively. The displayed graphs (1) and (2) display the widths of CI for data 

that is not bootstrapped and when bootstrapping technique is applied respectively. Moreover, 

results of point and interval estimation for the over-dispersion parameter using the Potthoff 

and Whittinghill (1966) data are displayed in table 4. CI widths for the same are displayed in 

graph (3).  

For various combinations of the over-dispersion and mean parameters, the procedures 

displayed in the appendix are carried out. The results displayed can be replicated by running 

the subroutines displayed in the appendix.  

 

4.2 Coverage probability estimates 

Tables 1-3 show coverage probabilities for the over-dispersion parameter based on 1000 

samples for the three procedures under investigation. It appears from the simulation results 

that the asymptotic CIs based on these three estimators have coverage below the nominal 

coverage probability. The resulting confidence interval, with nominal coverage probability 

0.95, has low coverage probabilities. This shows that these confidence intervals are 

completely inadequate. 

Generally, the coverage probabilities decrease with increase in the over-dispersion 

parameter estimate. Optimization was difficult for bootstrapped successes owing to the small 

number of successes selected. This led to a high number of invalid samples especially for 

small cluster sizes. This brought about the need to obtain several bootstrap simulates that 

avoided repetitive successes that were beyond three. i.e., if one of the successes obtained was 

repeated three or more times, this was discarded and a new bootstrap procedure performed. In 

each table we present coverage probabilities alongside the lengths of confidence intervals in 

parenthesis. 
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Examining Table 1, the following was observed based on the estimated coverage 

probabilities and the lengths of the bootstrap CI; MLE procedure is known for the biasedness 

of the over-dispersion parameter estimates. This estimate had small deviations from the ones 

based on MME and EQL procedures. Despite this, the differences in the lengths of the 

confidence intervals for different simulation studies were more or less the same. 

Computation time was the greatest drawback when producing simulation results in 

Table 1. This led to less number of simulations performed. Re-estimation of coverage 

probabilities based on valid estimates of and  using MLE for each bootstrap sample is 

time consuming. To save on the computation and estimation time, simulation was performed 

without re-estimation of  and , on production of a first valid estimate of the parameters. 

Generally, the length of time that was spent by the program to estimate the coverage 

probabilities was higher than time spent for MME and EQL. This was much dependent of the 

cluster size. Large cluster sizes needed less time to estimate the coverage probabilities.  

Out of the total 180 cases the percentage of samples that were close to the nominal 

level (95 %) was around 60%. These samples are largely concentrated to this interval when 

our cluster size was 40 or greater than 40 ( 40K ),  was less than 0.4 and   = [0.3, 0.4]. 

A cluster size of 20 worked well for small values of  and the worst situations happened at 

= 0.6 for all cluster sizes. A feature that was noticed here is that more time is used for 

estimation of coverage probabilities when we use small clusters. The time that is used for 

both simulation and estimation is much reduced for cases when the cluster sizes are large. 

This is attributed to the fact that the probability of producing invalid samples reduces with an 

increase in cluster size. 

Examining the average length of the bootstrap CI, we found that for all conditions 

fixed, the average length of CI tends to decrease as either the cluster size increases or when 

the mean parameter increases. 
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TABLE 1 

MAXIMUM LIKELIHOOD METHOD 

Percentage coverage probabilities and widths of bootstrap CIs (in parenthesis)for several combinations of: 

Cluster sizes; 20, 30, 40, 60, 100 and 200, = 0.1, 0.2, 0.3, 0.4, 0.6 and 0.7,  = 0.1, 0.2, 0.3, 0.4 and 0.6. 

 0.1 0.2 0.3 

       

K 

0.1 0.2 0.3 0.4 0.6 0.1 0.2 0.3 0.4 0.6 0.1 0.2 0.3 0.4 0.6 

20 93.3 

(1.07) 

94.5 

(1.05) 

97.5 

(1.01) 

98.1 

(0.91) 

53.4 

(0.79) 

93.9 

(0.94) 

93.0 

(0.94) 

90.1 

(0.89) 

86.9 

(0.75) 

56.5 

(0.64) 

95.6 

(0.87) 

93.4 

(0.87) 

87.1 

(0.80) 

73.2 

(0.60) 

52.3 

(0.49) 

30 92.6 

(0.67) 

94.5 

(0.96) 

91.3 

(0.89) 

87.6 

(0.81) 

53.1 

(0.67) 

94.4 

(0.78) 

92.3 

(0.62) 

87.9 

(0.64) 

79.9 

(0.59) 

54.9 

(0.45) 

95.7 

(0.78) 

92.0 

(0.61) 

89.8 

(0.56) 

74.3 

(0.49) 

46.9 

(0.34) 

40 97.6 

(0.84) 

94.5 

(0.84) 

90.6 

(0.81) 

81.8 

(0.70) 

58.4 

(0.63) 

95.8 

(0.66) 

93.8 

(0.67) 

87.6 

(0.65) 

72.9 

(0.51) 

59.9 

(0.49) 

91.9 

(0.62) 

92.1 

(0.63) 

90.0 

(0.59) 

74.9 

(0.45) 

56.7 

(0.32) 

60 97.7 

(0.63) 

94.8 

(0.59) 

89.8 

(0.56) 

77.7 

(0.52) 

53.5 

(0.50) 

96.9 

(0.55) 

93.1 

(0.44) 

92.1 

(0.46) 

71.4 

(0.39) 

56.7 

(0.37) 

93.9 

(0.56) 

92.9 

(0.42) 

85.8 

(0.41) 

72.2 

(0.34) 

49.9 

(0.37) 

100 97.8 

(0.49) 

94.4 

(0.53) 

86.1 

(0.54) 

72.0 

(0.43) 

53.4 

(0.42) 

90.9 

(0.42) 

93.1 

(0.44) 

93.2 

(0.44) 

78.9 

(0.34) 

56.3 

(0.38) 

93.9 

(0.40) 

94.0 

(0.40) 

94.3 

(0.39) 

70.9 

(0.26) 

50.6 

(0.32) 

200 90.9 

(0.34) 

92.0 

(0.38) 

89.9 

(0.40) 

72.4 

(0.30) 

56.2 

(0.28) 

94.7 

(0.30) 

93.9 

(0.31) 

94.9 

(0.31) 

78.1 

(0.23) 

56.0 

(0.31) 

96.0 

(0.28) 

94.5 

(0.29) 

96.0 

(0.27) 

74.9 

(0.19) 

58.2 

(0.20) 
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Cont‟- Table 1 

 

 

 

 

 0.4 0.6 0.7 

     

K 

0.1 0.2 0.3 0.4 0.6 0.1 0.2 0.3 0.4 0.6 0.1 0.2 0.3 0.4 0.6 

20 92.9 

(0.85) 

93.1 

(0.84) 

87.3 

(0.75) 

70.1 

(0.55) 

39.8 

(0.46) 

91.9 

(0.85) 

98.0 

(0.86) 

92.1 

(0.61) 

78.6 

(0.61) 

58.6 

(0.60) 

94.1 

(0.87) 

92.4 

(0.87) 

92.1 

(0.83) 

84.3 

(0.69) 

60.1 

(0.60) 

30 93.4 

(0.76) 

92.9 

(0.69) 

90.1 

(0.57) 

71.1 

(0.46) 

44.3 

(0.41) 

90.8 

(0.60) 

96.3 

(0.58) 

92.6 

(0.52) 

88.5 

(0.73) 

64.2 

(0.54) 

93.2 

(0.66) 

92.6 

(0.62) 

92.4 

(0.69) 

87.8 

(0.76) 

58.9 

(0.39) 

40 94.9 

(0.61) 

93.0 

(0.61) 

92.3 

(0.56) 

74.3 

(0.41) 

50.6 

(0.41) 

94.8 

(0.61) 

93.8 

(0.61) 

92.9 

(0.57) 

85.9 

(0.46) 

54.9 

(0.41) 

92.9 

(0.62) 

92.1 

(0.63) 

91.7 

(0.61) 

90.0 

(0.52) 

58.0 

(0.47) 

60 96.7 

(0.57) 

91.5 

(0.54) 

91.5 

(0.43) 

70.6 

(0.42) 

45.9 

(0.38) 

96.5 

(0.48) 

93.4 

(0.46) 

89.9 

(0.45) 

86.0 

(0.49) 

45.1 

(0.47) 

97.2 

(0.48) 

91.9 

(0.58) 

92.9 

(0.51) 

90.1 

(0.60) 

54.6 

(0.53) 

100 96.8 

(0.39) 

94.4 

(0.39) 

95.6 

(0.36) 

76.7 

(0.26) 

53.2 

(0.25) 

96.0 

(0.39) 

94.0 

(0.39) 

94.9 

(0.37) 

85.4 

(0.28) 

53.1 

(0.29) 

93.9 

(0.40) 

94.0 

(0.40) 

94.3 

(0.39) 

93.9 

(0.34) 

60.2 

(0.31) 

200 94.1 

(0.28) 

95.0 

(0.27) 

93.9 

(0.26) 

81.4 

(0.19) 

54.7 

(0.21) 

94.7 

(0.28) 

95.0 

(0.27) 

94.9 

(0.26) 

90.1 

(0.21) 

50.1 

(0.24) 

95.0 

(0.28) 

95.5 

(0.29) 

94.3 

(0.27) 

94.9 

(0.24) 

62.1 

(0.23) 
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TABLE 2 

METHOD OF MOMENTS 

Percentage coverage probabilities and widths of bootstrap CIs (in parenthesis) for several combinations of: 

Cluster sizes: 20, 30, 40, 60, 100 and 200. = 0.1, 0.2, 0.3, 0.4, 0.6 and 0.7, = 0.1, 0.2, 0.3, 0.4 and 0.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 0.1 0.2 0.3 

K  0.1 0.2 0.3 0.4 0.6 0.1 0.2 0.3 0.4 0.6 0.1 0.2 0.3 0.4 0.6 

20 96.0 

(0.45) 

91.7 

(0.52) 

80.8 

(0.57) 

68.7 

(0.68) 

21.3 

(0.60) 

97.3 

(0.58) 

91.4 

(0.70) 

83.8 

(0.79) 

66.2 

(0.56) 

23.9 

(0.59) 

96.9 

(0.58) 

91.1 

(0.65) 

81.0 

(0.70) 

65.8 

(0.52) 

22.1 

(0.56) 

30 96.5 

(0.46) 

90.7 

(0.54) 

81.8 

(0.54) 

64.5 

(0.58) 

19.8 

(0.62) 

97.4 

(0.56) 

90.5 

(0.58) 

83.5 

(0.53) 

64.5 

(0.52) 

18.5 

(0.58) 

97.1 

(0.51) 

91.1 

(0.51) 

82.7 

(0.60) 

63.1 

(0.57) 

19.5 

(0.55) 

40 96.8 

(0.65) 

91.9 

(0.57) 

79.6 

(0.56) 

64.2 

(0.80) 

16.4 

(0.51) 

98.0 

(0.60) 

91.7 

(0.55) 

80.4 

(0.55) 

61.1 

(0.57) 

15.4 

(0.65) 

97.6 

(0.63) 

92.7 

(0.53) 

79.5 

(0.53) 

61.8 

(0.61) 

18.8 

(0.56) 

60 96.8 

(0.37) 

91.3 

(0.26) 

79.3 

(0.65) 

56.3 

(0.60) 

15.5 

(0.58) 

97.7 

(0.43) 

89.3 

(0.52) 

79.4 

(0.59) 

59.4 

(0.67) 

16.2 

(0.65) 

97.5 

(0.51) 

90.9 

(0.52) 

78.4 

(0.45) 

60.8 

(0.53) 

12.3 

(0.50) 

100 97.5 

(0.27) 

91.4 

(0.40) 

79.9 

(0.48) 

56.2 

(0.47) 

14.3 

(0.43) 

96.6 

(0.40) 

92.3 

(0.54) 

78.4 

(0.57) 

57.5 

(0.46) 

14.0 

(0.46) 

97.7 

(0.69) 

91.0 

(0.46) 

78.5 

(0.54) 

58.6 

(0.49) 

11.9 

(0.49) 

200 97.1 

(0.38) 

91.3 

(0.49) 

78.2 

(0.50) 

52.9 

(0.48) 

9.9 

(0.53) 

96.7 

(0.36) 

91.3 

(0.50) 

79.2 

(0.68) 

57.0 

(0.43) 

9.7 

(0.44) 

97.7 

(0.54) 

91.0 

(0.55) 

78.7 

(0.42) 

56.5 

(0.66) 

12.6 

(0.42) 
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cont‟-table 2 

 0.4 0.6 0.7 

K  0.1 0.2 0.3 0.4 0.6 0.1 0.2 0.3 0.4 0.6 0.1 0.2 0.3 0.4 0.6 

20 96.8 

(0.61) 

93.6 

(0.57) 

79.4 

(0.59) 

68.9 

(0.54) 

22.5 

(0.60) 

95.6 

(0.59) 

92.3 

(0.61) 

81.5 

(0.65) 

67.2 

(0.56) 

24.4 

(0.56) 

97.8 

(0.63) 

91.2 

(0.57) 

82.2 

(0.57) 

66.8 

(0.62) 

23.7 

(0.70) 

30 97.1 

(0.56) 

91.4 

(0.61) 

79.5 

(0.71) 

65.9 

(0.60) 

20.0 

(0.57) 

97.4 

(0.69) 

90.6 

(0.54) 

81.8 

(0.65) 

60.8 

(0.60) 

19.3 

(0.58) 

97.6 

(0.52) 

90.5 

(0.73) 

80.0 

(0.54) 

64.2 

(0.66) 

18.6 

(0.62) 

40 97.7 

(0.54) 

92.2 

(0.56) 

80.3 

(0.60) 

63.5 

(0.55) 

14.5 

(0.51) 

98.0 

(0.54) 

90.6 

(0.54) 

79.5 

(0.49) 

63.6 

(0.63) 

18.8 

(0.49) 

97.9 

(0.55) 

90.3 

(0.52) 

79.3 

(0.62) 

61.6 

(0.61) 

17.9 

(0.67) 

60 97.6 

(0.44) 

91.2 

(0.55) 

76.3 

(0.53) 

58.3 

(0.57) 

12.1 

(0.44) 

98.4 

(0.60) 

91.3 

(0.51) 

79.7 

(0.48) 

60.7 

(0.45) 

12.5 

(0.53) 

97.7 

(0.58) 

92.1 

(0.67) 

78.5 

(0.55) 

57.7 

(0.53) 

16.3 

(0.48) 

100 98.0 

(0.49) 

89.9 

(0.50) 

76.1 

(0.66) 

61.5 

(0.46) 

13.1 

(0.55) 

97.2 

(0.49) 

89.2 

(0.56) 

78.1 

(0.52) 

57.8 

(0.39) 

12.3 

(0.49) 

97.9 

(0.44) 

90.4 

(0.63) 

77.9 

(0.46) 

60.5 

(0.42) 

14.5 

(0.58) 

200 96.8 

(0.61) 

90.6 

(0.50) 

77.0 

(0.46) 

54.9 

(0.57) 

10.9 

(0.37) 

97.4 

(0.48) 

90.5 

(0.63) 

78.7 

(0.50) 

56.3 

(0.51) 

12.2 

(0.52) 

97.0 

(0.42) 

92.4 

(0.47) 

75.0 

(0.38) 

55.7 

(0.42) 

9.9 

(0.48) 
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Table 2 shows observed coverage probability estimates for the over-dispersion 

parameter based on the method of moments.  

Generally, coverage probabilities are good for over-dispersion parameters 0.1, 0.2, 0.3 

and 0.4. These coverage probabilities reduce as over-dispersion increases. Higher over-

dispersion parameters perform poorly in terms of coverage probabilities. For data simulated 

from the BB distribution, lower coverage probabilities are attained as the over dispersion 

parameter tends to 1.  The percentage of invalid samples  are high for small cluster sizes and 

reduced to near zero percent as the cluster sizes increased beyond  a sample size of 100.  The 

mean parameter lies in the interval [0.3, 0.7]. The over-dispersion parameter lied in the 

interval [0.05, 0.35]. Generally, good coverage probabilities are attained for the over-

dispersion parameter between 0.1 and 0.2. The bootstrap confidence interval lengths reduce 

as the mean parameter estimate increases. In contrary to small cluster sizes, the lengths of 

bootstrap confidence intervals are generally larger than the lengths for small cluster sizes. In 

our case, when we have five successes, the lengths of the bootstrap CIs are smaller. Optimal 

coverage probabilities are obtained when the cluster size is 40.  

In the study, parameter estimates were seen to be consistent and less biased as 

compared to the case of MLE procedure. The difference in the lengths of confidence intervals 

are seen to be smaller for all the combinations studied.   

The length of time used by the program for simulation was approximately 10 times 

shorter than the time spent by the MLE procedure. This was much dependent on the cluster 

size. The larger the cluster size, the lesser the time needed for the estimation of coverage 

probabilities.  
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TABLE 3 

QUASI-LIKELIHOOD 

Percentage coverage probabilities and widths of bootstrap CIs (in parenthesis) for several combinations of: 

Cluster sizes; 20, 30, 40, 60, 100 and 200. = 0.1, 0.2, 0.3, 0.4, 0.6 and 0.7, = 0.1, 0.2, 0.3, 0.4 and 0.6. 

 0.1 0.2 0.3 

K  0.1 0.2 0.3 0.4 0.6 0.1 0.2 0.3 0.4 0.6 0.1 0.2 0.3 0.4 0.6 

20 97.8 

(0.64) 

92.1 

(0.65) 

82.6 

(0.63) 

69.0 

(0.61) 

26.4 

(0.58) 

97.6 

(0.59) 

91.7 

(0.71) 

81.8 

(0.59) 

70.2 

(0.59) 

27.5 

(0.60) 

97.3 

(0.60) 

92.6 

(0.66) 

82.5 

(0.63) 

67.2 

(0.62) 

25.8 

(0.57) 

30 97.2 

(0.65) 

91.5 

(0.53) 

82.8 

(0.53) 

63.6 

(0.52) 

23.1 

(0.61) 

97.0 

(0.52) 

92.3 

(0.59) 

79.8 

(0.59) 

66.3 

(0.52) 

20.9 

(0.63) 

97.7 

(0.62) 

92.5 

(0.55) 

80.1 

(0.56) 

65.4 

(0.57) 

23.7 

(0.54) 

40 97.5 

(0.57) 

90.8 

(0.50) 

80.0 

(0.50) 

62.5 

(0.50) 

20.2 

(0.58) 

98.0 

(0.53) 

91.2 

(0.73) 

81.2 

(0.54) 

64.7 

(0.47) 

18.9 

(0.51) 

97.8 

(0.56) 

92.4 

(0.56) 

79.7 

(0.51) 

63.6 

(0.48) 

19.5 

(0.50) 

60 97.8 

(0.54) 

91.6 

(0.57) 

79.0 

(0.49) 

61.6 

(0.51) 

16.5 

(0.58) 

96.5 

(0.45) 

91.7 

(0.57) 

79.8 

(0.55) 

62.4 

(0.52) 

16.7 

(0.45) 

97.3 

(0.48) 

92.5 

(0.44) 

78.6 

(0.49) 

63.5 

(0.52) 

16.0 

(0.52) 

100 97.0 

(0.41) 

92.0 

(0.43) 

74.9 

(0.38) 

61.2 

(0.52) 

15.7 

(0.45) 

98.0 

(0.45) 

92.3 

(0.49) 

78.6 

(0.43) 

61.7 

(0.43) 

17.3 

(0.50) 

97.6 

(0.52) 

90.6 

(0.53) 

76.3 

(0.46) 

59.6 

(0.45) 

15.4 

(0.48) 

200 97.6 

(0.43) 

90.9 

(0.46) 

80.6 

(0.40) 

59.6 

(0.46) 

14.4 

(0.41) 

97.0 

(0.46) 

91.0 

(0.53) 

79.6 

(0.45) 

58.5 

(0.54) 

12.3 

(0.38) 

97.8 

(0.56) 

93.2 

(0.53) 

76.9 

(0.44) 

58.3 

(0.48) 

14.8 

(0.38) 
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Cont‟-Table 3 

 0.4 0.6 0.7 

K  0.1 0.2 0.3 0.4 0.6 0.1 0.2 0.3 0.4 0.6 0.1 0.2 0.3 0.4 0.6 

20 97.9 

(0.58) 

90.8 

(0.57) 

80.8 

(0.63) 

64.2 

(0.57) 

27.1 

(0.56) 

97.1 

(0.60) 

93.4 

(0.56) 

84.1 

(0.56) 

66.8 

(0.60) 

25.7 

(0.59) 

98.2 

(0.71) 

92.7 

(0.63) 

82.2 

(0.59) 

68.6 

(0.58) 

26.6 

(0.70) 

30 98.0 

(0.58) 

92.7 

(0.58) 

81.6 

(0.57) 

63.9 

(0.54) 

24.3 

(0.56) 

97.2 

(0.54) 

92.2 

(0.60) 

82.1 

(0.51) 

65.1 

(0.55) 

21.5 

(0.54) 

97.2 

(0.62) 

91.9 

(0.56) 

83.5 

(0.57) 

67.2 

(0.61) 

22.4 

(0.56) 

40 97.9 

(0.65) 

92.2 

(0.50) 

81.5 

(0.56) 

65.7 

(0.54) 

18.1 

(0.53) 

97.2 

(0.58) 

92.4 

(0.51) 

80.7 

(0.51) 

64.2 

(0.48) 

20.4 

(0.52) 

97.7 

(0.59) 

92.7 

(0.72) 

80.6 

(0.58) 

64.7 

(0.53) 

21.3 

(0.47) 

60 98.0 

(0.59) 

91.5 

(0.57) 

78.6 

(0.52) 

60.6 

(0.47) 

16.5 

(0.47) 

97.7 

(0.58) 

90.5 

(0.53) 

79.3 

(0.47) 

62.0 

(0.45) 

16.8 

(0.47) 

96.3 

(0.48) 

93.8 

(0.53) 

78.3 

(0.50) 

60.1 

(0.51) 

16.2 

(0.46) 

100 98.2 

(0.49) 

91.7 

(0.43) 

76.3 

(0.46) 

59.2 

(0.47) 

16.1 

(0.47) 

97.1 

(0.67) 

94.0 

(0.53) 

76.7 

(0.44) 

59.2 

(0.43) 

17.0 

(0.41) 

98.2 

(0.53) 

91.5 

(0.44) 

78.8 

(0.44) 

60.6 

(0.45) 

15.9 

(0.45) 

200 98.1 

(0.48) 

90.8 

(0.47) 

76.9 

(0.44) 

61.4 

(0.43) 

12.6 

(0.43) 

97.2 

(0.57) 

92.5 

(0.48) 

79.0 

(0.41) 

57.5 

(0.45) 

13.7 

(0.45) 

98.1 

(0.48) 

90.8 

(0.48) 

76.8 

(0.48) 

59.3 

(0.48) 

14.9 

(0.46) 
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Displayed on Table 3 are coverage probability estimates based on the quasi-likelihood 

procedure.  

Similar to MME procedure, data was simulated from the beta-binomial distribution. 

EQL coverage probabilities are good for over-dispersion parameters 0.1, 0.2 and 0.3. These 

coverage probabilities also reduce with an increase in the over-dispersion parameter estimate. 

When the over-dispersion parameter is large, the CIs perform poorly in their coverage 

probabilities. The percentage of invalid samples is also high for small cluster sizes and 

reduces to near zero when the cluster sizes increased beyond a sample size of 100.  The mean 

parameter lies in the interval [0.3, 0.7]. The over-dispersion parameter lied in the interval 

[0.05, 0.35]. Generally for the mean parameter values 0.1, 0.2 and 0.3, good coverage 

probabilities are attained for the over-dispersion parameter values, 0.1 and 0.2. The bootstrap 

confidence intervals are reduced for the above mean intervals.  

Contrary to small cluster sizes, the lengths of bootstrap confidence intervals are 

generally larger than the lengths for small cluster sizes. In our case, when we have five 

successes, the lengths of the bootstrap CIs are smaller. Optimal coverage probabilities are 

obtained when the cluster size is 40.  

Parameter estimates were also seen to be less biased like in the case of MME 

procedure. The lengths of coverage probabilities differ slightly with the case of MME but 

greatly with the case of MLE.  

Computation time was less of a problem in this case. This time was equal irrespective 

of the cluster size. 

 

4.3 Bootstrap confidence intervals  

When we use equal sample size groups to estimate the bootstrap confidence intervals, 

the shift in the coverage probabilities is the same for the three procedures when different 

resamples are used. When different resampling is done for the same data set, the difference 

between the lengths of the CIs for the three procedures above is not significant.  The lengths 

of the MLE confidence interval are generally less than the CI s for the MMEs and EQL 

procedures. Moreover, a shift to the lower or upper side is simultaneous for all resampling 

procedures. For equal cluster sizes, the lengths of bootstrap CI do not differ much. This is 

observed in table (1). There is also simultaneous increase and decrease in the lengths of CIs.  

Based on the fig (3), it is shown that for unequal sample sized groups, bootstrap 

confidence intervals are generally shorter in MLEs as compared to the other estimators. 
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Confidence interval lengths for MME and EQL procedures are shorter than in the case of 

equal sample size clusters (see fig (2)). This is much dependent on the sample selected after 

the bootstrap resampling is done. Generally, CIs of MLEs are much shorter while CIs of 

MMEs are longer in most bootstrapped samples.  

Based on the example given by Paul (2009), Potthoff and Whittinghill (1966) data on 

Example 6.5, it was observed that parameter estimates were biased for MLE and unbiased for 

MME and QLE procedures. Applying bootstrap technique reduces the biasness of these 

estimates.  

Subsequent bootstrapping on the same data set tends to produce small differences in 

the lengths of the obtained bootstrap confidence interval. Not all these subsequent bootstrap 

CI are the same since the samples picked may be different. The bootstrap CI is dependent on 

the bootstrap sample picked. For a specified sample picked, an increase or decrease in the 

length of confidence intervals is the same for all the three procedures above.  

When there is no bootstrapping done on the data set, the confidence interval widths 

for the three procedures above are large. It therefore surfaces that when bootstrap technique is 

applied to over-dispersed data in proportions, the confidence interval length generally reduces 

with the increase in the over-dispersion parameter.  
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Example (Table 4) 

 

 

 

 

The data set above was used by Sudhir (2009), (Table 6.5), in the study of efficiency of parameter estimates based on, MME, EQL, MLE, DEQL 

and GL. It shows the number of cross-over off-springs in M=36families from Potthoff and Whittinghill (1966). y= the number of ++ off-springs, 

n=total cross-over off-springs. 

 

 

 

 

 

 

 

 

y 7 1 4 3 5 3 0 11 3 0 10 3 0 4 2 2 3 5 2 1 2 3 1 1 4 5 3 3 5 1 1 3 4 0 1 2 

n1 11 1 6 7 8 6 2 19 4 2 15 6 6 10 8 4 5 6 6 4 12 8 4 5 5 6 4 10 8 11 4 4 4 2 2 3 

Data type Ordinary CI Bootstrapped CI 

Method 

 

parameter Confidence 

interval of  

 

Length 

of CI 

Average 

Parameter 

estimates 

Bootstrap 

Confidence 

interval 

 

Length of 

Bootstrap 

CI 

Data set    Lower Upper    lower upper  

 

One 

MLE 0.0949 0.4728 -0.0136 0.2035 0.217 0.07949 0.45801 -0.0247 0.1837 0.2085 

EQL 0.0915 0.4742 -0.0271 0.2101 0.238 0.07963 0.4504 -0.03166 0.1909 0.2262 

MME 0.0915 0.4743 -0.0272 0.2102 0.237 0.07963 0.4505 -0.03047 0.1898 0.2202 
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CHAPTER FIVE 

SUMMARY, CONCLUSION AND RECOMMENDATION 

 

5.1 Introduction 

This section gives the summary of the findings of research, the limitations of the study, 

recommendations for further study and areas of application of study based on the results. 

 

5.2 Summary and Conclusion 

In this work, we have derived the variance functions based on MLE and the 

estimating equations for both MME and MLE procedures. We examined the performance of 

the confidence intervals using Monte‟ Carlo simulation technique with bootstrapping and 

making observations on the widths of CIs obtained after bootstrapping. Results show that 

high coverage probabilities are obtained when a population has large clusters and when the 

over-dispersion parameter is small. The over-dispersion parameter in this case is less than an 

approximate of 0.4 for optimal results. Large samples should be used in order to make 

bootstrapping effective and efficient. Bootstrap procedure improves the coverage 

probabilities of confidence intervals and reduces the width of Confidence Intervals.  

From the simulation study, we found out that as the cluster size increases, the chance 

of obtaining valid samples increases. Based on this fact, we recommend that the sampled 

cluster size should be at least 40. In addition to this, the over-dispersion parameter should be 

at-most approximately 0.4 with mean parameter lying within the interval [0.3, 0.7]. 

The limitation of this study is that it is restricted to the number of successes 
in =5. For 

effective bootstrapping, the number of successes should be at least ten to avoid repetitive 

samples that would yield high number of invalid samples. Furthermore, we have assumed 

that the over-dispersion parameter is constant which is not usually the case. 

 

5.3 Further Research 

In this study, much has been done for the case of a constant over-dispersion parameter. 

Further research recommends that the over-dispersion parameter should not be fixed since not 

all clusters are homogeneous.  
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 From the results in tables (1), (2) and (3), we observe that the CIs are good since the 

widths of bootstrap CIs are shorter with higher coverage probabilities when the over-

dispersion parameter is small. Though the CIs are good, they are inadequate since most 

coverage probabilities are below the nominal level (95 %). There is need to improve the 

coverage probabilities by using profile likelihood which involves the reduction of the effect 

of the nuisance parameter.  

 

5.4 Application 

This work has much application in family studies, where it can be used to measure the 

degree of intra-family resemblance with respect to blood group, weight, height and also in the 

investigation of hereditability traits that are either continuous or discontinuous between 

generations (e.g, prostate cancer patient and eye defects within family trees). In a medical 

setup, we may want to model the percentage of patients who have successfully undergone a 

particular medication procedure. We may want to assess whether the success probabilities are 

equal among a number of hospitals. Given the existence of some un-predetermined excess 

variation among the different hospitals, the information obtained would have a lot on policy 

implications.  

This work may also be applied in the agricultural set-up. For example, in Kenya, bee 

farming can be improved based on the knowledge from this distribution. One may access 

forage preferences in the different kinds of bees (bees that live in hives, ant-holes and tree 

barks in forests). We may be interested in investigating the behavior of bees among different 

colour of flowers and modeling the pattern of visitation as a random movement. This will be 

a test that will be used to advise farmers on the colour of flowers to plant depending on the 

kinds of bees reared in their farms.  
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APPENDIX 

##UN-EQUALSAMPLESIZEPLOTS 

##MAXIMUM LIKELIHOOD ESTIMATION 

y<-c(7,1,4,3,5,3,0,11,3,0,10,3,0,4,2,2,3,5,2,1,2,3,1,1,4,5,3, 

     3,5,1,1,3,4,0,1,2) 

n1<-c(11,1,6,7,8,6,2,19,4,2,15,6,6,10,8,4,5,6,6,4,12,8,4,5,5, 

      6,4,10,8,11,4,4,4,2,2,3) 

#numberofbootstrapsamples 

nBoot=1000    

#bootstraparray 

B=array(0,dim=c(nBoot,2))   

#bootstraploop 

for(i in 1:nBoot){ 

 

 rn=sample(1:length(y),replace=T)#conditioningntoappearwit

hxvalues 

 x<-y[rn] 

 n<-n1[rn] 

} 

for(i in 1:length(n)){ 

dat<-data.frame(x,n) 

bb <- betabin(dat, corrected = FALSE, method = 

"twoAFC",Hessian=True) 

summary(bb) 

vcov(bb) 

coef(bb)  

ciML<-c(coef(bb)[2]-

qnorm(0.975)*sqrt(vcov(bb)[4]),coef(bb)[2]+qnorm(0.975)*sqrt(v

cov(bb)[4]))} 

length1<-ciML[2]-ciML[1] 

 

##METHOD OF MOMENTS ESTIMATION 

for(i in 1:length(n)){ 

pi<-x/n 



 
 

44 
 

xbar<-mean(x) 

var<-sum(x^2)-n*(pi^2) 

wi<-n/var 

w<-sum(wi) 

py<-sum(wi*pi)/w 

s<-sum(wi*(pi-py)^2) 

fn1<-sum((wi/n)*(1-wi)) 

fn2<-sum((wi)*(1-wi))-sum((wi/n)*(1-wi)) 

p<-py 

q<-(1-py) 

phi1<-(s-((p*q)*fn1))/(p*q*fn2) 

phi<-phi1/(1+phi1) 

mu2<-((py*(1-py))*(1+(n-1)*phi)/n) 

mu3<-(mu2*(1-2*py)*(1+(2*n-1)*phi)/(n*(1+phi))) 

fna<-(1+(2*n-1)*phi)*(1+(3*n-1)*phi)*(1-3*py*(1-

py))*mu2/((1+phi)*(1+2*phi)*n^2) 

fnb<-(n-1)*(phi+3*n*mu2)*(mu2*(1-phi))/((1+phi)*(1+2*phi)*n^2) 

mu4<-fna+fnb 

Ajs<-sum(n*(1-2*py)*x) 

Ajk<-0 

Akj<-sum(n*(1+(n-1)*phi)*(1-2*py)) 

Akk<-sum(n*(py*(1-py))*(n-1)) 

Bjs<-sum(n*(1+(n-1)*phi)*x*(py*(1-py))^3) 

Bjk<-sum(n*(py*(1-py))*(1+(n-1)*phi)*(1+(2*n-1)*phi)*(1-

2*py)/(1+phi)) 

Bkj<-Bjk 

Bkk<-sum((mu4-(mu2)^2)*n^4) 

A<-matrix(c(Ajs,Ajk,Akj,Akk),2,2,byrow=T) 

B<-matrix(c(Bjs,Bjk,Bkj,Bkk),2,2,byrow=T) 

mat1<-(solve(A))%*%(B)%*%(t(solve(A))) 

ciMM<-c(phi-

qnorm(0.975)*sqrt(mat1[4]),phi+qnorm(0.975)*sqrt(mat1[4]))} 

length2<-(ciMM[2]-ciMM[1]) 

phi 
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py 

 

##QUASILIKELIHOOD 

for(i in 1:length(n)){ 

pi<-x/n 

xbar<-mean(x) 

var<-sum(x^2)-n*(pi^2) 

wi<-n/var 

w<-sum(wi) 

py<-sum(wi*pi)/w 

s<-sum(wi*(pi-py)^2) 

fn1<-sum((wi/n)*(1-wi)) 

fn2<-sum((wi)*(1-wi))-sum((wi/n)*(1-wi)) 

p<-py 

q<-(1-py) 

phi1<-(s-((p*q)*fn1))/(p*q*fn2) 

phi<-phi1/(1+phi1) 

mu2<-py*(1-py)*(1+(n-1)*phi)/n 

mu3=mu2*(1-2*py)*(1+(2*n-1)*phi)/(n*(1+phi)) 

fna<-(1+(2*n-1)*phi)*(1+(3*n-1)*phi)*(1-3*py*(1-

py))*mu2/((1+phi)*(1+2*phi)*n^2) 

fnb<-(n-1)*(phi+3*n*mu2)*(mu2*(1-phi))/((1+phi)*(1+2*phi)*n^2) 

mu4<-fna+fnb 

Ajs<-sum(n*x/(1+(n-1)*phi)) 

Ajk<-0 

Akj<-sum(n*(1+(n-1)*phi)*(1-2*py)) 

Akk<-sum(n*(n-1)*(py*(1-py))) 

Bjs<-sum(n*(py*(1-py))*x/(1+(n-1)*phi)) 

Bkj<-sum(n*(1-2*py)*(1+(n-1)*phi)/(1+phi)) 

Bjk<-Bkj 

Bkk<-sum(n^4*(mu4-mu2^2)) 

A<-matrix(c(Ajs,Ajk,Akj,Akk),2,2,byrow=T) 

B<-matrix(c(Bjs,Bjk,Bkj,Bkk),2,2,byrow=T) 

mat1<-(solve(A))%*%(B)%*%(t(solve(A))) 
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ciQL<-c(phi-

qnorm(0.975)*sqrt(mat1[4]),phi+qnorm(0.975)*sqrt(mat1[4]))} 

 

length1<-ciML[2]-ciML[1] 

length2<-ciQL[2]-ciQL[1] 

length3<-ciMM[2]-ciMM[1] 

ciML 

ciQL 

ciMM 

length1 

length2 

length3 

coef(bb) 

phi 

py 

 

##Bootstrap Confidence Interval Plots 

plot.window(xlim=c(0,1),ylim=c(0,1)) 

plot.new() 

plot.window(xlim=c(0,4),ylim=c(-0.1,.3)) 

axis(1,1:3,c("MLE","EQL","MME")) 

axis(2) 

segments(1,ciML[1],1,ciML[2],"blue") 

points(c(1,1),c(ciML[1],ciML[2]),col="blue") 

segments(2,ciQL[1],2,ciQL[2],"red") 

points(c(2,2),c(ciQL[1],ciQL[2]),col="red") 

segments(3,ciMM[1],3,ciMM[2],"green") 

points(c(3,3),c(ciMM[1],ciMM[2]),col="green") 

title(main="ACTUAL CONFIDENCE INTERVAL") 

title(xlab="METHOD") 

title(ylab="95% CONFIDENCE INTERVAL") 

box() 
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COVERAGE PROBABILITIES FOR THE CI FOR THE OVERDISPERSION 

PARAMETER 

##MAXIMUM LIKELIHOOD ESTIMATION 

M=1000 

count<-0 

for(i in 1:M){ 

y<-

rbetabinom(n=10,size=100,prob=0.1,theta=0.1,shape1=1,shap

e2=1) 

m<-rep(100,length(x)) 

#numberofbootstrapsamples 

nBoot=1000   

#bootstraparray 

B=array(0,dim=c(nBoot,2))   

#bootstraploop 

for(i in 1:nBoot){   

x=sample(y,replace=T)} 

for(i in 1:length(m)){ 

dat <- data.frame(x,m) 

bb<-betabin(dat, corrected = FALSE, method = 

"twoAFC",Hessian=True) 

summary(bb) 

vcov(bb) 

coef(bb) 

ciML<-c(coef(bb)[2]-

qnorm(0.975)*sqrt(vcov(bb)[4]),coef(bb)[2]+qnorm(0.975)*s

qrt(vcov(bb)[4]))} 

if(ciML[1]<=0.1 & ciML[2]>=0.1){count<-count+1}else{count<-

count} 

} 

count 

ciML 

length<-ciML[2]-ciML[1] 

length 
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##QUASILIKELIHOOD METHOD 

M=1000 

count<-0 

for(i in 1:M){ 

y<-

rbetabinom(n=5,size=200,prob=0.1,theta=0.1,shape1=1,shape

2=1) 

#numberofbootstrapsamples 

nBoot=1000   

#bootstraparray 

B=array(0,dim=c(nBoot,2))   

#bootstraploop 

for(i in 1:nBoot){   

x=sample(y,replace=T)} 

n<-rep(200,length(x)) 

for(i in 1:length(n)){ 

pi<-x/n 

xbar<-mean(x) 

var<-sum(x^2)-n*(pi^2) 

wi<-n/var 

w<-sum(wi) 

py<-sum(wi*pi)/w 

s<-sum(wi*(pi-py)^2) 

fn1<-sum((wi/n)*(1-wi)) 

fn2<-sum((wi)*(1-wi))-sum((wi/n)*(1-wi)) 

p<-py 

q<-(1-py) 

phi1<-(s-((p*q)*fn1))/(p*q*fn2) 

phi<-phi1/(1+phi1) 

mu2<-py*(1-py)*(1+(n-1)*phi)/n 

mu3=mu2*(1-2*py)*(1+(2*n-1)*phi)/(n*(1+phi)) 

fna<-(1+(2*n-1)*phi)*(1+(3*n-1)*phi)*(1-3*py*(1-

py))*mu2/((1+phi)*(1+2*phi)*n^2) 

fnb<-(n-1)*(phi+3*n*mu2)*(mu2*(1-phi))/((1+phi)*(1+2*phi)*n^2) 
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mu4<-fna+fnb 

Ajs<-sum(n*x/(1+(n-1)*phi)) 

Ajk<-0 

Akj<-sum(n*(1+(n-1)*phi)*(1-2*py)) 

Akk<-sum(n*(n-1)*(py*(1-py))) 

Bjs<-sum(n*(py*(1-py))*x/(1+(n-1)*phi)) 

Bkj<-sum(n*(1-2*py)*(1+(n-1)*phi)/(1+phi)) 

Bjk<-Bkj 

Bkk<-sum(n^4*(mu4-mu2^2)) 

A<-matrix(c(Ajs,Ajk,Akj,Akk),2,2,byrow=T) 

B<-matrix(c(Bjs,Bjk,Bkj,Bkk),2,2,byrow=T) 

mat1<-(solve(A))%*%(B)%*%(t(solve(A))) 

ciQL<-c(phi-1.96*sqrt(mat1[4]),phi+1.96*sqrt(mat1[4]))} 

if(ciQL[1]<=0.1 & ciQL[2]>=0.1){count<-count+1}else{count<-

count} 

} 

count 

length<-ciQL[2]-ciQL[1] 

length 

##c(ciQL[1],ciQL[2]) 

 

##METHODOFMOMENTS 

M=1000 

count<-0 

for(i in 1:M){ 

y<-

rbetabinom(n=5,size=200,prob=0.3,theta=0.1,shape1=1,shape2=1) 

#numberofbootstrapsamples 

nBoot=1000   

#bootstraparray 

B=array(0,dim=c(nBoot,2))   

#bootstraploop 

for(i in 1:nBoot){   

x=sample(y,replace=T)} 
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n<-rep(200,length(x)) 

for(i in 1:length(n)){ 

pi<-x/n 

xbar<-mean(x) 

var<-sum(x^2)-n*(pi^2) 

wi<-n/var 

w<-sum(wi) 

py<-sum(wi*pi)/w 

s<-sum(wi*(pi-py)^2) 

fn1<-sum((wi/n)*(1-wi)) 

fn2<-sum((wi)*(1-wi))-sum((wi/n)*(1-wi)) 

p<-py 

q<-(1-py) 

phi1<-(s-((p*q)*fn1))/(p*q*fn2) 

phi<-phi1/(1+phi1) 

mu2<-((py*(1-py))*(1+(n-1)*phi)/n) 

mu3<-(mu2*(1-2*py)*(1+(2*n-1)*phi)/(n*(1+phi))) 

fna<-(1+(2*n-1)*phi)*(1+(3*n-1)*phi)*(1-3*py*(1-

py))*mu2/((1+phi)*(1+2*phi)*n^2) 

fnb<-(n-1)*(phi+3*n*mu2)*(mu2*(1-phi))/((1+phi)*(1+2*phi)*n^2) 

mu4<-fna+fnb 

Ajs<-sum(n*(1-2*py)*x) 

Ajk<-0 

Akj<-sum(n*(1+(n-1)*phi)*(1-2*py)) 

Akk<-sum(n*(py*(1-py))*(n-1)) 

Bjs<-sum(n*(1+(n-1)*phi)*x*(py*(1-py))^3) 

Bjk<-sum(n*(py*(1-py))*(1+(n-1)*phi)*(1+(2*n-1)*phi)*(1-

2*py)/(1+phi)) 

Bkj<-Bjk 

Bkk<-sum((mu4-(mu2)^2)*n^4) 

A<-matrix(c(Ajs,Ajk,Akj,Akk),2,2,byrow=T) 

B<-matrix(c(Bjs,Bjk,Bkj,Bkk),2,2,byrow=T) 

mat1<-(solve(A))%*%(B)%*%(t(solve(A))) 

ciMM<-c(phi-1.96*sqrt(mat1[4]),phi+1.96*sqrt(mat1[4]))} 
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if(ciMM[1]<=0.2 & ciMM[2]>=0.2){count<-count+1}else{count<-

count} 

} 

count 

length3<-ciMM[2]-ciMM[1] 

length 

phi 

py 

 


