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ABSTRACT 

Drought is acritical stochastic natural disaster that adversely affects water resources, 

ecosystems and people. Drought is a condition characterized by scarcity of precipitation 

and/or water quantity that negatively affects the global, regional and local land-scales. At 

both global and regional scales, drought frequency and severity have been increasing leading 

to direct and indirect decline in water resources. For instance, increase in drought severity 

and frequency in the upper Tana River basin, Kenya, water resources systems quantity and 

quality have been adversely affected. Timely detection and forecasting of drought is crucial 

in planning and management of water resources. The main objective of this research was to 

formulate the most appropriate models for assessment and forecasting of drought using 

Indices and Artificial Neural Networks (ANNs) for the basin. Hydro-meteorlogical data for 

the period 1970-2010 at sixteen hydrometric stations was used to test the performance of the 

indices in forecasting of the future drought at 1, 3, 6, 9, 12, 18 and 24-months lead times, by 

constructing ANN models with different time delays. Drought conditions at monthly 

temporal resolution were evaluated using selected drought indices. The occurrence of drought 

was investigated using non-parametric Man-kendall trend test. Spatial distribution of drought 

severity was determined using Kriging interpolation techinique. In addition, a standard 

Nonlinear-Integrated Drought Index (NDI), for drought forecasting in the basin was 

developed using hydro-meteoroogical data for the river basin. The performance of the 

drought forecasting models at the selected lead times were assessed using Mean Absolute 

Error (MAE), correlation coefficient (R), Nash-Sutcliffe Efficiency (NSE), Ratio of mean 

square error (RSR) and modified index of agreement (d1). The results of spaial drought show 

that the south-eastern parts of the basin are more prone to drought risks than the north-

western areas. The Mann-Kendall trend test indicates an increasing drought trend in the 

south-eastern and no trend in north-western areas of the basin at both 90 and 95% significant 

levels. Another output of this research was the development of Surface Water Supply Index 

(SWSI) function, NDI and characteristic curves defining the return period and the probability 

of different drought magnitudes based on Drought Indices (DIs). In addition, drought 

Severity-Duration-Frequency (SDF) curves were developed.  The formulated NDI tool can be 

adopted for a synchronized assessment and forecasting of all the three operational drought 

types in the basin. The results can be used in assisting water resources managers for timely 

detection and forecasting of drought conditions in prioritized planning of drought 

preparedness and early warning systems.  
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DEFINITION OF TERMS 

Term  Definition  

Activation function An equation used within the neurons for signal data processing 

Aggregated drought 

index 

 

A tool used as an indicator of three categories of drought such as 

hydrological, agricultural and meteorological droughts. It uses 

numerous hydro-meteorological variables asinput into the mode 

Agricultural drought  

 

 

It refers to the deficit of soil moisture due to meteorological 

effects with different timing and effects. It may depend on initial 

moisture content and water storage capacity of the soil. It 

adversely affects cultivated vegetation and crop production. 

Artificial neural 

network  

 

A model system for processing large and complex data which 

uses inputs to generate outputs in the process,  it simulates the 

working principles of neuron of a human brain  

Axon 

 

Data output channel of the ANN through which the output signal 

or information is released 

Cell body A data processing unit within an ANN 

Climate change 

 

 

It is a statistically significant disparity in mean climatic conditions 

that occurs for an extensive time period in most cases a period of 

at least decade is considered 

Climate variability 

 

 

It is a phenomena of weather change comprising of shifts in the 

magnitude and frequency of erratic weather events, and slow and 

continuous increase in mean temperature 

Crop moisture index 

 

It is a tool used to assess the water deficit conditions on soils 

where crops are grown  

Dendrite 

 

Data input conduit is an ANN through which data of signal is 

transmitted to the cell body 

Drought 

 

A condition on land which is characterized by scarcity of water 

that fall below normal average, threshold or truncation levels 

Drought index 

 

 

A function of water-related variables(such as precipitation, 

streamflow, resrvoir volume, dam inflow, ground-water level...) 

for quantifying drought  

Global warming 

 

 

It refers to the critical changes in temperature and temperature 

dependent variables within the atmosphere and land, caused by 

high concentrations of hydrocarbon gases (carbon dioxide, 
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 methane and nitrogen) in the atmosphere  

Ground water drought 

 

It is a hydrological  drought caused by significantly reduced 

recharge or reduced volumetric ground water storage and or yield 

 Hydrological drought 

 

Effect of precipitation deficit on surface or sub-surface water 

resources such as rivers reservoirs, dams groundwater 

Hydrological risk  

 

 

It is a term is used to refer to a combination of the magnitude of 

the effects of climate variability impacts and the probability that 

the effects will occur 

Long-term drought 

forecasting 

Prediction of water deficit for a long period of time of up to 12 

months lead time 

Medium-term drought 

forecasting 

Detection of water deficit for a medium range of time of 6 to 9 

months lead time 

Meteorological drought 

 

A period of prolonged dry weather condition due to significantly 

below average precipitation  

Non-linear-Integarated 

drought index 

 

 

A tool that exhibit non-linear realtionship between input and 

output variables. It is used as an indicator of three categories of 

drought such as hydrological, agricultural and meteorological 

droughts 

Palmer drought severity 

index 

A water balance tool for assessing the total moisture status of a 

region using supply and demand over a two-layer soil model 

River basin 

 

 

An area of land surrounded by boundary line called drainage 

divide, where water flow on the surface, streams and rivers 

resulting from precipitation converge to a single point, called 

outlet. 

 

Short-term drought 

forecasting 

Detection of water deficit conditions for a short period of time of 

1 to  3 months lead time 

Socio-economic 

drought 

 

Refers to all socio-economic effects of agricultural, hydrological 

and meteorological droughts on supply and demand of goods and 

services  in the society 

Soil Moisture Deficit 

Index 

It is a tool used to assess the water scarcity conditions on different 

soil profiles where crops are grown 

Standardized A tool for evaluating drought conditions of an area in terms of 
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precipitation index precipitation defict based on certain threshold levels 

Surface water drought 

 

This is a condition of water deficit below a certain threshold level 

for surface water sources within a basin  

Surface water supply 

index  

It is an indicator of surface water and or moisture conditions on a 

basin 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background information 

Drought is one of the critical stochastic natural disasters that adversely affect water resource 

systems, people and ecosystems (Zargar et al., 2011; Jahangir et al., 2013). Drought is defined as a 

hydro-meteorological event on land characterized by temporary and recurring water scarcity.  

According to Morid et al. (2007), the magnitude of the drought is indicated by the extent with 

which it falls below a defined threshold level over an extended period of time. Drought has been 

identified as the most complex natural hazards due to difficulty in its detection.  Drought 

preparedness and mitigation depend upon timely information on its onset, and propagation in terms 

of temporal and spatial extent.  Such information can be obtained if effective and continuous 

drought monitoring indices are used in drought evaluation.  The study of spatial and temporal 

drought conditions has greatly been applied in planning and management of water resource systems 

such as water supplies, irrigation systems, and hydropower generation (Ceppi et al., 2014; Abad et 

al., 2013; Alaa, 2014; Okoro et al., 2014). These studies were undertaken in Lombarrdy region of 

norh Italy, Bashar river basin, Mashtul pilot area of Nile Delta and the river basins in Imo state of 

Nigeria respectively. 

  

At a global scale, demand for water resources has continued to increase as a result of the population 

pressure and related socio-economic development needs. As a result, numerous sectors have been 

affected by water scarcity and thus, effective management of impacts of drought-induced water 

deficit is required.  These drought impacts are more severe on Arid and Semi-Arid Lands (ASALs) 

than in the humid areas (UNDP, 2012). Therefore, management of drought has become an 

important issue in most of the countries in the world.  The drought characteristics in terms of 

frequency, duration and severity have been assessed using Drought Indices (DI) in some parts of 

the world (Mishra and Sign, 2010; Barua, 2010; Belayneh and Adomowski, 2013). However in 

many regions of the world such as Kenya, drought forecasting is still inadequate and thus the need 

to develop forecasting techniques for Kenya. 

  

 Globally, drought has become more frequent and severe due to climate variability with some 

regions experiencing droughts at varying scales and times. Therefore, global impacts of drought on 

environmental, agricultural and socio-economic aspects need to be studied. Drought is classified 

into four distinct types namely; meteorological, agricultural, hydrological and socio-economic. 

According to IPCC (2014), these droughts have either direct or indirect impacts on river basins and 
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human lives.  Direct impacts include degradation of water resources in terms of quantity and 

quality, reduced crop productivity, increased livestock and wildlife mortality rates, increased soil 

erosion and land degradation, and increased plant diseases and insect attacks (UN, 2008; Scheffran 

et al., 2012). On the other hand, the indirect impacts comprise reduced income, unemployment, and 

migration of people and animals (Figure 1B; Appendix B). Worldwide, more than eleven million 

persons have died since 1900 as a result of drought related impacts. In addition, two billion persons 

have been critically affected by the impacts (FAO, 2013). The main challenges associated with 

drought are that it causes ill health through water scarcity, malnutrition and famine (UN, 2008). 

 

African countries are among the most vulnerable to adverse impacts of climate variability and 

drought. This is because the Gross Domestic Product (GDP) of these countries depends heavily on 

rain-fed agriculture. The impacts in Africa are compounded by numerous factors such as poverty, 

high population density, and human diseases. According to Mwangi et al. (2013) in East Africa, it 

has been projected that water availability will decline due to drought. In addition, there is a 

likelihood of increased drought frequency due to decline in precipitation especially during the dry 

months. Extreme weather events will cause more frequent and intense droughts in some areas and 

flooding in others. This may be accompanied by hurricanes and tropical storms especially on 

coastal areas (IPCC, 2001). 

 

In Kenya, very notable droughts of 2009 and 2011 adversely affected the agricultural sector where 

crop yields were drastically reduced. During this period, the country’s wheat yield dropped by 45% 

compared to the 2010 growing season (FAO, 2013). Similarly, between 2002 and 2010, Australia 

suffered a multi-year drought. The total wheat yield in Australia at the time dropped by 46% 

compared to the annual average level. In 2010, Russia suffered a long and severe drought which 

significantly affected the environment, human health and economy. In the US, the southern states 

experienced a severe drought in 2011while in 2012 more than 6.3 million persons were negatively 

affected by drought in China.  During such drought episodes, people experienced challenges in 

food access and drinking water (FAO, 2013). 

 

Drought and climate variability have significantly impacted on Kenyan river basins. Human 

activities have also led to human-induced climate variability in most of the Kenyan river basins. 

This has aggravated pressure on water resources in these river basins. Climate change is expected 

to impact on different sectors of Kenya’s economy. For instance, the water sector which is the 

driver of other sectors of Kenya’s economy will be adversely affected. Kenya is a water scarce 
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country with approximate renewable freshwater of 643 m
3
 per capita per year and is projected to 

drop by a third to 235 m
3
 by the year 2025 (GoK, 2009). These values are far below the 

recommended level of 1000 m
3
 per capita per year (WHO, 2010). 

 

The agricultural sector in Kenya is highly vulnerable to climate variability (FAO, 2011). This 

sector contributes more than 51% of the gross domestic product (GDP) (Mwangi et al., 2013) and 

has been critically affected by frequent droughts.  Over the past 50 years, Kenya has experienced at 

least one main drought per decade (FAOSTAT, 2000). In addition, there has been a notable 

increase of drought in terms of frequency, duration and intensity. Any damage caused by drought 

on agriculture and water resources leads to famine, humanitarian crisis, rationing of water supply 

and decline in hydropower generation, the main source of power in the country that constitutes 

approximately 50.7% of the total power (World Bank, 2013). Effective drought forecast allow 

water resource decision makers to develop drought preparedness plans. Such plans are critical for 

advance formulation of programmes to mitigate drought-related environmental, social and 

economic impacts. Therefore, accurate drought assessment and forecasting with an adequate lead 

time is paramount in formulation of mitigation measures for river basins (Sharda et al., 2012). 

 

With the current trend in climate change, the average temperatures in the highlands of Kenya are 

predicted to increase by approximately 1.4
0
C whereas the annual rainfall will increase by 20% by 

2050. This will lead to an increase in runoff in most parts of Kenya. However, some areas such as 

the northern and the western regions may have little increase of about 5% of annual rainfall.  In 

addition, potential evapo-transpiration is expected to increase by 10% due to an increase in 

temperature by 2050 (WWF, 2006). These changes are going to affect drought and its impacts at 

varying magnitudes and time-scales within basins. 

  

Most of the electrical power in Kenya is generated within the upper Tana River basin mainly from 

five hydro-power plants. These include Masinga, Kamburu, Kindaruma, Gitaru and Kiambere 

which have a generating capacity of 40, 44, 225 and 156 MW respectively (Oludhe, 2012). These 

plants are part of the Seven-Forks dams designed for hydro-power generation. Masinga dam was 

originally designed as the main water reservoir purposely to regulate water flow to the other plants. 

The quantity of hydro-power generation depends wholly on the availability of water in the 

reservoirs at reasonable design levels to drive the turbines. However, in recent times, the 

availability of water within the Masinga reservoir has greatly been adversely affected by 
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occurrence of droughts. The occurrence of drought is associated with low water levels in the 

reservoirs as a result of reduced stream flows feeding the major reservoir.  

 

Drought forecasting has received a new approach especially with the development of the Artificial 

Neural Networks (ANNs). An ANN is a computing system made up of a number of simple and 

highly interconnected information processing elements. Such a system has performance 

characteristics that resemble biological neural networks of human brain. ANN has numerous merits 

when used for data processing. The system processes information based on their dynamic state 

response to external input (Morid, 2007). ANNs have the capacity to model relationships that are 

quite dynamic and can capture many kinds of relationships including non-linear functions which 

are difficult or impossible to determine using other approaches (Mustafa et al., 2012). The ANNs 

have recently been used in water resources engineering (WRE). WRE comprises the study of 

hydraulics, hydrology, environment and geological related variables. Such variables are dynamic 

and exhibit non-linear and stochastic characteristics. These properties make WRE variables 

complex and difficult to determine due to spatial and temporal variations. Thus due to their 

advantages, ANNs provide effective analytical techniques in modelling and forecasting non-linear 

and dynamic time series variables in WRE such as drought (Mustafa et al., 2012).  

 

Agricultural drought can be monitored by assessing soil moisture content levels. However, direct 

soil moisture data measurement is not available at regional and basin scales at fine resolutions. To 

estimate soil moisture content, process based models are used where an integration of both the 

random variables of climate, physical properties of land are considered. One of the advanategs of 

these models is that they can be used to provide information at different spatial and temporal 

resolutions.  Some of these process based models include the FAO developed AquaCrop model 

(Casa et al., 2013) and Soil and Water Assessment Tool (SWAT) (Fiseha et al., 2013). The 

Aquacrop model has been used in modelling crop response to soil water availability. For instance, 

AquaCrop model was applied in evaluating wheat grain yield and crop biomass in China for several 

irrigation systems (Du et al., 2011). The model was applied by Iqbal et al. (2014) to assess crop 

grain yield and biomass response to soil water content, actual evapotranspiration under deficit 

irrigation conditions. 

 

Most basins in Kenya have limited or lack adequate quantifiable information on drought 

characteristics such as magnitude, frequency, duration and severity. In addition, there is very 

limited information on appropriate drought assessment and forecasting methods. Drought 
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assessment for different river basins is essential in understanding the trends in drought frequency, 

severity, magnitude and associated impacts. The information of such assessment can be adopted in 

informed decision making by governments and its support programmes on the affected 

communities. Drought models can be used to estimate and forecast drought conditions on a spatial 

and temporal domain. To prepare for effective mitigation of drought risks in Kenya, asessment and 

forecasting of drought conditions is vital. Thus in this research, assessment and formulation of 

drought forecasting models for upper Tana River basin through the application of Drought Indices 

and Artificial Neural Networks (ANNs) was accomplished. 

 

1.2 Statement of the problem 

There has been a problem of erratic drought occurence that has negatively affected water resource 

systems and consequently socio-economic development in the upper Tana River basin. The 

problem of drought in the basin is aggravated by the fact that its frequency and severity has been 

increasing over the years. Being a stochastic hydrological phenomenon, it is difficult to assess and 

forecast drought. Despite cascaded adverse impacts of the drought occurrence on decline of 

quantity and quality of water resources (WRMA, 2009; IFAD, 2012), hydropower generation in the 

Seven fork cascade dams (Word Bank, 2006; WSI, 2011), limited research has been conducted to 

assess and forecast its characteristics. Drought occurrence in the basin is attributed to the combined 

effects of both climate change and land use/cover change that lead to increased evapo-transpiration 

(ET). According to Nohara et al. (2006), increase in ET is caused by increase in temperature that 

negatively affect river basin water resource systems such as stream flows, reservoir levels and soil 

moisture levels at varying magnitudes. There is need to formulate sustainable drought mitigation 

and copying mechanisms for the basin. However, an appropriate tool(s)/methods for assessing and 

forecasting drought conditions (severity, duration and frequency) in the basin are limited. To 

address this challenge, this study therefore formulated effective models and Non-linear Integrated 

Drought Index (NDI) for assessment and forecasting of drought in the upper Tana River basin.  

 

1.3 Objectives  

1.3.1 Main objective 

The main objective of this study was to formulate the most appropriate models for assessment and 

forecasting of drought using Indices and Artificial Neural Networks (ANNs) in the upper Tana 

River basin for guiding decision making in water resources planning and management. 
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1.3.2 Specific objectives 

The specific objectives of this study were to: 

i) Assess temporal and spatial drought using selected Drought Indices (DIs) based on hydro-

meteorological data from 1970 to 2010 for the upper Tana River basin 

ii) Evaluate the performance of the selected DIs and ANNs in forecasting of short, medium and 

long-term drought conditions in the upper Tana River basin  

iii) Formulate a Nonlinear-Integrated Drought Index (NDI) using principle component analysis 

based on the basin hydro-meteorological data for 1970-2010   

iv) Assess the performance of the formulated NDI and ANNs in forecasting and projecting 

short, medium and long-term drought conditions in the river basin 

 

1.4 Research questions 

i) How can the the spatial and temporal drought condition based on Drought Indices (DIs) 

assessment using hydro-metrological data of 1970 to 2010 for upper Tana River basin? 

ii) How do the DIs and ANNs perform in forecasting drought indices for short, medium and 

long-term drought characteristics of upper Tana River Basin?  

iii) How effective can a Nonlinear-Integrated Drought Index (NDI) be formulated using hydro-

metrological data for upper Tana River basin?    

iv) How do the formulated NDI and ANNs perform in forecasting NDI values for short medium 

and long-term drought characteristics for the basin? 

 

1.5 Justification 

Improved socio-economic development which is associated with sustainable water resources 

availability, food security and hydro- power generation and supply in the upper Tana River basin is 

one of the Kenya’s priorities. To reduce the levels of poverty, hunger, improve sustainable access 

to safe drinking water, sustainable conservation of resources, as per the Kenya’s Vision 2030 

(GoK, 2007), understanding of drought characteristics is paramount (GoK, 2012). Although 

drought has affected water resources in the basin, quantification of its impacts and characterization 

of drought is limited. There is need to end poverty, hunger, promote sustainable water management 

and access to sustainable energy as stated in the UN sustaibale development goals 1, 2 6 and 7 

respectively (UN, 2016). To achieve these goals, enhanced drought preparedness through planning 

of mitigation measures to reduce adverse drought impacts on water resources, food security, hydro-

power generation and livelihoods is paramount. This requires data on spatial and temporal 

characteristics of drought. Such data is useful in identification of drought on-set, its propagation as 
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well as detection of drought risk areas in the basin. However, such data for the upper Tana River 

basin is scanty and not readily available. 

 

1.6 Scope 

Although the Tana River basin covers 126,026 km
2
, the current research focused only on the upper 

Tana River basin with an area of 17,640 km
2
. Assessment and forecasting of drought was based on 

data-driven drought indices that use hydro-meteorological data from 1970 to 2010 for eight gauged 

stream flow stations and eight meteorological stations. The data analysis is based on monthly and 

90-m temporal and spatial resoulutions respectively. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Occurrence of droughts 

Drought is a condition on land characterised by scarcity of water that falls below a defined 

threshold level. The term drought has been defined differently in numerous applications (UNDP, 

2012). However, it is a challenge to quantitatively define the term.  Droughts may be expressed in 

terms of indices that depend on precipitation deficit, soil-water deficit, low stream flow, low 

reservoir levels and low groundwater level. Drought may be defined differently depending on the 

sector involved. For example, a hydrological-drought occurs whenever river or groundwater levels 

are relatively low. In addition, water-resources drought occurs when basins experience low stream 

flow, reduced water reservoir volume and groundwater levels. The water resources drought is 

influenced by climatic and hydrological parameters within a river basin and drought management 

practices. The hydrological drought, mainly deals with low stream flows. This drought adversely 

affects various aspects of human interest such as food security, water supply and hydropower 

generation (Karamouz et al., 2009; Belayneh and Adamowski, 2013). 

  

A sequence of drought occurrence in a river basin may lead to desertification of vulnerable areas 

such as arid, semi-arid and sub-humid areas. Within these fragile ecosystems, water resources, soil 

structure and soil fertility are critically degraded by drought occurrence (El-Jabi et al., 2013). The 

occurrence of any drought in terms of magnitude, frequency, duration and severity has not been 

clearly understood for numerous river basins in the world, and this calls for intensified research in 

drought and such related fields. 

 

 2.1.1 Types of droughts 

According to Zoljoodi and Didevarasl (2013), there are four main categories of droughts. These 

include the Hydrological, Meteorological, Agricultural and Socio-economic droughts. The first 

three types are called the operational droughts and can be integrated into a drought management 

algorithm. Their relation can then be applied in development of water resource strategy in a river 

basin (Karamouz et al., 2003). Propagation of hydrological and agricultural drought originates from 

meteorological droughts which develop from changing phenomena within the hydrological cycle as 

given in Figure 2.1. The main droughts may further be classified into other types of drought.  
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Figure 2. 1: Propagation of drought via hydrological cycle 

 

The hydrological drought is associated with below average quantity of surface and sub-surface 

water resources resulting from deficit precipitation. Its characteristics which are defined by 

magnitude, severity, duration and frequency can be studied at a basin scale. Hydrological drought 

impacts on large areas and large human population and may be triggered by climate change and /or 

variability (Mondal and Mujumdar, 2015). Like other drought events, hydrological drought is 

considered to be a ‘creeping hazard’ because it develops slowly, it is not easily noticed, covers 

extensive areas and it lasts for a long period of time with adverse impact on water resources, 

ecological systems, and socio-economic development (Liu et al., 2015; Van-loon, 2015).  
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According to Van-loon and Laaha (2015) and as shown in Table 1A of Appendix A, hydrological 

drought has the most significant effects across different sectors compared to other types of 

droughts. Hydrological drought may be categorized into surface and ground water droughts (GD). 

The Surface Water Drought (SWD) is caused by direct reduction in precipitation that subsequently 

leads to low surface runoff. The SWD is also caused indirectly by reduced groundwater discharge 

to surface water resources. This may be attributed to reduced flow of groundwater into surface flow 

in influent rivers and springs. In some instances, increase in groundwater on specific areas within a 

basin for an effluent river contributes to the SWD.  The common indicators of SWD are reduced 

river flows, low water levels in reservoirs and lakes. SWD results from a combined interaction of 

meteorological drought, water resources development infrastructure and operational management. 

 

Groundwater Drought (GD) is a hydrological type of drought caused by significantly low quantity 

of water in aquifers that may be due to reduced recharge. The recharge normally takes place 

through permeation and inflow from sub-basins (Adindu et al., 2013). The GD is assessed by 

measuring the volumetric ground water storage. However, these data are not readily available in 

most river basins. Thus, aquifer level is considered to be a better indicator than the volumetric 

ground water storage. The GD is also determined from the evaluation of its secondary effects such 

as base flow into rivers. Ground water is a vital source of water supply especially in river basins 

where surface water exhibits a high temporal variability. In some cases, groundwater availability is 

used as an indicator of relative drought risk. 

  

The meteorological drought which is the most commonly known drought is associated with long 

time intervals of significantly low or no precipitation and increased air temperature.  The deficiency 

in rainfall leads into low infiltration, decreased runoff and ground water recharge. High air 

temperatures lead to changes in wind characteristics such as increased wind velocity, low Relative 

Humidity (RH) and increased evapo-transpiration.  

 

The three operational types of droughts are interconnected. For instance, Agricultural drought links 

meteorological and/or hydrological drought to agricultural impact. Agricultural droughts impact 

negatively on farming systems whenever they occur. Their impacts are normally two-fold; 

environmental and economic impacts. The agricultural drought is a type associated with low 

agricultural production, increased food insecurity, decline in output from agro-processing industries 

and unemployment incidents in the agricultural sector. From the environmental perspective, 

agricultural drought is caused by insufficient precipitation, high temperature that causes elevated 
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rates of evapo-transpiration, increased salt concentration in the crop root zones and soils within 

irrigation systems (Mishra and Singh, 2010). The term environmental drought is sometimes used to 

address the adverse effects of extremely low flows on ecosystems, and may be analyzed in the 

emerging field of eco-hydrology.  

 

The term socio-economic drought relates the supply and demand of economic goods with elements 

of meteorological, hydrological and agricultural drought. This drought occurs when the demand for 

an economic good exceeds the supply. It is caused by weather related deficit in water supply within 

a basin. Some of the noticeable impacts of socio-economic drought include increased 

unemployment, increased food prices, reduced income, reduced tax revenues and increased 

migration.  

 

2.1.2 Drought modelling 

Drought modelling is a technique of using simple and or complex mathematical, scientific and 

conceptual representations of drought charactersitics. The purpose of drought modelling is mainly 

to provide a concise understanding of its occurrence, characteristcics and forecast. The fundamental 

role of modelling the drought is to offer solutions to the challenges of increasing water scarcity due 

to population growth, expansion in agriculture, industrial and energy sectors. The scarcity of water 

in the world is compounded by the droughts that affect both surface and ground water resources. 

Drought modelling may be categorized into eight aspects such as drought forecasting, temporal 

assessment, spatial assessment, probability characteristics, management, impacts of climate change 

on drought, assimilation of land data systems into drought and impacts of drought on different 

sectors. All the aspects of drought are interconnected in drought modelling and are inter-linked as 

given in Figure 2.2 which was modified from Mishra and Singh (2011). 
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Figure 2. 2: Network of phases of drought modeling  

(Modified from Mishra and Singh 2011) 

2.1.3 Determination of drought threshold level 

The threshold level of any drought is based on the theory of crossing technique where the 

properties of runs above and below a truncation level are determined. The truncation level may be 

considered as the long-term mean or median value computed from hydro-meteorological data as 

shown in Figure 12B, Appendix B. The truncation level for a drought may be smaller than the 

lowest available value of a particular data set. The truncation level is used to specify some statistics 

of a drought variable. This is achieved by portioning the time series of the variable deficit and 

surplus segment. The truncation level may be constant or vary with time. When using a constant 

threshold level in most cases, the absence of trend should be first checked. Given a time series data 

such as stream flow, reservoir and ground water levels, a threshold level may be determined using a 

modified function according to Peters et al. (2003) given as: 
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Where; 

 Q(t) = stream flow (m
3
/s) 

QT(c) = threshold value  

Qb = minimum value (average supply of average demand) (m
3
/s) 

M = period of time in series 

c = drought criterion factor 

 

The drought criterion factor c is the ratio of deficit value below the threshold to the deficit below 

the average value. The drought criterion parameter c determines the height of the threshold level. If 

the value of c is one, the threshold level is equal to the average of Q. If the value of c is zero, then 

the threshold level is equal to the minimum of Q. The definition of the threshold also ensures that 

the total drought deficit decreases with decreasing amplitude of Q(t). The last line of the function is 

included by considering that deficiency is influenced by supply and demand (Awass and Foerch, 

2006a). The QT(c) is an arbitrary value that depends upon the objective of the study of drought based 

on water scarcity as a relative concept that can occur at any level of supply or demand. The 

truncation level is normally used to objectively demarcate the on-set and end of a drought event. 

 

2.1.4 Selection of drought threshold level 

The truncation level for any drought assessment may be chosen based on mean, median and 

percentage of exceedance of the available data set and purpose of the drought study. For instance, 

the truncation levels for stream flow may be taken as a percentile such as Q50, Q70, Q90 (Awass, 

2009). The first step in selecting a threshold level Q0 is to define its value, below which a stream 

flow or precipitation data is considered as drought. Then the method of ‘Crossing Theory’ also 

called ‘Run-sum Analysis’ is applied to investigate drought characteristics. 

  

When the plotted data for drought falls below the threshold value, a drought event starts, and when 

it rises above the threshold, the drought event ends. The beginning and ending of drought are 

defined using the start and end times. For river basins with mainly perennial rivers, relatively low 

fixed thresholds in the range of Q70 to Q95 may be considered appropriate (Meigh et al., 2002; Sung 

et al., 2013). However, for basins dominated by intermittent and ephemeral rivers, which have 

large proportion of zero flow, Q70 or mean flow is recommended. If the trend of the data changes 

with time, then a variable threshold can be applied for detection of deviations and drought 
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assessment. For instance, monthly flow duration curves could be developed and a variable 

threshold value of Q75 used for the given river basin (Kjeldsen et al., 2000). 

 

2.2 Climate change and variability 

Climate change is explicitly defined as statistically significant and long-term (at least a decade) 

continuous disparity form mean climatic conditions (IPCC, 2001). Climate variability refers to the 

deviation in mean state of climate variables on temporal and spatial scales. It is a deviation of 

climate statistics over a defined period of time such as a month, season or a year compared to long-

term staitistics of the same calendar period (WMO, 2015). This change comprises shifts in the 

magnitude and frequency of erratic weather events and slow and continuous increase in mean 

temperature.  Climate variability dynamics was not well understood in early times on all scales. 

There has been a great improvement in understanding dynamics of climate variability on a large-

scale in recent times. However, more research needs to be done on its cascaded effects to 

hydrology, quantity and quality of water and sustainable management of water resources at the 

river basin scale (Peng et al., 2013). 

 

Climate variability has the ability to drive climate and ecosystems across certain thresholds and 

create a new condition. There may be a shift in mean climatic conditions and extreme events such 

as more frequent floods and droughts, severe soil erosion and prolonged periods of low stream 

flow. The climatic change and variability plays a key role in the modification of spatial-temporal 

patterns of hydrology. For instance, according to Ma et al. (2009), climate variability has led to 

alteration of the hydrological processes, reduced glaciers and water supply downstream of 

Himalaya’s catchment. In addition, it influences the human socio-economic activity through land 

cover and land use within a watershed (Hundecha and Bardossy, 2004). In addition, climate has 

asignificant adverse effects on all aspects of economy. For instance the 1998-2000 droughts in 

Kenya were estimated to have economic decline of 2.8 billion United States Dollars. This was due 

to the losss of crops, livestock damage to fisheries, reduced hydropower generation, reduced 

industrial production and decline in water supply (Gok, 2012)  

 

Due to climate variability, the natural ecosystems require sustainable management for resilience. 

The process of resilience involves recovery of ecosystems from significant multi-hazard threats 

with minimum damage to environment, social and economic wellbeing. However, due to systems 

going beyond thresholds, managing resources for resilience may not remain a viable strategy. 

Instead, it might be more viable to manage systems in their new stable states. It is therefore 
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important to conserve, adapt and/or mitigate climatic variability impacts and reduce their risks 

using integrated approaches to hydrological risks (UNEP, 2015).  

 

The term hydrological risk is used to refer to a combination of the magnitude of the effects of 

climate variability impacts and the probability that the effects will occur. The effect of climate 

variability on hydrological extreme events has a great challenge in water resources and basin 

management. There is the need to formulate strategies to efficiently manage the challenges at river 

basin level (WRMA, 2010).  

 

The threat of climate change on basins degradation in the past decade has been of great concern as 

far as conservation of biodiversity is concerned (Ayyad, 2003; Chen and Rao, 2008). Based on the 

period in years of occurrence, climate variability may be categorized as short-term and long-term 

(IPCC, 1995). Climate change has been attributed to global warming. For instance, global surface 

air temperature has been noted to change by 0.74  0.18
o
C from 1906 to 2005 (IPCC, 2007). The 

climatic variables which impact immensely on water resources include the precipitation and 

temperature. One of the resulting adverse effects on water resource systems is the climatic-induced 

water scarcity. The impact of climate variability on the hydrological response of a basin may be 

investigated using accurate field data and modelling techniques.  

 

Some of the hydrologic variables affected by the climatic variability include surface runoff, sub-

surface runoff, stream flow, sediment yield and soil erosion (Kamga, 2001; Tong and Cheng, 

2002). The climatic variables which impact immensely on water resources include the precipitation 

and temperature. One of the resulting adverse effects on water resource systems is the climatic-

induced water scarcity that needs detailed investigation. The impact of climate variability on the 

hydrological response of a basin may be investigated using accurate field data and modelling 

technique.  

 

Prediction of hydrological response associated with climate variability requires the use of simple or 

complex distributed hydrological models. However, the use of complex models may require large 

datasets for both the pre-change and post-change basin conditions. Alternative approaches that 

combine spatial modelling and qualitative techniques may therefore be applied (Bassey and 

Akinkunmi, 2013). A number of approaches have been used to study changes within different 

basins. Hydro-meteorological measurements and the application of Remote Sensing (RS) and 
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Geographical Information Systems (GIS) techniques have been widely used to detect effects of 

climate change on basins.  

 

Some of the efforts made to monitor climatic change are measurements of stream flow, water 

balance components, levels of lakes, tree ring growth rates and drought risks. The regional trends in 

climate change may be reflected in the projections for countries such as Kenya. It is expected that 

the mean annual temperatures in Kenya will increase from 1 to 2.8°C by the 2060s, and 1.3 to 

4.5°C by the 2090s (IPCC, 2007). On the other hand, the mean annual rainfall will increase by up 

to 48%. It is anticipated that there will be a general increase in precipitation due to climate change 

in most arid and semi-arid lands (ASALs) of Kenya (IPCC, 2007). 

 

2.2.1 Impact of climate change on water resources 

Climate change and land-cover change within a basin may greatly impact on the quantity and 

quality of water resources. Reservoir water availability is influenced by drivers of climate 

variability especially the ones that alter runoff within a basin. To manage water resources under 

climate variability, the capacity of water reservoirs should be increased for offsetting the impacts of 

climate variation and maintaining existing water yields.  

 

Climate change influences the patterns of hydrology, droughts and water resources systems (Ma et 

al., 2010). Although hydrology and water resources are interrelated, the two terms differ in their 

definition. Hydrology is the study of the water on, above and below the earth in terms of its 

occurrence, circulation, distribution, chemical and physical properties, and the reaction of the water 

with the environment, including the interaction with ecosystem within a basin. On the other hand, 

water resources refer to the quantity and quality of water based on a defined temporal and/or spatial 

resolution. 

 

Due to climate change and land-cover change, hydrological processes in basins have significantly 

been altered especially by extreme climate events (Jones, 2010). Extreme climate events such as 

droughts are series of occurrences that happen with greater intensity or frequency than common 

events. The climate variability has led to increased climatic uncertainty with variation in the 

weather pattern, mainly between the seasons and years. The impact of climate change on water 

resources and agriculture is considered as both regionally distinct and spatially heterogeneous. One 

of the challenges in monitoring trends in climate change in river basins is the paucity of 

meteorological data both in terms of period of record and the distribution of stations. For instance, 
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in many countries, precipitation, temperature, wind and other hydro-meteorological data recording 

began only after the Second World War. This makes it difficult to statistically determine the extent 

of variability of an event in terms of magnitude and frequency (Awass, 2009). However, in some 

areas there are enough data to study annual trends.  

 

2.2.2 Effect of water balance components on drought 

Different components of the hydrological water balance equation are influenced by the drought. 

The water balance equation components for a river basin are summarized in the expression: 

GSETRP                          (2.3) 

Where; 

 P = Precipitation (mm) 

ET = Evapo-transpiration (mm) 

ΔS = Change in soil water storage (mm) 

G = The ground water recharge (mm) 

 

From Equation (2.3), it implies that precipitation is a vital contributor to the runoff and thus it 

greatly influences stream flow. During a drought event, the quantity of precipation is significantly 

reduced below the normal average while temperature in a river basin may increase above long-term 

mean value. As a result, there is an increase in evapo-transpiration, and thus alteration of the 

magnitude of water balance equation components. When evapo-transpiration (ET) on the soil 

surface is high, then the quantity of water stored in the top soil horizon or the root zone is low.  

This condition contributes to agricultural drought. The ET, ΔS and G components of the water 

balance are greatly influenced by physiological charatceristics of the river basin which may cause 

accelerated or delay in hydrological response. 

 

2.2.3 Effect of global warming on droughts 

Global warming is due to firstly, the climate change which slows down the global circulation of 

ocean currents due to moderated differences in temperature between tropical and temperate sea 

water bodies. Secondly, due to the ice melting in the Polar regions implying cold water entering the 

oceans and drifting into the tropics affect global warming. The ice melting flowing leads into 

cooling of tropical oceans whose effect is picking significantly of low moisture by the prevailing 

winds (IPCC, 2011). The wind carries with it the little moisture picked along its course. 
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Global warming influences the rate and timing of evapo-transpiration. Due to global warming, 

some regions in the world are likely to get wetter while those that are already under dry conditions 

are likely to get drier. Thus, global warming is likely to increase drought occurrence and expansion 

of the dry areas (Dai, 2011). For instance, the regions in southern Africa, the Sahel region of 

Africa, southern Asia, south west of United States of America have generally been getting drier 

over the years (FAO, 2013). 

 

In addition, the quantity of water resources is expected to decline by up to 30% in the areas affected 

by climate change. These notable changes will occur partly because of an expanding atmospheric 

circulation pattern.  This pattern is called Hadley cell in which warm air in the tropics rises, loses 

moisture, and descends in the sub-tropics as dry air. During this process, jet streams shift to the 

higher latitudes, and storm patterns shift along with them leading to expansion of Arid and Semi-

arid Lands (ASALs) (Dai, 2011). 

 

2.2.4  IPCC and IGAD approach 

The inter-governmental panel for climate change (IPCC) projects changes in climate system using a 

hierarchy of climate and earth system models. The models simulate changes in climtate based on a 

set of scenarios of anthropogenic forcing. One of the new sets of the scenarios such as 

Representative Concentration Pathways (RCP) is used for climate monitoring. This scenario 

projects atmospheric carbon concentration to be higher in the year 2100 than at present. 

 

The IPCC monitors global surface temperature data sets for the purpose of projecting global 

warming using integrated climatic models such as simple, atmospheric chemistry and global carbon 

cycle models (IPCC, 2013; IPCC, 2014). The Intergovenmental Authority on Development (IGAD) 

also applies a number of climatic models to predict ten-day, monthly and other periodical climate 

data. It uses climate data bank comprising decadal precipitation and temperature for respective 

regions. These data sets are then used to develop regional precipitation and temperature risk maps 

(IGAD, 2007). However, the IPCC and IGAD provide information based on global scales and thus 

does not give a direct and effective indicator at basin scale scenarios.  Most of the information at a 

basin scale is obtained through downscaling of the global data. 

 

2.3 Major causes of drought in Kenya 

Climate variability and global warming that affect atmospheric circulation play a fundamental role 

in influencing drought occurrences in Kenya. When the Indian Ocean surface water temperature is 
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abnormally low, it leads to the cooling of South-East and North-East trade winds. These two air 

masses move across the land and converge near the equator within a region called Inter-Tropical 

Convergence Zone (ITCZ). When the winds are cool, they do not pick up enough moisture from the 

ocean water surface and thus lead to erratic rainfall patterns in eastern parts of Kenya (GoK, 2009). 

On the western parts of Kenya, the Atlantic and Congo prevailing winds bring the same drought 

conditions in case they are abnormally too cold to pick sufficient moisture. 

 

Other factors leading to increase in drought frequency and severity are human-induced such as poor 

land use practices, deforestation and destruction of catchment areas. Generally the forest cover has 

decreased by 72% between 2000 and 2007 (GoK, 2009) and further to 6.1% of the total land mass 

in 2011 (World Bank, 2014). Among the five main water towers in Kenya, the Mau Complex lost 

the highest with 70% of the forest cover destroyed within the stated period. The major causes of 

deforestation have been the need to expand agricultural land, uncontrolled exploitation of forest 

resources, overgrazing and establishment of new settlements on forest land as accelerated by 

increasing population growth. 

 

2.3.1 Impact of drought in Kenya  

Kenya has experienced approximately 30 major droughts during the last 100 years according to 

UNDP (2012).  Over 70% of the natural disasters in Kenya are associated with droughts and 

extreme weather conditions.  The severity and frequency of droughts in the country have been 

increasing over the years (Arnell, 2004). Some of the recognizable droughts include the 1952-1955, 

1973-1974, 1983-1984, 1992-1993, 1999-2000 and 2009-2011 (UNDP, 2012).  The occurrence of 

droughts in Kenya has impacted negatively on people’s livelihoods in the sense that, huge 

resources which would have otherwise been used for other socio-economic activities are normally 

diverted to cater for food shortages and water scarcity. The 2008-2009 droughts for instance, 

caused adverse effect on 3.8 million pastoralists and agro-pastoralists in Kenya in terms of food 

insecurity.  Approximately 1.5 million children in primary schools needed to be fed due to famine 

(KFSSG, 2009). Many people within the arid and semi-arid lands (ASALs) suffered malnutrition 

due to lack of food and water.  

 

The drought of 2011 was also severe in terms of food and water scarcity in Kenya where over 3.2 

million persons needed urgent care (KFSSG, 2011). In addition, over half a million persons were 

forced to migrate from their settlements in search of forage, food and water. The cattle were grazed 

through wildlife protected areas bringing competition and conflict between people, livestock and 
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wildlife on pasture and water resources. Additionally, the tourism sector which is a major foreign 

exchange earner for Kenya was greatly affected. This is because drought affects the environmental 

resources that are crucial attraction for tourists including the wildlife, biodiversity, water quantity 

and quality.  

 

Drought has impacted negatively on numerous river basins in Kenya. For instance, the upper Tana 

River basin has been negatively affected by notable droughts such as the La Niña of 1999 to 2000, 

and 2008 to 2009 (Oludhe, 2012). These led to severe water scarcity in the region and a significant 

reduction in hydro-power generation that was characterized with rationing of power. To address the 

problem, there is need to have information for planning ahead. Therefore, this led to a detailed 

assessment evaluation and characterization of drought occurrences within the basin and finally the 

development of a prediction system that could be used for early warning on drought occurrence in 

the upper Tana River basin. 

 

2.3.2 Drought monitoring in Kenya 

To minimize the impacts of drought in Kenya, an effective and timely monitoring system is 

necessary. Such monitoring activities are meant to provide critical information in the development 

of early warning systems. Since drought has become a recurrent phenomenon in Kenya, different 

organizations are involved in coming up with methods to address drought-induced challenges. 

 

The organizations involved in data collection for early drought warning systems in Kenya include; 

the Kenya Meteorological Department (KMD), Ministry of Agriculture, livestock and fisheries, 

Department of Resource Survey and Remote Sensing (DRSRS), Kenya  National Bureau of 

Statistics (KNBS), Inter-governmental Authority for Development (IGAD) Climate Prediction and 

Application Centre (ICPAC), World Food Programme (WFP) Kenya Office, Regional Centre for 

Mapping of Resources for Development (RCMRD), Livestock Network and Knowledge System 

(LINK), Famine Early Warning system-Network (FEWS-NET) and the Arid Lands Resource 

Management Project (ALRMP) (WFP, 2011; UNDP, 2012). To prepare adequately for mitigation 

of the drought impacts, a thorough assessment, evaluation and forecasting of drought conditions is 

very critical.  However, the main challenges or gaps with drought preparedness and mitigation in 

Kenya include the fact that: 

i) Drought assessment has been based on past and present drought indices (DIs) developed for 

specific regions in other countries and their suitability in Kenya has not been sufficiently 

tested 
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ii) Efficiency of the performance of DIs in drought forecasting for different lead times is not 

well explored in most basins in Kenya 

iii) Spatial and temporal drought assessment and forecasting of drought using hydro-

meteorological variables is limited for most basins in Kenya 

Due to these challenges, there was need to test the applicability of the Drought Indices (Dis) in 

Kenya using data forms available in concerned river basins. To effectively define the droughts in 

Kenya, a combination of hydro-meteorological data should be used as input variables in drought 

assessment and forecasting models.  

 

2.4 Drought forecasting 

The terms short, medium and long-term forecasting have been used in drought studies as indicators 

of lead time in months of future drought. In most of the drought forecasting research, 1 to 3 months 

lead time is considered as short-term forecast. The medium to long-term drought forecast is lumped 

into one category of 4 to 12 months lead time (Mishra et al., 2006; Cassiamani et al., 2007; 

Belayneh, 2012). Forecasting of short-term drought conditions is useful for monitoring the effect of 

drought on agricultural systems. Under the short-term drought forecasting soil moisture and crop 

water stress may be defined especially during growing seasons. On the other hand, forecasting 

medium and long-term droughts helps to understand the overall effect of drought on water 

resources at basin and regional scales. The medium to long-term forecasting is critical in water 

resources management. It may be used for drought risk management as emerging early warning 

systems in Kenya.  The three categories of drought forecasting can be used to formulate long-term 

plans for sustainable management of water resources and agricultural systems. Droughts are likely 

to persist in river basins such as upper Tana, with varied projections. Some models have projected 

an intensification of drought events in some areas, although other models indicate a reduction in 

drought severity (GoK, 2012).  

 

2.5 Drought mitigation 

Numerous methods are used to alleviate, protect or reduce the impacts of drought on people’s 

livelihoods. The methods are directed to alter the drought effect on water resources, agriculture, 

livestock and other basin resources. Some of the commonly used methods at the basin scale for 

drought mitigation include: 

i) Drought monitoring: This involves gathering of information about drought in terms of water 

and rainfall levels. Such information is used in formulation of early warning systems and 

design of other mitigation strategies 
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ii) Rainwater harvesting:  It involves collection, conveyance and storage of water during wet 

conditions for use during the drought. The water may be stored in dams reservoirs or in 

storage tanks  

iii) Desalination: This is a process of treating and removing dissolved salts in sea water or 

irrigation water within a river basin 

iv) Recycling: It is the treatment and purification of wastewater through recycling, recovery 

and reuse in community water supply and irrigation systems 

v) River engineering: It is the design and construction of river training channels, water canals 

or to divert and re-direct water to drought prone areas for water supply or irrigation 

vi) Cloud seeding: A rainfall inducing substance is sprayed in the atmosphere to act as nuclei 

on which clouds form and generate precipitation 

vii)  Development of Crop varieties: This is the development of new plant varieties that can 

tolerate drought with significant crop yields 

viii)  Development of farming technologies that cope with drought: It is the development and 

use of farming technologies that have high water use efficiency and crop production and 

animal husbandry such as drip and greenhouse systems 

ix) Reduction in outdoor water use and wastage: This involves the regulation and control of 

water wastage via the use of sprinklers, hoses, water containers, pipes and other usage and 

maintenance activities 

 

2.6 Drought assessment methods 

Drought indices or models are used for assessment of occurrence and severity of droughts. The 

Drought Indices (DIs) were developed for specific regions using specific structures and forms of 

data input. There is limited information in the application of drought indices that combines both 

temporal and spatial drought evaluation at river basin scales. Drought has been assessed in terms of 

temporal and spatial domain using evapotranspiration mapping as illustrated by Eden (2012). There 

are two broad categories of drought indices; satellite based and the data driven drought indices 

(Belayneh and Adamowski, 2013). 

 

2.7 Satellite based drought indices 

The satellite Remote Sensing (RS) may be defined as the science and art of obtaining information 

of points, objects, areas or phenomena through analysis of data acquired by a sensor, which is not 

in direct physical contact with the target of investigation (Sayanjali and Nabdel, 2013). The RS 

provides an aerial view of land, water resources and vegetation cover. This technique gives a 
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spatial and temporal context of assessing drought and has the ability to monitor vegetation 

dynamics over large surface areas. Currently, there is a considerable interest in collecting remote 

sensing data at multiple time scales. Such data is used to conduct a near real time information 

management (Mulla, 2013).  Examples of satellite drought indices are the Vegetation Condition 

Index (VCI), Normalized Difference Vegetation Index (NDVI), Normalized Difference Water 

Index (NDWI), Water Supply Vegetative Index (WSVI) and Normalized Difference Drought Index 

(NDDI).  

 

2.7.1 Vegetative condition index 

The Vegetative Condition Index (VCI) is computed from an advanced accurate and high resolution 

radiometer radiance data. This data is usually adjusted to match land conditions, climate, and 

ecology and weather conditions. The index is used for drought detection and trend tracking. It can 

be used to determine the time of on-set of drought, intensity, duration and associated impacts on 

vegetation (Mishra and Singh, 2010). The main challenge with the use of VCI is that it is used 

during dry seasons and the areas under consideration should have significant vegetation cover. The 

VCI for a month j is computed from the relation: 
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Where; 

VCIj = Vegetation condition index for month j  

NDVIj = the NDVI for a month j 

 NDVImin = minimum NDVI for the period under consideration 

 NDVImax = maximum NDVI for the period 

 

2.7.2 Normalized difference vegetative index 

The Normalized Difference Vegetative Index (NDVI) is a satellite data driven index that is used to 

monitor ground vegetation which could be linked to drought conditions. The index can filter out 

green vegetation using Landsat Multispectral Scanner (MSS) digital data (Musaningabe, 2012). It is 

normally expressed as a function of the near-infrared and red bands given as:  

RNIR

RNIR
NDVI




                    (2.5) 

Where;  

NIR = near-infra red band  

 R = the red band  
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The NDVI is the most commonly used satellite based index. One advantage of the NDVI is that it 

has distinct values ranging from -1 to 1 with zero taken as an approximate value denoting absence 

of vegetation. The negative NDVI values indicate a non-vegetative surface while values closer to 1 

represent dense vegetation. 

 

2.7.3 Normalized difference water index 

The Normalized Difference Water Index (NDWI) is determined based on leaf water content and 

vegetative type. Its value ranges from -1 to +1. The higher the NDWI value, the higher the 

vegetative water content and the higher the proportion of vegetative cover.  The values of NDWI 

are computed by processing the satellite data in which green and near infra red bands are used as 

per the relation: 

NIRG

NIRG
NDWI




                    (2.6) 

Where; 

 NDWI = normalized difference water index 

 G = green band 

 NIR = near infra red band 

 

The NDWI is very sensitive to soil moisture content, vegetation cover and leaf moisture content 

(Tychon et al., 2007). Although NDWI is used for drought detection, it is sometimes affected by 

land cover and pests and diseases on vegetation. However, it has an advantage of detecting drought 

more effectively as compared to the NDVI (Gu et al., 2007). 

 

2.7.4 Water supply vegetative index 

The Water Supply Vegetative Index (WSVI) is a drought indicator based on relationship between 

the NDVI and the land surface temperature.  The higher the values of WSVI, the higher the 

moisture levels, canopy temperature and the lower the NDVI.  On the other hand, lower values of 

WSVI give an indication of extreme drought. The WSVI values range from -4 for extreme drought 

to +4 for highly moist conditions (Luke et al., 2001). The values of WSVI are obtained by 

analyzing the effect of vegetation on the reflection of red, near infra red and thermal bands. This 

index is more effective in drought detection under the conditions when the NDVI is greater than 

0.3. Combining the WSVI and the NDVI in drought detection provides a more sensitive approach 

and better results (Jain et al., 2010). 
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2.7.5 Normalized difference drought index 

The Normalized Difference Drought Index (NDDI) is used for detection of drought by combining 

the outputs of NDWI and NDVI derived from satellite data. The values of the two indices decrease 

with decrease in slope gradient of the cumulative precipitation. However, NDDI values decrease 

more abruptly during dry period than the NDVI. Thus, NDDI is more sensitive to water content and 

it is a better index for drought detection than NDVI. The NDDI has been noted to detect drought 

conditions on grassland than NDVI (Gu et al., 2007). The NDDI values can be computed from the 

following relation: 

NDWINDVI

NDWINDVI
NDDI




                   (2.7) 

Where; 

 NDDI = Normalized difference drought index 

 NDVI = normalized difference vegetative index 

 NDWI = normalized difference water index 

 

While the satellite based drought indices can be used to detect the on-set, intensity and duration of 

drought, their limitations and advantages need to be examined. These indices are limited to the 

areas with significant vegetation cover. Thus, in case the vegetation is infested by the pests and 

diseases, such indices can give misleading results. In addition, the indices are difficult to harmonise 

their drought characterization in terms of magnitude as they result from analyzing different bands 

of the satellite imageries. 

 

2.8 Data driven drought indices 

The Data Driven Drought Indices (DDDI) use a single or a combination of hydro-meteorological 

variables as input parameters to assess drought intensity, duration, severity and magnitude. Some of 

the data driven indices as reported by Belayneh and Adamowski (2013) include; the Standardized 

Precipitation Index (SPI), Palmer Drought Severity Index (PDSI), Surface Water Supply Index 

(SWSI), Aggregated Drought Index (ADI), Effective Drought Index (EDI), Reclamation Drought 

Index (RDI), Crop Moisture Index (CMI) and Murger Index (MuI). These indices use different 

input data such as rainfall, temperature, catchment soil moisture content, snow water content, 

stream flow, storage reservoir volume, and potential evapo-transpiration (Zoljoodi and Didevarasl, 

2013). However, the suitability of the indices and their testing for Kenyan conditions has not been 

adequate. Therefore, Kenya does not have generic indices for drought forecasting. Due to scanty 
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and lack of drought assessment indices that can be used for defining critical drought conditions in 

Kenya, this research assessed selected suitable indices. 

 

Some of the most critical elements of drought which are used for the design of water storage 

systems to cope with drought impacts include; longest duration, largest severity, highest intensity 

and spatial and temporal variation of droughts (Sharma and Panu, 1997; Manikandan and 

Tamilmani, 2013). Drought duration, severity and intensity are fundamental characteristics of any 

drought event. Drought duration refers to any continuous period of the sequence with deficit, while 

intensity is the magnitude below a truncation level. Severity is the cumulative deficit below a 

truncation level during drought period and may mathematically be defined as the product of the 

drought intensity and duration.  

 

For better understanding of drought characteristics, assessment of the influencing variables is 

paramount. The statistical analysis for stream flow and precipitation as drought variables include 

parameters such as: the mean, coefficient of variation, log-1 serial correlation coefficient and the 

probability distribution function of the sequence under study. The extreme values of drought which 

include; duration, severity and intensity may be modelled with reference to a certain truncation 

level. The truncation level is usually taken as the long-term mean of the drought variable (Dracup 

et al., 1980a; Bonacci, 1993). 

 

2.8.1 Standardized precipitation index 

The Standard Precipitation Index (SPI) was developed by Mckee et al. (1993) to quantify the 

rainfall deficit and monitor drought conditions within Colorado, USA. For calculation of SPI, long-

term historical precipitation record of at least 30 years is integrated into a probability distribution 

function which is then transformed into a normal distribution function. The SPI requires less input 

data compared to most other drought indices and this makes it flexible for wide applications 

(Mckee and Edwards, 1997; Bacanli et al., 2008).  

 

The SPI has several advantages which make it more applicable in many river basins. First, it 

requires only the precipitation as the input data.  This makes it ideal for river basins that do not 

have extensive hydrological data records. Secondly, its evaluation is relatively easy since it uses 

precipitation data set only. Thirdly, it is a standardized index and this makes it independent of 

geographical location as it is based on average precipitation values derived from the area of 

interest. In addition, the SPI exhibits statistical consistency, and has the ability to present both 
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short-term and long-term droughts over time scales of precipitation variation (Belayneh and 

Adamowski, 2012). However, the SPI has some disadvantages in its use as a drought assessment 

tool. First, it is not always easy to find a probability distribution function to fit and model the raw 

precipitation data. Secondly, most river basins do not have reliable time-series data to generate the 

best estimate of the distribution parameters. In addition, application of SPI in arid and semi-arid 

lands of time-series of less than three months may give inaccurate values.  

 

To overcome the challenge of simulating and modelling the data for SPI outputs, application of 

different probability distribution functions may be employed. These include the Gamma, Pearson 

type III, Lognormal, Extreme Value and Exponential distribution functions (Cacciamani et al., 

2007). However, the Gamma probability distribution function is preferred in hydrological studies. 

In hydrology, it has an advantage of fitting only positive and zero values since hydrological 

variables such as rainfall, and runoff are always positive or equal to zero as lower limit values 

(Markovic, 1965; Aksoy, 2000). The Gumbel and Weighbull distribution functions are used for 

study of extreme hydrological variables. The Gumbel distribution function is used for frequency 

analysis of floods, while the Weibull distribution function is used to analyse low flow values 

observed in rivers (Bulu an Aksoy, 1998). 

 

Although the SPI can be used to present significant drought conditions within a river basin, 

identification of key dry periods requires an analysis of data for time scales greater than 6 months. 

This is because the high frequency of SPI values at shorter time scales conceal the critical dry 

periods. For time scales shorter than 6 months, there is insignificant autocorrelation while for time 

scales greater than 6 months, the autocorrelation increases significantly (Awass, 2009). 

  

2.8.2 Palmer drought severity index 

The Palmer Drought Severity Index (PDSI) was developed based on a criterion for determining the 

beginning and end of drought or wet period spell (Palmer, 1965; Wang, 2010). It is a simple 

monthly water balance model which requires rainfall, temperature and catchment soil moisture 

content as input parameters. This index applies a concept of supply and demand over a two-layer 

model. In this concept, the difference between the quantity of precipitation needed to maintain a 

natural water balance level and the actual precipitation is determined. The index does not consider 

stream flow, reservoir water balance, and other hydro-meteorological variables that influence the 

drought (Karl and Knight, 1985; Yan et al., 2013).  
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Several coefficients which are calculated to define local hydrological characteristics influenced by 

precipitation and temperature are calculated for use in PDSI. These coefficients depend on soil 

water capacity of the principal layers. The original PDSI has been modified to yield Palmer 

Hydrological drought Index (PHDI). The original PDSI does not take into account the human-

induced impacts on water balance such as irrigation. However, the new version is a model mainly 

for evaluation and monitoring of water supply. The model has been applied on a number of 

catchments for detecting and planning of drought relief programmes (Loucks and Van Beek, 2005). 

 

The PDSI has some limitations or disadvantages as a drought index. In some regions, the PDSI 

assumes that all the precipitation is rain. This may sometimes give misleading results in regions 

which experience winter season and also on high elevation areas. In addition, it under-estimates 

runoff since it assumes that overland flow occurs after all soil layers have been saturated. The other 

disadvantage is that the PSDI responds slowly to developing or ending of a drought event (Mishra 

and Sigh, 2010). Lastly, the original model is more suitable for agricultural drought than 

hydrological drought based on the applied time series.The original PDSI has some advantages and 

disadvantages (Narasimhan and Srinivasan, 2005). The major advantages of the original PDSI 

include: 

i) The two indices provide decision makers with measurement of abnormality of recent 

weather condition for a basin or region 

ii) It provides an opportunity to place current drought condition on a historical perspective 

iii) It has the capacity to express historical drought conditions on spatial and temporal domain 

 The disadvantages of the PDSI are that: 

i) The index uses two-layers in water balance computation and this is an over-simplification 

which leads to inaccurate values   

ii) Potential evapo-transpiration (PE) in PDSI is computed based on Thornthwaite method 

which is a poor method of estimating the PE 

iii) The original PDSI considered coarse resolution of land use and land cover parameters of 

700-100,000 km
2
 yet the land use changes within such a large area may be great 

 

2.8.3 Surface water supply index 

The Surface Water Supply Index (SWSI) was developed in Colorado USA, as an indicator of 

surface water or moisture levels (Shafer and Dezman, 1982). The index requires input variables 

which include; snow water content, stream flow, rainfall and storage reservoir volume (Castano, 

2012). Normally the snow water content, rainfall and storage reservoir volume are used for 
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computing the SWSI values for winter season. However, during the summer season, stream flow 

substitutes snow water content. At a basin scale, the SWSI values are determined from monthly 

catchment average values of rainfall, reservoir volumes, snow water content and stream flows 

measured at stations within the catchment. One of the advantages of the SWSI is that it gives a 

representative measurement of surface water supplies across the river basin. 

 

The SWSI is unique in specific basins or regions. It requires long term record data for its 

calibration and thus may be limited in basins that lack sufficient data. Another limitation of the 

SWSI is that any additional change in the water management within a basin calls for modification 

of its algorithm. The change may be due to an addition of new water reservoirs and flow diversions 

that based on their weights, require to be accommodated in the algorithm (Barua, 2010). Thus, it is 

difficult to have a homogeneous time series of the index for several basins.   

 

 2.8.4 Aggregated drought index 

The Aggregated Drought Index (ADI) is used for determination of three categories of drought; 

hydrological, agricultural and meteorological droughts. In the use of each category, the specific 

drought is determined by selectively inserting input variables required into the model. This index 

uses rainfall, stream flow, potential evapo-transpiration, soil moisture content, snow water content 

and reservoir storage volume as input data (Keyantash and Dracup, 2004). 

 

The Principal Component Analysis (PCA) is used as a numerical method for construction of ADI 

using appropriate input data sets. The PCA is used to transform spatially correlated data series from 

a basin into two sets of orthogonal and uncorrelated functions. The principle components are used 

to express the original p-variable data set in terms of uncorrelated component Zj, where 1<j>p. The 

p-model is used where the analysis explains temporal fluctuations of the input variables (such as 

precipitation, steram flow, reservoir levels, soil moisture content, temperature and 

evapotranspiration) of a basin. The calculation of the principle components involves the 

construction of a pxp symmetric correlation matrix Cx. The matrix gives the correlation between the 

original data where p is the number of variables. This matrix is expressed using the relation: 

 

   T

xxx uxuxEC                     (2.8) 

Where; 

 Cx = correlation matrix 

 x = vector observation data 
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 ux = mean value of x 

 T = the transpose matrix 

 

The correlation matrices developed undergo the PCA through the application of Eigenvectors. The 

Eigenvectors are unit vectors that establish the relationship between the principle components and 

standardized data. A unit vector may be derived from the relation: 

EXZ                      (2.9) 

Where;  

Z = n x p matrix of principle components 

X = n x p matrix standardized observation data 

E = p x p matrix of eigenvectors  

The first PC to represent ADI is determined and normalized by use of its standard deviation 

function defined by: 

k

kli

ki

Z
ADI



,,

,                   (2.10) 

Where; 

 ADIi,k = ADI value for month k in year i 

 Zi,l,k  = the first PC for month k in year i 

 σk = the sample standard deviation over all years for month k 

 

To determine ADI thresholds, the empirical cumulative distribution of the ADI values given in 

Equation (2.10) are constructed. The ADI thresholds are then calculated using empirical cumulative 

distribution function and used to classify drought conditions based on the specified thresholds as 

summarized in Table 2A (Appendix A). 

 

2.8.5 Deciles index  

The deciles index was developed by Gibbs and Maher (1967) and has found a wide application in 

some regions such as Australia (Morid et al., 2007). The Deciles Index uses long term monthly 

rainfall records where the records are ranked from the highest to the lowest and then a cumulative 

frequency distribution constructed. This distribution is then partitioned into ten sections called 

deciles. One major limitation in using the Deciles Index approach is that it requires long-term 

rainfall records of 30-50 years if accurate calculations are to be realised (Hayes, 2003). The first 

decile is the precipitation value not exceeded by the lowest 10% of all precipitation values within 
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the period under study.  This is followed by the second decile that falls between the lowest 10 and 

20% in that order. By comparing the amount of precipitation in a certain period with a long term 

cumulative distribution of precipitation amount in the mentioned period, the severity of the drought 

can be assessed. Although the data driven indices have been used in other basins in the world, they 

cannot directly be applied in Kenyan river basins before their calibration and validation are done. 

 

2.9 Drought forecasting models 

Development in forecasting and early warning of the drought phenomena is increasingly being 

applied in many regions in the world. For instance, drought forecasting in Kenya has previously 

been based on rainfall prediction. To forecast rainfall, the prevailing and expected sea surface 

temperature anomalies (SSTAs) over the Pacific, Indian and Atlantic oceans are used. The factors 

of the SSTAs are assessed by applying various tools such as ocean atmosphere models, statistical 

models, satellite derived information and expert interpretation. The onset, cessation and distribution 

of rainfall are derived from statistical analysis of previous years that exhibit same characteristics as 

that of the year under consideration (GoK, 2014). Drought forecasting is being done to help 

mitigate consequences of drought on vulnerable river basins. Different drought modelling and 

forecasting techniques are in use today. Some of the commonly used drought forecasting models 

include; Seasonal autoregressive integrated moving average model (SARIMA), Adaptive Neuro-

fuzzy inference system, Markov chain model, Log-linear model and Artificial Neural Network 

(ANN) model. 

 

2.9.1 Seasonal autoregressive integrated moving average model 

The Seasonal Autoregressive Integrated Moving Average model (SARIMA) model is a time series 

tool. Time series events reoccur in every given number of observations (Chatfield, 2003).  For 

monthly measurements, the recurrence over a year of twelve months, it is expected that the 

recurring value (xt) will depend on values that are based on annual lags. These lags are defined by 

xt-12 or xt-24. It may be influenced by recent non-seasonal values. The model has been generalized to 

deal with seasonality as defined by the relation given as: 

 ttt xxu                              (2.11)        

Where;  

ut = seasonal value representing seasonality 

  = the period for monthly series, typically of multiples of 12 

xt = recurring value 
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To achieve stationery conditions, the seasonal difference can be repeated many times defined by D. 

For instance, if D = 2 and D =12, then the following function which is called SARIMA model 

results to: 

    241224121212 2   tttttttttt xxxxxxxuu                                              (2.12) 

Where; 

 xt = recurring value 

 tx = annual lag 

 ut = seasonal value representing seasonality 

 

2.9.2 Adaptive Neuro-fuzzy inference system model 

The Adaptive Neuro- fuzzy logic approach was developed by Zadeh (1965). It is a linguistic 

uncertainty function that applies the fuzzy inference system (FIS). The adaptive Neuro-fuzzy 

inference system uses a combination of Artificial Neural Networks (ANNs) and Fuzzy Inference 

System (FIS), and has greatly been used to come up with engineering solutions. The term fuzzy 

influence system is a principle that comprises three conventions (Firat and Gungor, 2008) given as: 

i) A Rule base that consist of fuzzy ‘if-then rules’ incorporated in their algorithms 

ii) A data-base defining the membership function that converts input value into a value 

between 0 and 1 

iii) An influence system combining fuzzy rules to generate system results  

 

2.9.3 Markov chain model 

The Markov chains have greatly been used in stochastic characterization of drought (Cancelliene 

and Salas, 2004). For instance, an early warning system using Markov chain model in conjunction 

with PDSI based on probabilistic severity, duration and return period of drought may be developed 

(Shatanawi et al., 2013). Drought has also been characterized in terms of probabilistic occurrence 

by combining Markov chain model with SPI for short term drought prediction within a period of 1 

to 3 months lead time (Paulo et al., 2005; Paulo and Pereira, 2007; 2008). The Markov chain model 

has two main applications; modelling stochastic characteristics of drought and forecasting future 

series of drought using historical data sets. 
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The Markov chain model exhibits a discrete stochastic process where a drought state (x) at a future 

time step (t+1) is dependent upon the present state xt and independent of previous states Xt-1, Xt-2,..., 

Xt-n. If a system of n states is considered, then the relation applies: 

 nSSSX .,..,, 21                             (2.13) 

Such a system can be transformed from S to S
2
, S

3
..., S

n 
according to specified transitional 

probabilities P12, P13, ..., P1n or remain at state S1 with a transitional probability of P11 (Shatanawi et 

al., 2013). Therefore, the Pij may be used to denote transitional probabilities from Si to Sj. The Pij 

can be represented in form of nxn matrix. Entries of such a matrix defined as P may be computed 

from a number of transitions nij from state i to the next state j using the relation: 

 


k

i ij

ij

ij

n

n
P

1

                             (2.14) 

Where; 

pij = the nxn matrix  

 nij = the entries of the P matrix 

The following summation holds true for the matrix 

 


k

i ijP
1

1                   (2.15) 

The transitional matrix at any given time step is calculated using the function: 

11   nttt PPP                  (2.16) 

Where; 

 P
t+1

= transition matrix at any given time 

 P
t 
= transition matrix at initial time 

 P
t+n-1 

= transition matrix of previous time step 

The Markov chain attains a steady state after several time steps. It is thus possible to define a 

stationery matrix   as Eigenvector of P
t
 using the relation: 

  tP                   (2.17) 

Since j is a stationery probability for state j, thus 

 


k

j j1
1                   (2.18) 

The persistence and recurrence time can be presented using two main terms of the Markov chain. 

The first is the probability that the system will retain the same state in a subsequent time step. This  

is called persistence. The persistence probability Pr is defined using the relation: 

j
ij

k

jr PP  1

^

                 (2.19) 
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On the other hand, the recurrent time is defined as the average time for a system to transit from a 

certain state j and then back to the same state j and is computed using the function: 

  j

j

ij
p

t









ˆ1

1
                 (2.20) 

The time required for a system to be transformed for the first time from state i to j is called first 

passage time (tij) and is computed using the relation: 

kjjk ikij tPt   
1                  (2.21) 

 

2.9.4 Log-linear model 

The log-linear model was developed in 1990 and can be used on Poisson-distributed data sets. It is 

a linear model that can fit in Poisson distribution function. The model is an extension of two 

dimensional contingency tables where the correlation between two or more discrete and categorical 

variables is determined by getting the natural logarithm of frequency entries in a contingency table. 

A contingency table is a type of table in a matrix format that is used to display a frequency 

distribution of variables. The table can provide basic information on interrelationship between two 

variables and the interactions between them.  The model has been used in forecasting drought in 

various regions in the world including catchments in Portugal where a twelve month data within 

SPI was modelled (Moreira et al., 2008). 

 

2.9.5 Artificial Neural Network models 

The Artificial Neural Network (ANN) model is an information processing system developed with a 

structure and operation similar to that of a human brain (Maier et al., 2010). The model has been 

improved over time by use of different calibration techniques. With sufficient amount of data and 

complexity, the ANN model can be adapted to establish any correlation between series of 

independent and dependent variables (Luk et al., 2000). The ANNs have some advantages (Morid 

et al., 2007; Tran et al., 2009; Mustafa et al., 2012; Beale et al., 2014) which include: 

i) the ability to process information based on their dynamic response to external input 

ii) the ability to capture numerous kinds of relationships including non-linear functions which 

are not usually detected by other techniques 

iii) the ability to provide effective analytical techniques in modelling and forecasting systems 

iv) the ability to model dynamic/stochastic time series variables in Water Resources 

Engineering  

v) the ANNs to processes large and complex data sets, including that of drought forecasting  
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2.10 Description of ANN model 

The ANN model processes information through an elaborate network of neurons that are linked 

together. It simulates outputs based on certain inputs by a working principle resembling that of 

human brain where in the human brain; the neuron receives a set of input signals and generates 

outputs. The nervous system of human beings is represented by a number of architectural structures 

that range from simple to complex structures. Whether the structures are simple or complex, the 

systems consist of neurons or neural cells as the chief building blocks as shown in Figure 2.3.  

 

 

 

 

 

 

 

 

 

Figure 2. 3: Fundamental structure of a biological neuron 

 

The neuron has four main parts; the cell body, synapse, dendrites and the axon. A neuron receives 

an input signal and transmits it to the cell body where it is processed and then an output is 

produced.  In a biological neuron, both the inputs and the outputs are electrical signals. The input 

signals are normally passed to the neuron through the dendrites while the output signal is released 

through a single channel called axon. On every dendrite contact point, there is a part called synapse 

which works like a valve to open or close for signal flow. This synapse allows the input signals to 

pass through or stops some signals based on the conditions of operation of the system (Mishra and 

Nagarajan, 2012).  

 

The ANN model is similar to a biological neuron in that it has multiple input channels, data 

processing unit, and output channels called dendrites, cell body and the axon respectively as 

represented in Figure 2.4. The input signals (X1, X2, . . . , Xp) are passed to the neuron through the 

dendrites that represent different input channels.  Each channel has its own weight referred to as 

 Synapse  

Dendrite  

Cell body  

Axon 
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connection weight denoted as W1, W2,. . . ,Wp. The weights are very critical since they allow for 

collection and processing of signals based on their magnitude and effects on input functions. If a 

weight function gives a non-zero value at the synapse, it is allowed to pass through the cell body. 

Otherwise, if it has a value of zero, it is not allowed to pass the cell body. All the conveyed signals 

are normally integrated by summing up all the input. 

 

 

 

 

 

 

 

 

 

 

Figure 2. 4: Fundamental parts of a typical neural network 

 

This is achieved by application of a mathematical model referred to as activation function, within 

the cell body to generate an output signal. According to Barua (2010), the relationship between the 

input and output signal within an ANN model is represented using the function given as: 

  



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
 

p

i

kii bXWfIfY                           (2.22) 

Where; 

Xi = the input signal i 

Wi = the weight attached to the input signal i 

P = the number of input signals 

bk = the bias at the cell of the body 

Y = the output 

f= activation function 
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Numerous activation equations or functions can be used within the neurons. The most common 

functions used in the ANN models include; the step-function, non-linear sigmoidal, hyperbolic 

tangent and linear activation functions (Mishra and Desai, 2006; Maier et al., 2010). These 

functions are represented in Figures 2.5 a, b, c and d. 

 

 

 

 

 

 

 

a) ANN step function                                           b) ANN non-linear sigmoid function 

 

 

 

 

 

 

b) Hyperbolic tangent function         d) Linear activation function 

Figure 2. 5 (a-d): Types of ANN activation functions 
 

2.10.1 Classification of ANN model architectures 

Numerous ANN model architectures have been developed and applied in drought research. These 

ANN architectures are grouped into three broad categories; feed forward, recurrent and hybrid 

networks. The information flow in feed forward network propagates only in one direction. It moves 

from input layer to the output layer. The feed forward ANN architecture is further subdivided into 

Multilayer Perceptron (MLP), Single Layer Feed Forward (SLFF), Support Vector Machine 
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(SVM), Generalized Regression Neural Network (GRNN), Radial Basis Function (RBF) and 

Neuro-fuzzy (NF) networks as given in Figure 2.6.  

 ANN model architecture 

Feed forward Recurrent Hybrid 

MLP SVM GRNN RBF DaI MI TI NF 
 

Figure 2. 6: Classification of ANN model architecture 

 

The single-layer network has only one input layer that links directly to the output layer (Figure 

2.7a). In the multilayer ANNs, one or more hidden layers are found between input and output 

layers (Figure 2.7b). By addition of one or more hidden layers, the network can model more 

complex non-linear and linear functions (Chai, 2010). 

 

 

 

 

 

a)  

 

a) Single-layer feed forward ANNs  b) Two-layer feed forward ANNs 

Figure 2. 7 ( a and b): Feed forward artificial neural networks 

 

For the recurrent networks, information may propagate in forward and backward directions through 

feedback loops. In this network, the output layer neurons may transmit back the output to input 

and/or hidden layer neurons. At least one feedback loop must exist in the network. The hidden 
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neurons unit activation or the output values are fed back into the network as inputs (Figure 2.8). 

These models exhibit a dynamic characteristic when modelling data that depends upon different 

temporal and spatial resolutions (Timm et al., 2006). The feedback links layers whose state varies 

with time, and has adjustable weights. This makes the neuron to depend on both the current input 

signal and also the previous state of the neuron (Chiang et al., 2004). 

 

 

 

 

 

 

a) Hidden neuron unit activation feedback    b) Output activation feedback 

Figure 2. 8(a and b): Types of recurrent ANNs 

 

The third hybrid architecture network is subdivided into Data Intensive (DaI), model intensive 

(MI), and Techniques Intensive (TI) networks normally applied to solve complex modelling of 

hydrological and environmental systems. 

 

2.10.2 Drought forecasting using ANN models 

The ANN modelling has been greatly used for drought forecasting in the world (Ochoa-Rivera, 

2008; Cutore et al., 2009). For instance, it has successfully been used in India to forecast drought in 

Kansabati River Basin (Mishra et al., 2007).  For the Kansabati basin, two ANN models were 

applied and included the Recursive Multi-Step Neural Network (RMSNN) and the Direct Multi-

Step Neural Network (DMSNN).  These were used to forecast SPI values across the river basin. 

The results showed that the RMSNN performed best in one month lead time forecasting while the 

DMSNN was the best in four month lead time forecasting (Mishra and Desai, 2006). The RMSNN 

and the DMSNN were also applied in forecasting of Palmer Hydrological Drought Index (PHDI) in 

Italy. For this case study, the findings showed no significant differences between the outputs of 

RMSNN and DMSNN when used to forecast the PHSI (Cutore et al., 2009). 
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2.10.3 ANN data pre-processing 

Prior to the use of the data within the ANN environment, it should be pre-processed. This is the 

initial data transformation processe that converts data into a form compatible with the ANNs 

(Demuth et al., 2009; Beale et al., 2014). This process involves data normalization or 

standardization and is applied to speed up the training process of the ANN. By normalizing the 

data, the effect of outlier entries are reduced. Normalization transforms the input features of data 

into the same range of values thus minimizing bias within the ANN.  

 

There are numerous ways of normalizing the data. The most common one is the statistical standard 

deviation for each feature across input data. The usual way is to obtain a standard deviation and 

mean from a training data. The output of ANNs is always in the normalized data format. These 

values are then de-normalized to give meaningful output by reversing the normalization process 

(Chai, 2010). 

 

2.11 ANN learning processes 

ANNs function through a learning process. A learning process refers to the property of an ANN to 

possess processing units capable of changing its input and or output characteristics as a result of 

changing environment, values or levels based on historic data (Mustafa et al., 2012). These learning 

processes are categorized into three classes; supervised learning, unsupervised learning and 

reinforcement learning. 

 

2.11.1 Supervised learning 

In supervised learning, there is a set of training data that contains some input values or variables 

connected with the output values. The output values are commonly referred to as target values. 

Thus in supervised learning, both inputs and outputs are provided. The network processes the 

inputs and compares its resulting outputs with the target. Errors are then propagated back through 

the system, causing the network to adjust the weights which control the network. This ensures that 

the error is refined every time the weight is adjusted.  The supervised networks are broadly 

classified into two; the feed-forward and feed-back neural networks. In these networks, the training 

data is used by learning algorithms such as Levernberg-Marquardt (LM), back propagation (BP) 

(Figure 14B; Appendix B), conjugate gradient (CG), perceptron, multi-layer perceptron (MLP) and 

generic algorithms. The purpose of a learning algorithm is to create neural network output perfect 

values for the training data. However, the mission of the algorithm is to give good values for input 

data that are from the real world and not from the training set.   
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There are several approaches that are used to effectively avoid over-fitting or under-fitting of data 

in supervised learning. These include early stopping, model selection, Jiltering, Weight delay and 

Bayesian estimation. 

 

 

 

 

 

 

 

Figure 2. 9: Trend of training error and the point of over-fitting 

 

In early stopping technique for instance (Figure 2.9), the MSE for both training and testing data sets 

decrease with time. However, at a certain point, the MSE linked to the testing data set begins to rise 

while that of training data set continues to decrease. At this point, further calibration will result in 

over-fitting the training data. Thus at such a point, the calibration is stopped in what is referred to 

as early stopping technique.  

 

2.11.2 Unsupervised learning 

This is a form of learning where networks are able to study on their own. They exhibit a kind of 

self training. In this learning, the network is provided with inputs but not the desired targets. The 

system decides what features it will use to group the input data in what is called adaptive training. 

In unsupervised learning, the network is able to learn and recognize patterns in data set whenever 

the data is introduced to the network. It is achieved though a competitive learning rule (Kalter, 

2007). In this rule, a neural network with two layers; input layer and a competitive layer are 

created. The input layer receives the data introduced to it while the competitive layer has neurons 

that compete with others on the response to features in the input data. The competition is done in 

such a way that an input vector is compared with weight vectors that are connected to the 

competitive layer. Any neuron with weight vectors that closely match the input vector is considered 
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as the winning neuron. In other words, the network operates in accordance with what is called 

‘winner-take-all strategy’ (Haykin, 1999). 

 

2.11.3 Reinforcement learning 

Reinforcement learning in ANNs is a technique acting by trial and error. In this approach, an agent 

can perceive a given state and perform certain actions. After every action, a numerical output is 

provided. The purpose of an agent is to maximize the total output it receives over time. Numerous 

algorithms are used in selecting actions in order to explore the environment and gradually build an 

approach that gives a maximum output. Such algorithms include model-based algorithm and mode-

free algorithm (Yamada, 2011). 

 

2.12 Purpose for ANNs learning process 

ANNs are normally subjected to a learning process for two main reasons; classification and 

function approximation. To achieve the two, the networks are trained. Training a neural network in 

most cases is an exercise of optimizing a non-linear function. Several methods of non-linear 

optimization have been developed such as numerical analysis, operations research and statistical 

computing. However, there is no single best approach for such optimization. The methods are 

chosen based on characteristics of the problem being solved. 

 

2.12.1 Learning for classification 

Learning in ANNs is very useful in classification of information or outputs. In classification, the 

input is considered as a description of numerous objects recognized by the network. The outputs are 

normally studied by the network and then their class to which they belong is identified. Thus in the 

classification process, the target output cannot be organized along a useful band because each 

output of the network is a separate entity which is discrete from all the other outputs (Chai, 2010).  

 

 2.12.2 Learning for function approximation 

ANNs have greatly been used for development and modelling of non-linear functions. The ability 

of an ANN fitting a non-linear function when provided with input data may be demonstrated by use 

of an example. To demonstrate the fitting ability of ANNs, a set of training data is generated (Table 

2.1a) using the function: 

xxxy  23                  (2.23) 

Where; 

 y = the output (dependent variable)  
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 x = the input (independent variable)   

 

For such a case, a feed forward back propagation neural network with two layers is created. The 

transfer function between the input and the hidden layer is sigmoid function while the function 

between the hidden and output layers is linear. There are ten neurons in the hidden layer. The input 

of the neuron are x, x
2
 and x

3
 values while the target output is the y value. These input and output 

combinations are fed to the network to ‘learn’ to fit a function to the three inputs and one output. 

This learning process involves setting of weights and bias values within the neural network 

architecture. The numerical and predicted values of the y neural network exhibit deviation and can 

be illustrated using values given in Table 2.1b. 

Table 2. 1(a and b): Data from function and predicted y values using neural network 

      a)                                                                                b) 

 

 

 

 

 

 

                                                                     

From the information of predicted values yp, it can be observed that the resulting values of y are 

very close to the actual values ya as given in Figure 2.10. 

 

2.13 Drought assessment and forecasting in river basins 

Drought assessment and/or forecasting have been conducted in many river basins across the world. 

For instance, Barua (2010), developed a Non-linear Drought Index (NADI) for drought forecasting 

in Yarra river basin in Australia. In this study, average monthly values for rainfall, potential 

evapotranspiration and one stream flow gauge station were used used to reperesent the entire basin. 

The shortcomings and gap in this study was that an average value is not a good representative of 

the whole basin. In another study conducted by Belayneh (2012) on short and long-term 

standardized precipitation index (SPI) drought forecasts in Awash River basin, Ethiopia. In this 

study the forecasting ability of the SPI was evaluated using support vector regression (SVR) and 

Value of x Actual ya Predicted yp 

1 1 0.95 

2 10 9.8 

3 33 32.71 

4 76 75.3 

5 145 145.44 

6 246 245.72 

7 385 385.25 

8 568 568.08 

9 801 800.05 

10 1090 1090.36 

 

x x
2
 x

3
 y 

1 1 1 1 

2 4 8 10 

3 9 27 33 

4 16 64 76 

5 25 125 145 

6 36 216 246 

7 49 343 385 

8 64 512 568 

9 81 729 801 

10 100 1000 1090 
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wavelet support vector regression (WA-SVR) neural networks. The results of the study indicated 

that WA-SVR networks had the best forecasting ability 

 

A tool to assess hydrological drought occurrence in un-gauged catchments in Wabi Shebele river 

basin, Ethiopia was developed by Awass (2009). In this study, hydrological drought was extracted 

from reconstructed time-series monthly stream flow models. In another study, Castano (2012) 

conducted a study on drought monitoring at river basin and regional scale in Sicily, France. The 

SPI and SSI were compared and yet the two indices do not represent the same type of drught. Yang 

(2010) applied SPI, PDSI and SWSI to estimate meteorological, agricultural and hydrological 

droughts respectively in Upper Klamath River basin, California. In this study, drought for both the 

historical time period (1920-2009) and the future time period (2020-2090) was estimated. 

 

Eden (2012) assessed drought by evapo-trasnpiration (ET) mapping in Twente, the Netherlands. 

The severity of droughts was quantified by the ET mapping for the period 2003-2010. The study 

used Evapotranspiration Deficit Index (ETDI) calculated using estimated ET in combination with 

reference ET from Penman-Monteith method. Evaluation of temperature and precipitation 

anomalies using SPI was included. Precipitation data from ground measurements were used to 

calculate SPI and compared with the ETDI. Additionally, Ntale and Gan (2003) assessed drought 

indices and their application in East Africa (EA). In their study, properties of three drought indices; 

PDSI, Bhalme-Mooley Index (BMI) and the SPI were analysed and modified. The findings from 

the study indicate that SPI is more appropriate for monitoring droughts in EA because it is more 

easily adapted to local climate, has modest data requirements, can be computed for any time scale 

and is easy to interpret. 

 

Balint et al (2013) conducted a study on monitoring of drought with combined drought index in 

Kenya. In this study, NDVI, Precipitation drought index (PDI) and temperature drought index 

(TDI) were integrated into one Combined Drought Index (CDI). The CDI is statistical index that 

compares the present hydro-meteorological conditions with long-term average characteristics. A 

research by Onyango (2014) analysed meteorological drought in North Eastern province of Kenya. 

In this study, seasonal drought charateristics for the period 1960-2008 for the region were 

evaluated. The main characteristics addressed were drought severity, duration, frequency, 

persistence and probability of occureance. The study gave time series of these characteristics. From 

these studies, there is scanty research work on drought forecasting, spatial drought assessment and 

drought trend, and comparison of different drought indices. 
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2.14 Drought assessment and forecasting in the upper Tana River basin 

Some studies on drought have been done in the upper Tana River basin.  For instance Agwata et al 

(2014) conducted modelling of hydrological drought events in the baisn. In their study, five 

frequency distributions were fitted to drought severity and duration based on discharge data for 

different gauge stations located within the basin. The fitted distributions to two drought events that 

are severity and duration were Generalized Normal (GN), Generalized Extreme Value (GEV), 

Genaralized Pareto (GPA), Pearsson type III and Generalized logistic (GL). The findings show that 

the frequency distribution of the best fit for severity and duration was the GN. The poorest 

distribution for both severity and duration was the Pearsson type III distribution. 

 

In another study, Agwata (2014) analyzed hydrological drought events using spatial characteristics 

of drought severity and duration based on discharge records. Drought severity and duration were 

extacted from discharge records using runs analysis techniques. The stream flow data was subjected 

to principal component analysis (PCA). The results showed that the drought severity and duration 

had distinct spatial patterns for the basin.  The findings from the study gave anormalies of duration 

to the eastern and southern areas of the basin. The spatial patterns of drought severity portrayed 

zonal patterns reflecting differences in relief features in the eastern and western areas. Drought 

severity and duration were also estimated in four homogeneous regions of the basin (Agwata et al., 

2015). The homogeneous regions were established using PCA. The findings of the study indicated 

that mean drought duration varied from 4 to 11 months while the standardized mean severity 

ranged from 0.63 to 3.89.  The southern and eastern parts of the basin were found to more severe 

drought. However, there is limited research work on formulation of drought forecasting methods 

and/or tools at different led times, spatial aspects of drought as well as detection of drought trend 

for upper Tana River basin. In addition, applicability of drought indices, their performance in 

drought assessment as well as comparison of different drought indices for upper Tana River basin 

has not been well explored. 

 

2.15 AquaCrop model 

The aquacrop model was developed by the food and agriculture organization (FAO) in 2009 as a 

water-driven crop simulation model (Raes et al., 2009; Iqbal et al., 2014). The model is based on 

basic crop yield response to water algorithm. It is useful in various applications such as crop 

response to environmental changes, estimation of crop yield in the field, identification of 



46 
 

constraints limiting crop production and/or water productivity and maximization of evapo-

transpiration (ET) water productivity (Casa et al., 2013).     

  

2.16 Kriging interpolation technique 

The spatial distribution of drought can be mapped using the Kriging interpolation technique using 

the point data as input variables. The accuracy of Kriging interpolation has been used in many 

studies and proved to be within acceptable levels (Robinson and Matternicht, 2006). The Kriging 

technique may be described using the various parameters and functions that are applied in the 

interpolation of values. The interpolation technique uses a parameter z*(x0) called unbiased 

estimator where λi are chosen to satisfy the unbiased conditions and minimum variance (Kim and 

Valdes, 2002) in which the following relation is defined: 

   



N

i

ii xzxZ
1

0

*                   (2.24) 

Then a kriging system comprising n+ 1 linear function with undefined values n+ 1 of the form 
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Where; 

 µ = Lagrange multiplier derived from unbiased condition.  

γ = semi-variogram function which is an indicator of spatial correlation of the recognized 

variables.  

For instance, if z(x) is the observed value at station x, then the semi-variogram is estimated using 

the relation: 

 
 

    
  2

12

1




hN

i

ii hxZxZ
hN

h                (2.27) 

Where; 

 N(h) = the number of observed pairs with interval distance of h. by application of a matrix, 

the kriging approach may be expressed as: 

bAx                    (2.28) 
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Where x is a vector of the unknown values, b is the right-hand side of Equation (2.28) and A is the 

coefficient matrix. A, b and x are defined as: 

  Nx ...21                                        (2.29) 

 1... 02010 Nb                                        (2.30) 
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                                      (2.31) 

The frequency or percent occurrence of drought can be computed as the ratio of drought occurencs 

in each period to the total drought occurences in the same period and drought category (McKee et 

al., 1993; Asgari et al., 2014). 
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Study area 

The focus of this study was the upper Tana River basin with an area of 17,420 km
2
 presented in 

Figure 3.1. The study area is part of the larger Tana River basin, the largest river basin in Kenya 

with an area of 126,000 km
2 

(Jacobs et al., 2004; WRMA, 2010). The upper Tana River basin has 

forest land resources located along the eastern slopes of Mount Kenya and Aberdares range which 

have a critical role in regulating the hydrology of the entire basin (IFAD, 2012). The basin was 

selected because it is located within a fragile ecosystem that represents all agro-ecological zones of 

Kenya where water resource systems, hydro- power generation (Figure 29B; Appendix B) and food 

security are negatively impacted by frequent drought occurrences. In addition, it is the area that 

regulates the hydrology of the larger Tana River basin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 1: Map of the upper Tana River basin 
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The upper Tana River basin lies between latitudes 00° 05' and 01° 30' south and longitudes 36° 20' 

and 37° 60' east. The basin is fundamental in influencing the ecosystem downstream (NEMA, 

2004). It drains nine counties namely; Muranga, Nyandarua, Kiambu, Kirinyaga, Laikipia, 

Machakos, Nyeri, Embu and Kitui (WRI, 2011). The basin comprises major tributaries of Tana 

River whose total length from the source to the Indian Ocean is approximately 1,000 km (IFAD, 

2012). The Tana River tributaries originate from the slopes of Mount Kenya and Aberdares range. 

The basin forms a principal resource in Kenya. For instance, the upper Tana River basin is critical 

in water supply, hydro-power generation and agricultural production.  

 

The elevation of the upper Tana River basin ranges from approximately 730 m to 5,190 m above 

mean sea level (a.m.s.l.). These elevations are at Mount Kenya and adjacent to Kindaruma 

hydropower dam respectively which fall within the study area. The River basin exhibits 

heterogeneous soil types. For example, Andosols are the soil types which are predominant at higher 

elevations, Nitosols are at the middle elevations while Ferrasols and Vertisols are at the lower 

elevations (Jacobs et al., 1998). 

 

Precipitation and temperature vary across the river basin. The Mount Kenya and Aberdares ranges 

receive approximate annual rainfall of 1800 mm (Otieno and Maingi, 2000).  Within the middle 

elevation of 1200 to 1800 m a.m.s.l., the annual rainfall ranges from 1000 to 1800 mm while the 

lower elevations that are less than 1000 m, receive annual rainfall of 700 mm (Figure 7B; Appendix 

B). Although the basin receives significantly high rainfall amounts, it is characterized by seasonal 

rainfall fluctuations. This translates to seasonal variation of stream flow in Tana River. Generally 

the basin experiences a bimodal rainfall pattern (Figure 2 B; Appendix B) caused by inter-tropical 

convergence zone (Wilschut, 2010). The rain seasons are distributed in the months of March to 

June, and September to December as illustrated in Figure 25B of Appendix B. The precipitation is 

highly influenced by the orographic forces (Saenyi, 2002). The maximum and minimum mean 

annual temperature vary between 25.5 to 31.0°C and 21.0 to 24.0°C respectively (Mutua and Klik, 

2007). The average catchment evapo-transpiration is around 500 mm in the summit area.  

Numerous land use types are found within the upper Tana River basin. The major ones include; 

forests, crop land and range land. The forests and tea plantations dominate the land use activities at 

the high elevations of the basin.  
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3.2 Assessment of spatial and temporal drought using selected DIs 

This research applied selected drought indices as well as formulation and validation of a non-linear 

integrated drought index (NDI) that detects critical characteristics of drought for the upper Tana 

River basin. The drought indices that were used included; the Surface Water Supply Index (SWSI), 

Stream Flow Drought Index (SDI), Standardized Precipitation Index (SPI), Effective Drought 

Index (EDI), Palmer Drought Severity Index (PDSI) and Soil Moisture Deficit Index (SMDI). 

These indices were selected because each index was adopted for different drought types; 

meteorological, hyrological and agricultural drought types (Table 25A: Appendix A) as reuired in 

this study. In addition, the input data required was available for the river basin. To compute the 

drought indices, hydrometeorological data was first acquired as described in Section 3.2.1.  

 

3.2.1 Hydro-meteorological data acquisition 

Different data sets were used for this study to compute the DIs and the drought forecasting models. 

These data include; stream flow, storage dam levels, precipitation, potential evapo-transpiration, 

soil moisture content and temperature. The hydro-meteorological data from 1970-2010 (41 years) 

used in this study for defined hydrometric stations (Figure 3.1, Figure 8B; Appendix B). This data 

was selected because it was consistent for the period. Part of this data was available while the 

missing data was estimated for the hydrometric stations. The available data was on daily time step 

but had to be re-organized into monthly average time scales for all the variables to match with the 

data requirements for this study. The monthly stream flow and monthly flow data was obtained 

from the Ministry of Environment and Natural Resources, and Water Resources and Manageent 

Authority (WRMA). Data on dam levels was obtained from Kenya Electricity Generating 

Company (KenGen). 

 

3.2.2 Stream flow data 

There were fourteen hydrometric stations in the upper Tana River basin with complete and 

incomplete data records. However, only eight stations were selected for this study since they have 

sufficient long and reliable data for the period 1970-2010. The stations were in addition considered 

to be representative of the basin as they are located within the low, lower middle, middle and 

higher elevations for different agro-ecological zones. The station names and gauge identification 

(ID) numbers, their spatial locations are shown in Table 3.1 and Figure 3.1 respectively. In this 

study, only the Masinga dam levels were used because of the availability of long-term data records. 
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Table 3. 1: Stream flow gauge stations 

S.No Hydrometric Name  Gauge ID Coordinates 

Easting Northing 

1 Amboni  4AB05  36.989 -0.350 

2 Sagana  4AC03  37.043 -0.449 

3 Gura  4AD01  37.076 -0.517 

4 Tana sagana  4BC02  37.207 -0.672 

5 Yatta furrow  4CC03  37.361 -1.094 

6 Nyamindi  4DA10  37.317 -0.621 

7 Rupingazi  4DC03 37.438 -0.533 

8 Kamburu 4ED01 37.683 -0.800 

 

3.2.3 Precipitation data 

In the upper Tana River basin, data from twenty four meteorological stations were obtained from 

the Ministry of Water and Irrigation. The meteorological data included precipitation, temperature 

and evaporation data. The data were then subjected to exploratory data processing. It was found out 

that only eight stations had reliable and sufficient data. Where the available data contained less than 

20% data gaps, then these data were selected for computation the drought indices (DIs). The eight 

stations used in the study (Table 3.2) are located within the low (LE), lower middle (LME), middle 

(ME) and high (HE) elevations.  The stations are located at different agro-ecological zones (Figure 

13B; Appendix B) and sub-basins (Figure 15B; Appendix B) of the Upper Tana River basin. 

 

  Table 3. 2: Meteorological stations 

S.No 

 Station name 

Station ID 

  

Coordinates  

Elevation 

(m) 

Longitude  

(Degrees) 

Latitude  

(Degrees) 

1 MIAD 9037112 37.350 -0.700 1246 

2 Embu  9037202 37.450 -0.500 1494 

3 Kerugoya DWO 9037031 37.327 -0.382 1598 

4 Sagana FCF 9037096 37.054 -0.448 1234 

5 Nyeri  9036288 36.970 -0.500 1780 

6 Maragua G. E. F. 9036212 36.850 -0.750 2296 

7 Naro-moru F.G.P. 9037064 37.117 -0.183 2296 

8 Mangu HS 9137123 37.033 -1.100 1630 

 

3.2.4 Consistency test of the hydro-meteorological data 

A double-mass curve was fitted for the collected hydro-meteorological data to test for 

consistency/homogeinity. The homogeinity of stream flow time series data was conducted to detect 

for any possible errors resulting from the data measurements. In addition, homogeneity was used to 
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check for the fluctuations due to climate and weather changes. The cumulative total stream flow 

and precipitation were computed for each station and then plotted against the cumulative total of an 

adjacent station (Figures 3B and 4B; Appendix B). Any sudden change in the gradient of the 

double-mass curve was considered to indicate inconsistency in the data. Although there were some 

changes at some points on the curves for some stations, it was considered insignificant for the 

present study. 

 

3.2.5 Filling in missing data 

The continuity of the data records was first examined. It was found out that the gauge stations; 

4AB05, 4AC03, 4AD01, 4BC02, 4CC03, 4DA10, 4DC03 and 4ED01 (Table 3.1) had continuous 

data records for, 35, 28, 33, 29, 33, 37, 29 and 36 years respectively. The meteorological stations; 

9037064, 9037112, 9037031, 9137123, 9037202, 9037096, 9036288 and 9036212 (Table 3.2) had 

continuous data for 26, 28, 35, 32, 40, 35, 40 and 23 years respectively. The data for each station 

was partitioned into training and validation data sets comprising 70% and 30% respectively of the 

total continuously recorded data.  

 

In this study, the ANN structure for each station was obtained by considering different input 

neurons for different time delays; t, t-1, t-2,…,t - n, in the input layer. The number of input 

variables was equal to the input neurons. The initial number of hidden neurons of the ANN model 

architecture was determined using the procedure adapted from Belayneh (2012) where the hidden 

layer neurons were initially set at 2n+1 and n being the input neurons. The Hidden Neurons (HN) 

were then increased and decreased through trial and error technique for the data sets at each 

hydrometric station. This resulted to an output that was taken as the estimated variable. The ANN 

model at each station was trained using different structures as given in Tables 2A and 3A of 

Appendix A. 

 

The output layer comprises neurons in all the networks that are equal to the following month’s 

variable value (It+1). In this study, the Feed Forward Neural Network (FFNN) and Recursive Neural 

Network (RNN) were applied and tested in the model training. Initially three different training 

algorithms were applied to train the structures. These were the back-propagation (BP), Levernberg-

Marquardt (LM) and Conjugate Gradient (CG) algorithms. From preliminary results, it showed that 

a three-layer feed forward neural network with different input and hidden neurons was superior in 

performance, and that the best results were also obtained using the LM training algorithm. Thus the 

best ANN structure of three-layer feed forward network based on LM training algorithm was 
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adopted for filling in of missing data in this study. The data was first normalized at each station 

before exporting it into the graphical user interface (GUI) of the MATLAB. This was done by 

applying the function given in Equation (3.1) which was adapted from Morid et al. (2007).   

 
 
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 minmax

minmax

min
min XX

xx

xX
XX o

n 



                                       (3.1) 

Where; 

 Xn = normalized value 

 Xmin = the selected minimum value for standardization 

Xmax = the selected maximum value for standardization 

Xo = original value 

xmin = minimum value present in the original data set 

 xmax = maximum value present in the original data set 

 

All the input and output values for ANN were normalized to range between Xmin equal to 0.1 and 

Xmax of less than 1. According to Morid et al. (2007), the values of the Xmin 0.1 and Xmax of 0.9 

perform best for drought indices such as SPI and EDI. Thus these values were adapted for this 

study.  After normalization, the various drought forecasting ranges were determined.  

 

For each of the ANN model run on the GUI of the MATLAB, the performance was evaluated based 

on the correlation coefficient R and Mean Square Error (MSE) criteria and the best model results 

were summarized in a tabular form in the Table 2A (Appendix A). The best ANN models were then 

adopted for filling any missing data for respective hydro-meteorological stations. The steps that 

were followed in filling the missing data are summarized in Figure 3.2  
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Figure 3. 2: Flow chart of the steps used in filling the missing data using ANN 

 

3.2.6 Surface Water Supply Index 

The input data for the Surface Water Supply Index (SWSI) were the monthly precipitation, stream 

flow, reservoir level and dam inflow. In the present study, the data was first summed up and 

normalized using the probability of non-exceedance. The probability of non-exceedance refers to 

the possibility that a random drought magnitude is less than or equal to a defined real value. The 

values of the SWSI were computed using various input parameters as shown in Equation (3.2):  

        
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                                   (3.2)  

Where; 

SWSI = modified surface water supply index (dimensionless) 

PN = probability of non-exceedence in percent 
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rn = the rainfall (mm) 

sf = stream flow (m
3
/s) 

rs = storage reservoir level (m) 

df = dam inflow (MCM) 

C1 = 50 and C2 = 12 (Shafer and Dezman, 1982) 

The parameters a, b, c, d and e are the weights for each component and their sum must be equal to 

1 as given in the expression:  

1 edcba                               (3.3) 

The weighting parameters a, b, c and d corresponding to the rainfall, stream flow, reservoir levels 

and dam inflows were estimated through a proportioning objective procedure (Table 4A; Appendix 

A). Such a procedure is better for SWSI determination since it computes the weighting parameters 

more accurately compared to the method developed by Shafer and Dezman (1982), where the 

values by these authors are based on assumptions. The probability of non-exceedance of monthly 

precipitation, stream flow, storage reservoir, dam inflow and the ground water level were computed 

using the relation: 

1
1




n

r
PN                              (3.4) 

Where; 

PN = probability of non-exceedence in percent  

r = the rank of data arranged in ascending order 

n = the number of years considered in the analysis 

 

The integration of the rainfall (rn), stream flow (sf), storage reservoir volume (rs) and dam inflow 

into SWSI is summarized in Figure 3.2. The product of the respective time series weighted 

parameters and the probability of non-exceededance were computed to get the composite factor 

SWSIf which after normalization was used to get the surface water supply index SWSI. A 

regression plot between SWSIf and SWSI (Figure 24B; Appendix B), was then done to develop a 

simplified SWSI equation for the upper Tana River basin. In the normalization, the SWSI values 

were set at between -4.2 and +4.2 as minimum and maximum values respectively. The procedure 

that was followed to obtain the time series and spatial SWSI is summarized in Figure 3.3. 
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Figure 3.3: Process of evaluating drought using the modified SWSI 

 

The computed SWSI values were then categorized into severity classes based on Table 3.3 adopted 

from Shafer and Dezman (1982).  

Table 3. 3: Drought classification based on SWSI 

State Criterion  Drought description  

0 4.00 or more Abundant water availability 

1 3.99 to 1.99 Wet  

2 2.00 to-0.99 Near normal  

3 -1.00 to -1.99 Incipient drought 

4 -2.00 to -2.99 Moderate drought 

5 -3.00 to -3.99 Severe drought  

6 -4.00 and less Extreme drought 
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3.2.7 Stream flow drought index 

Stream flow drought index was selected in this research because it is one of the most important 

types of drought that affects a number of activities depending on surface water resources (Nikbakht 

et al., 2013). Monthly Stream flow drought index (SDI) for each gauged station was determined 

using the relation adapted from Modarres (2007) defined as: 

 


QQ
SDI


                     (3.5) 

Where; 

 Q = discharge in time interval (monthly average flow) (m
3
/s) 

 Q  mean discharge of the series (m
3
/s) 

σ = the standard deviation of the discharge for the reference period defined as: 
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

 QQ
n 1

1
                            (3.6) 

Where;  

 n = total number of months in the series 

The computed SDI was then defined using a criterion presented in Table 3.4. 

Table 3. 4: Definition of states of drought based on SDI 

State Drought description Criterion 

0 Nodrought  0.0SDI  

1 Mild drought 0.00.1  SDI  

2 Moderate drought  0.15.1  SDI  

3 Severe drought  5.10.2  SDI  

4 Extreme drought 0.2SDI  

 

3.2.8 Standardized precipitation index 

The Standardized Precipitation Index (SPI) was used to quantify rainfall deficit within the basin as 

a representation of drought condition as defined by Mckee et al. (1993). The first step involved 

fitting the rainfall data into a probability distribution function and then computation of the SPI 

values.The computed SPI values were used in drought assessment and classification. In the first 

step, the gamma distribution function was adapted since it fits well in time series rainfall data 

(Cassiamani et al., 2007). The gamma distribution is expressed in terms of its probability density 

function as: 

 
0,,

1
),;( 1 





 


 


xforexxf

x

                     (3.7) 



58 
 

Where; 

α = the shape parameter 

β = scale parameter 

x = the rainfall amount (mm) 

Γ(α) = the value taken by gamma function 

x = mean rainfall (mm) 

 

The Γ(α) is the value defined by the Gamma function which is determined by applying an integral 

function according to Cacciamani et al. (2007) expressed as: 

  dxex y







0

1                       (3.8) 

Where; 

Γ(α) = the value taken by gamma function 

x = the rainfall amount (mm) 

α = the shape parameter 

 

The Gamma function in Equation (3.8) was evaluated both by the numerical method and use of 

tabulated values using the selected shape parameter α. A maximum probability was then used to 

estimate the optimal values of α and β using Equations (3.9) and (3.10): 
















3

4
11

4

1 A

A
                                         (3.9) 




x
                                                   (3.10) 

Where; 

α = the shape parameter 

β = scale parameters 

x = mean rainfall (mm) 

A = sample statistic 

The sample statistic is defined as: 

  
n

x
xA

ln
ln                         (3.11) 

Where; 

x = the rainfall average (mm) 
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n = the number of observations 

 

The calculated values were in turn used to compute the cumulative probability for non-zero rainfall 

using Equations (3.12) and (3.13) respectively: 

 
  







x x

dxexdxxfxf
x

0 0

11
,,),;( 

 
               (3.12) 

Where; 

 α= the shape parameter 

β =scale parameter 

x =the rainfall amount (mm) 

The Equation (3.12) above was reduced to: 

  
  x

tfordtetxf t

x




 


0

11
),;(                                                (3.13) 

Where; 

Γ(α) = the value taken by gamma function 

x = the rainfall amount (mm) 

β = scale parameter  

t = the time period  

 

The Gamma function was applied for values of rainfall x > 0 for the rainfall time series of the upper 

Tana River basin. In case of non-zero values, cumulative probability of both zero and non-zero 

values were computed. This probability is represented by a function H(x) defined as: 

   ,;1)( xFqqxH                             (3.14) 

Where; 

 H(x) = Cumulative probability 

q = probability of zero rainfall 

 

When m was taken as the number of zero entries in the time series rainfall data, then the q value 

was estimated by the ratio nm . The cumulative probability was then transformed into a standard 

normal distribution function. This gave values of   the mean and variance of the SPI as zero and one 

respectively. This step was carried out using approximate transformation functions adapted from  

Mishra and Desai (2006). These functions given in Equations (3.15) and (3.16) are expressed as: 
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Where; 

  c0 =2.515517 

 c1= 0.802853 

c2 = 0.010328 

 d1 =1.432788 

 d2 = 0.189269  

 d3 = 0.001308   

The parameters were used to compute the SPI and were adapted from Cassiamani et al. (2007). The 

value of k in Equations (3.15) and (3.16) was determined from the functions given as: 

 
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In this study, the SPI values were calculated using a monthly time step and the threshold ranges 

adapted from Mckee et al. (1993)  given in Table 3.5 were used to define drought conditions. The 

SPI computatuion porcess is summarized in Figure 3.4. 

 

Table 3. 5: Drought conditions based on SPI 

Threshold value (s) Drought classification 

2.00 or more Extremely wet 

1.50 to 1.99 Very wet 

1.00 to-1.49 Moderate wet  

0.99 to -0.99 Near normal   

-1.00 to -1.49 Moderate drought 

-1..50 to -1.99 Severe drought 

-2.00 or less Extreme drought 
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Figure 3. 4: Process for computation of the time series SPI 

 

3.2.9 Effective drought index 

The effective drought index (EDI) was computed using monthly time step data for the weather 

stations within the study area according to Smakhtin and Hughes (2007). The computation of the 

EDI was done through four steps. The first step involved the calculation of the effective 

precipitation parameter EPp of the current month using the relation: 
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Calculation of shape  and 

scale  parameters 

Computation of Gamma 
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Equation 3.17 
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Where; 

EPp = effective precipitation parameter (mm) 

 m = total period before the current month  

 PEm = the precipitation in m-1 months before the current month (mm) 

N = duration of summation of the precipitation 

 

 The mean EP is computed annually to represent the climatological characteristics of water 

resources. For practical application of MEP a 5-months running mean is applied in this 

computation (Bhun and Whilhite, 1999). Then the deviation time series EP from the mean EP was 

computed using the relation: 

MEPEPDEP                   (3.20) 

Where;  

DEP=deviation of time series EPp from mean effective precipitation parameter (mm) 

MEP=mean effective precipitation parameter (mm) 

   

From the EPp, both the mean and the standard deviations of the monthly values were determined. 

The resulting time-series EP was used as inputs to calculate its deviation from the mean. Then the 

return to normal precipitation (RNP) values was determined using the relation adopted from 

Roudier and Mahe (2010): 

 









N

DEP
RNP

1
                 (3.21) 

Where; 

RNP=return to normal precipitation (mm) 

 N=previous period (months) 

From the calculated RNP, the EDI was be derived from the relation: 

 RNPStd

RNP
EDI                   (3.22) 

Where; 

 Std (RNP) = Standard deviation of a particular months RNP values 
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Using the computed EDI values, the severity of the drought was categorized based on the 

thresholds and classification (Table 3.6) adopted from Morid et al. (2006 and 2007).  

 

    Table 3. 6: Drought severity based on EDI 

Threshold value (s) Drought classification 

2.5 or more Extreme wet 

1.50 to 2.49 Very wet 

0.7 to 1.49 Moderately wet 

-0.99 to 0.99 Near normal   

-1.0 to -1.49 Moderate drought 

-1.5 to -1.99 Severe drought  

Less than -2.00 Extreme drought 

 

3.2.10 Soil Moisture Deficit Index 

The first step was the preparation of all the AquaCrop input data. The data set consisting of 

monthly precipitation, maximum and minimum temperature, relative humidity, mean wind speed 

and sunshine hours for the period 1970-2010 were used for the selected meteorological stations. In 

addition, soil texture data and soil depth profile of 60-cm were used. The 60-cm soil depth was 

chosen in this study because it represents the most active soil zone that contributes to evapo-

transpiration processes of plants. The 60-cm soil depth represents the potential of most agricultural 

crops to extract water from rooting depth. The quantity of water extracted depends upon stage of 

growth and crop type (FAO, 2013).  

 

To effectively assess the agricultural drought, data was segregated into dry and wet seasons for 

specific agricultural applications. This is because different seasons exhibit different drought 

characteristics as stated by Nalbantis (2008), and Tsakiris and Nalbantis (2009). Each season had 

two distinct period with the dry season represented by the period from the months of July to 

September (J-S), and January to March (J-M). The wet season was represented by the period from 

October to December (O-D), and March to June (M-J). 
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3.2.11 Smulation of Soil Water (SW) content using AquaCrop model 

The Input climatic data (average monthly rainafall, maximum temperature (Tmax), Minimum 

temperature (Tmin) and radiation were prepared in excel. First the Tmax, Tmin and the radiation data 

was imported into AquaCrop model where potential evapotranspiration (ETₒ) was computed using 

Hargreaves Equation 3.28. This technique was chosen over the other methods of estimating ETₒ 

because it requires only temperature and radiation as input data which were available in the study 

area.  After computation of the ETₒ, the monthly data sets; the ETₒ, dominant soil type and the 60-

cm soil depth profile were imported to FAO developed AquaCrop model Version 4.0. The monthly 

soil water content (SWi) was then generated from the AquaCrop model. The steps used in 

computation of SW is summarized in a flow chart (Figure 6B; Appendix B) 

 

The resulting SWi was then used to compute SMDI by first computing the monthly Soil Defict (SDi) 

and then SMDIi. Equations (3.23), (3.24) and (3.25) adapted from Narasimhan and Srinivasan 

(2005) and Ramazani et al. (2012) were used to estimate the SMDI for the upper Tana River basin.  
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Where; 

SDi = soil water deficit (percentage) 

SWi = mean monthly available soil water in a soil profile (mm) 

MSWi = long-term median available soil water in the soil profile (mm) 

SWmaxi = long-term maximum available soil water in the soil profile (mm) 

SWmini = long-term minimum available soil water in the soil profile (mm) 

50
5.0 1

j

jj

SD
SMDISMDI                         (3.25) 

Where;  

SMDIi = soil moisture deficit index for j
th

 month  

i = i
th

 month of the year 

SMDIi = the soil moisture deficit for i
th

 month  

SDi = soil moisture deficit (%) for i
th 

month of a particular year  

The integration of all the steps used in computing the values of SMDI are summarized in Figure 

3.5. 
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Figure 3.5: Flow chart showing the steps in computation of SMDI 

 

3.2.12 Palmer Drought Severity Index 

The Palmer Drought Severity Index (PDSI) was computed using precipitation, temperature and the 

local Available Water Content (AWC) of the soil as the input variables. The available water 

capacity (AWC) was estimated based on the dominant soil characteristics for the each elevation 

band of the upper Tana River basin.  For the gauge stations within the four partitions of elevation 

bands, the AWC values adapted for PDSI computation were 172, 98, 74 and 82 mm which were 

based on values given in Table 3.7, for defined dominant soil types. 
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Table 3. 7: Dominant soils for the upper Tana River basin 

Elevation 

Dominant soil 

type 

MC at 

saturation % 

MC at field 

capacity % 

MC at wilting 

point % 

AWC 

(%) 

TAW 

(mm) 

HE Andosols 60 40 24 16 172 

ME Nitosols 53 31 22 9 98 

LME Cambisols 48 28 14 14 74 

LE Ferrasols 53 26 17 9 82 

HE, ME, LME, LE means highest elevation, middle elevation, lower middle elevation and lowest 

elevation respectively 

Source: Hunink et al. (2009) 

 

The PDSI was determination by getting the difference between actual precipitation and water 

deficiency or surplus in any given month i. This was achieved by applying the relation: 

iii PPd ˆ                   (3.26) 

Where; 

di = difference between actual precipitation and pi and the climatically appropriate for 

existing conditions (mm) 

pi = actual precipitation (mm) 

iP̂ = an indicator of water deficiency or surplus in month i 

 

The water deficiency or surplus was estimated from the relation: 

iiii PLPROPRPEP  ˆ                (3.27) 

Where; 

iP̂ = an indicator of water deficiency or surplus in month i  (mm) 

PEi = potential evapo-transpiration of month i (mm) 

PRi = potential recharge that gives the quantity of water required to bring the soil to its water 

holding capacity (mm) 

PROi = the potential runoff (which is defined as the difference between the precipitation and 

potential recharge (mm) 

PLi = potential loss or the amount of soil moisture that could be lost from soil by evapo-

transpiration during a zero precipitation period (mm) 

 

The potential evapotranspiration was estimated using Hargreaves method adapted from 

Sivaprakasam et al. (2011) given as: 

    5.0

minmax78.170023.0 TTTRPE meana                                            (3.28) 
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Where; 

 PE = potential evapotranspiration (mm/month) 

 Ra = solar/extra-terrestial radiation (MJ m
-2

 month
-1

) 

 Tmean = mean monthly temperature (
o
C) 

 Tmax = maximum monthly air-temperauture (
o
C) 

 Tmin = minimum monthly air-temperature (
o
C)    

  

The α, β, γ and δ are climatic coefficients which provide mean value averaged within the base 

period. These coefficients were computed from the following relations: 

PE

ET
                   (3.29) 

PR

R
                   (3.30) 

PRO

RO
                   (3.31) 

PL

L
                   (3.32) 

Where; 

ET = mean actual evapo-transpiration (mm) 

PE = mean potential evapo-transpiration (mm) 

R = mean actual recharge (mm) 

PR = mean potential recharge (mm) 

RO = mean actual runoff (mm) 

PRO = mean potential runoff (mm) 

L = mean water loss due to evapo-transpiration when precipitation is zero (mm) 

PL = mean potential water loss (mm) 

 

The values of monthly PRi, PROi and PLi were derived from the generated results of soil water 

content for every month i using the technique given by Yan et al. (2013). These variables were 

calculated from the following relations: 

1 ii SWAWCPR                  (3.33) 

iii PRAWCSWPRO  1                 (3.34) 
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 1,min  ii SWPEPL                 (3.35) 

 

The di was then converted into indices of moisture anomaly zi which was calculated using the 

equation: 

ii dkz  1                   (3.36) 

Where; 

kc = climatic characteristic that was estimated using the relation: 

 
 LP

RPE
k




1                              (3.37) 

The PDSI function that was used in this study is of the form: 

1

1897.0
C

Z
XPDSI i

ii  

                (3.38)
 

Where; 

PDSI = The PDSI for the i
th

 month 

Xi-1 = previous months PDSI 

Zi = Palmer Moisture Anomaly Index (PMAI) 

The value of PDSI for the initial month was taken as equal to 
1C

Z i . 

Zi (PMAI) is expressed as: 
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Where; 

k2 = weighting factor 

d = water deficiency (mm) 

c2 = conceptual parameter  

            D = absolute value of d 

  

In this study, a C2 value of 438.91 adapted from Yan et al. (2013), was used. The k2 which is a 

function of average water demand and supply (Barua, 2010; Zoljoodi and Didevarasl, 2013) was 

estimated using the relation: 

 
  41032 log C

DLP

RORPE
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               (3.40)

 

Where; 
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 D = mean of the absolute values of d 

The conceptual parameters C3 and C4 were equated to 1.2459 and 3.3684 respectively adapted from 

Yan et al. (2013).  The computed PDSI values were used to classify drought conditions based on 

the threshold levels given in Table 3.8 which was adapted from Palmer (1965) and Castano (2012). 

 

Table 3.8: Classification of drought based on PDSI 

Value of index Drought classification 

4.00 or more Extremely wet 

3.00 to 3.99 Very wet 

2.00 to 2.99 Moderately wet  

1.00  to 1.99 Slightly normal   

-0.50  to -0.99 Incipient wet 

0.49 to -0.49 Near normal 

-0.50 to -0.99 Incipient drought 

-1..00 to -1.99 Mild drought 

-2.00 to -2.99 Moderate drought 

-3.00 to -2.99 Severe drought 

-4.00 or less Extreme drought 

 

 

3.2.13 Evaluation of Spatial distribution of drought severity 

The sum of drought severity DId values below zero during each year for the study period was 

calculated. The probability P of drought occurrence was determined by dividing the number of 

months that had DI values less than zero by 12 months of the year. The drought severity was then 

computed at each station using the relation: 





N

N

d PDIS
1

                  (3.41) 

Where; 

S = annual drought severity for a defined year 

DId =The sum of drought severity values below zero during a particular year 

P = probability of drought occurrence for the defined year 

 

The resulting data was then used to estimate spatial distribution of drought severity using the 

Krigging estimator in the ArcGIS 10.1. In this study, sixteen hydrometric stations within and 
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adjacent to the upper Tana River basin were used for hydrological evaluation. These stations have 

unique geographical location and their spatial extent was created through the application GIS. The 

GIS tool was used to compute and present the spatial distribution, variation and trends of droughts 

for different drought indices (DIs). 

 

3.2.14 Mann-Kendall trend test for drought conditions 

To test for the trend in drought severity, a non-parametric Mann-Kendall trend test was applied. 

This method has the capacity to test for increasing, decreasing or no trend (Kendall, 1962).  The 

data for the upper Tana River basin was evaluated using ordered time series. The data sets were 

organized in form of x1, x2, x3,…, xj n-data points where xi represent data point at time j. Then the 

Mann-Kendall statistical trend S was determined using the relation: 
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The right hand side of the Equation (3.42) was simplified using Equation (3.43) given as:  
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The probability linked to the Mann-Kendall statistic S and the selected n-data were determined to 

quantify the level of significance of the trend. The VAR(S) was calculated and then the normalized 

test statistic Z was computed using the following equations: 
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Where;  

VAR(S) = the variance of the data set  

n = the number of data points 
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Equation (3.42) which was adapted from Mahajan and Dodamani (2015) was used to qualify the 

drought trend in the basin as: no trend, increasing trend and decreasing trend when S = 0, S > 0 and 

S < 0 respectively. In order to determine whether or not the drought trend in the upper Tana River 

basin was significant or insignificant, significance levels at 90% and 95% were used. At these 

significance levels, the null hypothesis of no trend was rejected when 645.1Z and 96.1Z  

respectively where the values of Z were adapted from Sneyers (1990).  

 

3.3 Drought forecasting using DIs and ANNs  

Evaluation of the performance of the DIs for short, medium and long-term drought forecasting was 

carried out in two steps. The first step involved forecasting the short-term drought conditions 

followed by the medium-term and lastly the long-term drought conditions. To forecast the future 

values of the indices, the inputs into the forecasting networks were presented by various 

combinations of their present and previous values. All the input and output values were 

standardized using the normalization Equation (3.31) to range between 0.1 and 1, taking the 

minimum value (Xmin) of 0.1 and maximum value (Xmax) of 0.9 since previous research by Morid et 

al. (2007) confirmed this range to give the best results. 

 

3.3.1 Drought forecasting 

In this study, drought forecasting was objectively done by partitioning the selected drought indices 

into those that represent hydrological, meteorological and agricultural droughts. Table 3.9 shows 

the indices adapted for each drought forecasting category.  

Table 3. 9: Different categories of drought forecasting 

Drought index  Input variables Drought type 

SWSI P,Q rs, df Hydrological  

SDI Q Hydrological 

SPI P Meteorological  

EDI P Meteorological  

PDSI P, T, AWC Agricultural 

SMDI Sm Agricultural  

NDI P,Q, rs, sm Hydrological, Meteorological, Agrcicultural 

P, Q, rs, df, T, AWC, sm are precipitation, stream flow, reservoir levels, dam inflows, 

temperature, available water content, soil moisture  

 

 

3.3.2 Temporal drought forecasting using DIs 

To forecast the drought using DIs, the forecasting range was partitioned into short, medium and 

long-term time ranges. This means that the drought was forecasted for up to 3, 9, and 24 months 
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respectively. To implement the forecasting of the DIs using the ANN models, the input and output 

parameters were first defined and the appropriate ANN model architecture designed. The ANN 

models were then trained and validated using selected perforamance criteria. The processs that was 

followed in drought forecasting using the ANN is summarized in Figure 3.6. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 6: Flow chart of the applied ANN-based drought forecasting model 

 

3.3.3 Short-term drought forecasting  

The hydro-meteorological data for different stations within the upper Tana River basin were used 

by applying the DIs modelling programme within the Matrices Laboratory (MATLAB). The first 

step involved defining the input neurons in the input layer.  In this step, different input neurons 

with different time delays of t, t-1, t-2, . . . , t-n, for each hyro-meteorological station were applied. 

Secondly, the number of Hidden Neurons (HN) was set as equal to 2n+1 in the architecture of the 

ANN. By trial and error method, the hidden neurons were increased or decreased by a value of one 

and this was used to evaluate the value of forecasts using the following relation.  
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            %1000.1 
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DI

DIDI
E                 (3.46) 

Where;  

            E=Efficiency of forecasting 

           DIObs=Observed magnitude of drought index 

           DIFor=Forecasted magnitude of the drought index 

An example of this process is given in Figure 3.7 that was used to forecast the SWSI. 

 

 

 

 

 

 

 

Figure 3. 7: ANN Architecture used for the forecasting of SWSI 

 

For each hydro-meteorological station, the FFN and RNN structures of the ANN nodels were 

trained using the Levernberg-Marquardt (LM) algorithm (Figure 5B; Appendix B). Preliminary 

results at each station showed that a three-layer FFN with different input and HN perfomed best in 

terms of efficiency using MSE and R. In this case, the FFN were considered as the best for the 

detailed drought studies.  

 

The ouput layer neurons in all the networks were equal to the forecast of the respective lead short-

term forecast of DIs. For instance,  a DIt+1 and DIt+3 into the future was calculated for 1 and 3 

months lead times using the Neural Networks within the GUI of the MATLAB toolbox. In this 

research, the DIs values of 1 and 3 were considered to reflect relatively short-term conditions. On a 

monthly temporal domain, the DIt+1 and DIt+3 were calculated as the drought forecasts for lead 

times of 1 and 3 months respectively. Table 3.10 presents a summary of the forecasting inputs for 

various DIs as modified from Belayneh (2012). 
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In this study, the initial number of HN was determined using the relation adapted from Belayneh 

(2013) given as 2n+1, where n is the number of input neurons. The trial and error method was 

applied in which the number of HN was altered by either decreasing or increasing by 1 the 

computed HN, and testing the performance efficiency for each trial using Equation 3.46.  The best 

ANN was selected by picking the model architecture that gave the best level of performance in 

forecasting efficiency. This process was repeated for all the other gauge stations, meteorological 

stations and different drought indices.  

 

Table 3. 10: Key variables for short-term drought forecasting 

DI Lead time (months) Drought forecast/Output 

SWSI 1 SWSIt+1 

SDI 1 SDIt+1 

SPI 1 SWSIt+1 

EDI 1 EDIt+1 

PDSI 1 PDSIt+1 

SMDI 1 SMDIt+1 

SWSI 3 SWSIt+3 

SDI 3 SDIt+3 

SPI 3 SPIt+3 

EDI 3 EDIt+3 

PDSI 3 PDSIt+3 

SMDI 3 SMDIt+3 

 

3.3.4 Medium-term drought forecasting  

The steps followed for medium-term drought forecasting were similar to those of short-term 

drought forecasting, except in the ouput layer of the ANN structure. In the ouput layer, neurons in 

all the networks are equal to the forecast of the respective lead medium-term forecast of DIs. DIt+6 

and DIt+9 into the future were calculated for 6 and 9 months lead times using the Neural Networks 

within the GUI of the MATLAB toolbox. For this forecast, the DIs values of 6 and 9 were 

considered to represent medium-term conditions. On a monthly temporal domain, the DIt+6 and 

DIt+9 were computed as drought forecasts for lead times of 6 and 9 months respectively for the 

selected indices as shown in Table 3.11. 
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Table 3. 11: Variables for medium-term drought forecasting 

DI Lead time (months) Drought forecast/Output 

SWSI 6 SWSIt+6 

SDI 6 SDIt+6 

SPI 6 SPIt+6 

EDI 6 EDIt+6 

PDSI 6 PDSIt+6 

SMDI 6 SMDIt+6 

SWSI 9 SWSIt+9 

SDI 9 SDIt+9 

SPI 9 SPIt+9 

EDI 9 EDIt+9 

PDSI 9 PDSIt+9 

SMDI 9 SMDIt+9 

 

3.3.5 Long-term drought forecasting  

For the long-term forecasting, the ouput layer neurons in all the networks are equal to the forecast 

of the respective long-term forecast of DIs. A DIt+12, DIt+18 and DIt+24 into the future were 

computed for 12, 18 and 24 months lead times using the Neural Networks within the GUI of the 

MATLAB toolbox. The DI values of 12, 18 and 24 represent long-term drought conditions.  

 

Table 3. 12: Variables for long-term drought forecasting 

DI Lead time (months) Drought forecast/Output 

SWSI 12 SWSIt+12 

SDI 12 SDIt+12 

SPI 12 SWSIt+12 

EDI 12 EDIt+12 

PDSI 12 PDSIt+12 

SMDI 12 SMDIt+12 

SWSI 18 SWSIt+18 

SDI 18 SDIt+18 

SPI 18 SWSIt+18 

EDI 18 EDIt+18 

PDSI 18 PDSIt+18 

SMDI 18 SMDIt+18 

SWSI 24 SWSIt+24 

SDI 24 SDIt+24 

SPI 24 SPIt+24 

EDI 24 EDIt+24 

PDSI 24 PDSIt+24 

SMDI 24 SMDIt+24 
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On a monthly temporal domain, the DIt+12, DIt+18 and DIt+24 were computed as drought forecasts for 

lead times of 6 and 9 months respectively for the selected indices as shown in Table 3.12. In these 

cases, results were presented in tabular forms. 

 

3.4 Formulation of Nonlinear-Integrated Drought Index (NDI)  

The Nonlinear-Integrated Drought Index (NDI) for the upper Tana River basin was formulated 

using the precipitation, stream flow, reservoir level and soil moisture content as parameters. The 

computation of the principal components, NDI time series values, and determination of threshold 

values were done. Figure 3.8 presents a summarized process that was used after the modification of 

the approach given by Barua (2012).        

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 8: Flow chart showing the process for computation of NDI 

 

3.4.1 Computation of principal components (PC) 

The 41 years data used to integrate four hydro-meteorological variables in formulating of the NDI 

were organized into (41x4) matrix of observations. The principal components (PCs) for each month 

of the year were generated and then the NDI values were computed for each month for all the 

years.  The NDI values were computed and normalized using the relation: 
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NDI



,,

,                               (3.47) 

Where; 

NDIi,k = NDI value for month k in year i 

Yi,l,k = PC1 during year i for month k 

k = standard deviation of Yi,l,k overall years for month k 

All the steps in sections 3.41 and 3.42 involved writing of computation codes for the MATLAB as 

summarized in Table 3.13. 

 

Table 3. 13: Principal Component Analysis in MATLAB  

S.No. Description of the operation Formulated code of the MATLAB program  

(i) 

 

 

Definition of input matrix with 

hydro-meteorological variables 

 

>> A=[2.54   1055.44   695.94   2.986…                   ] 

 

 

(ii) Definition of matrix size >> [n m]=size(A) 

(iii) Computation of mean vector >> AMean=mean(A) 

(iv) Derivation standard deviation  >> AStd=std(A) 

(v) 

 

Standardization  of the matrix 

data 

>> B=(A-repmat(AMean,[n 1]))./repmat(AStd,[n 1]) 

 

(vi) 

 

 

Computation of coefficients and 

variances for the principal 

components 

>> [C S L]=princomp(B) 

 

(vii) 

 

Computation of first principal 

component (PC1) 

>> PC1=S*L 

 

(viii) 

 

Calculation of NDI from the 

PC1 >> NDI=PC1/2.857 

(ix) 

 

Exportating of the results and 

plotting on MATLAB/Excel   

 The matrices defined as Q = SCORE, E = LATENT and Y = Q x E as indicated in the equations above 

 

After computing the NDI values for each year and each month, these values were combined into a 

single unit time series data. 

 

3.4.2 Assessment of drought characteristics using the formulated NDI 

After the computation of the NDI values, a time series plot was created based on truncation levels. 

The NDI values were then categorized into different drought conditions as given in Table 3.14 

which was adapted from Barua (2010). 
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      Table 3. 14: Classification of drought based on NDI 

Value of index(s) Drought classification 

>1.63 Extreme wet 

>1.20 to  1.63 Severe wet 

>0.88 to  1.20 Moderate wet 

>-0.84 to  0.88 Near normal 

>-1.64 to  -0.84 Moderate drought  

>-2.27 to  -1.64 Severe drought 

 -2.27 Extreme drought 

 

From the time series plot, the duration, maximum and median magnitude of each drought condition 

were extracted. The model was also used to detect the on-set and end months of the drought period 

by selecting the times in months when the NDI value was below or above the truncation level. The 

NDI values below and above the truncation level were considered as the on-set and end time of the 

drought respectively.  The duration, magnitude and severity of the drought in the upper Tana River 

basin was then computed using the relation: 

NDI

N

N

dNDI PNDIS  
1

                (3.48) 

Where; 

SNDI  = annual drought severity based on NDI for a defined year 

NDId = sum of drought severity values below zero during a particular year 

P = probability of drought occurrence for the defined year 

 

3.5 Drought forecasting using NDI  

The formulation of the forecasting model involved selection of ANN structure, the drought input 

variables, calibration and validation of the selected variables and models. The process is 

summarized in Figure 3.9. 
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Figure 3. 9: Flow chart of ANN-based drought forecasting model for NDI 

 

3.5.1 Identification of ANN model structure 

The NDI values with several lead times for short, medium and long term droughts were forecasted 

using a three-layer Direct Neural Network (DNN).  A three-layer ANN network model was adopted 

in this study because it can approximate any function if sufficient connection weights and biases 

are provided. The network had multiple neurons in the input and hidden layers with a single neuron 

in the output layer. The single output neuron represents a defined lead time forecast as shown in the 

Figure 3.10.  
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Figure 3. 10: A three-layer DNN 

 

The multiple neurons in Figure 3.10 represent different combinations comprising NDI. The DNN 

was designed and calibrated for forecasting drought using present and several months of the past 

NDI values as inputs. Figure 3.10 shows k lead time forecasts from the present (t) month defined as 

NDIt+1, NDIt+2,…, NDIt+3. 

 

The network was then used for forecasting NDI values for multiple lead times of k=1, 3, 6, 9 and 12 

for short, medium and long-term drought forecasting. A direct Neural Network was adapted from 

Mishra and Desai (2006) and Barua (2010). The inputs for different forecast ranges given in Table 

3.15 were used. 

 

Table 3. 15: NDI input variables for drought forecasting 

Model 

NDI 

Lead time  

(months) 

Output 

 

Forecast range 

NDI-LT1 1 NDIt+1 Short-term 

NDI-LT3 3 NDIt+3 Short-term 

NDI-LT6 6 NDIt+6 Medium-term 

NDI-LT9 9 NDIt+9 Medium-term 

NDI-LT12 12 NDIt+12 Long-term 

NDI-LT18 18 NDIt+18 Long-term 

NDI-LT24 24 NDIt+24 Long-term 

 

 

3.5.2 Drought projection using NDI and Recursive Multi-Step Neural Networks  

Recursive multi-step neural networks (RMSNN) with multiple neurons in the input and hidden 

layers adapted from Mishra and Dessai (2006) was used for drought projection from the year 2010 

to 2099. The RMSNN consist only of a single neuron in the output layer which represent a one 

month lead time projection and done for k months (k=1068) .  Based on the available data period of 
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1970 to 2010, the RMSNN was fisrt designed and calibrated considering only one month lead time 

based on present and several months of the past NDI values as inputs. The resulting network with 

the same number of input combination/variables was then used  for projecting NDI values for 

multiple lead times recursively as shown in the Figure 3.11.The drought projection was conducted 

at month  t for k time steps from (t+1) to (t+k). The projection (t+1) was first calculated based on n 

months of the past NDI values including the NDI at t. This projected value NDI(t+1) was then used 

with past NDI values of t, t-1,…,t-n  months to project NDI(t+2).  This process was repeated 

recursively to obtain the drought projection for 1068 months to represent the total period from the 

year 2011 to 2099. By using the projection it is assumed that the drought trend and associated 

hydro-meteorological variables within the basin is the same both for the data period (1970 to 2010) 

and the projection period (2011 to 2099) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 11: Three Layer RMSNN used for drought projection 

 

3.6 Sensitivity analysis of drought indices 

Sensitivity of the indices to input parameters were carried out prior to calibration and drought 

assessment. This sensitivity analysis was used to identify parameters that are fundamental in 

influencing the index output and in detecting and quantifying interaction effects among the 
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parameters.  The sensitivity analysis was conducted for drought indices for input parameters which 

included precipitation, stream flow, storage reservoir volume and dam inflow and soil moisture. 

The procedure involved computing the mean values of each parameter and then used as the initial 

value. Each of the mean parameter value was altered at a rate of %10 and the corresponding 

change in both the parameter and DI values determined as the difference between the new values 

and the previous ones. Then, the sensitivity of the DI to parameter alterations was done by 

computating the absolute sensitivity. This was based on the concept of the ratio of of the relative 

change of a state variable to the relative change in parameter according to the procedure given by 

Jorgensen and Bendoricchio (2001) and Raude (2013). The Absolute Sensitivity relation adapted 

for drought in this study is defined by the relation: 

P
P

DI
DI

AS




                   (3.49) 

Where; 

SA = Absolute sensitivity 

δDI = change in the DI value  

DI = drought index value before the change 

P = value of parameter being evaluated before the change 

δP = change in parameter value 

 

3. 7 Time series drought characterization  

The drought time series was characaterized by selecting the annual drought index with maximum 

severity. The resulting values were then arranged in ascending order and ranked. The return period 

of each event was then computed using the Weibull plotting position function given in Equation 

(3.49).  

r

n
T

1
                    (3.50) 

Where; 

 T = return period (years)   

N = the number of data sets 

 r = the rank of an extreme drought event arranged in ascending order 
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The probability of any drought magnitude/cumulative severity was calculated as a reciprocal of its 

return period. The computed return period and the probability values of drought were then plotted 

against the DI values as fitted using Equation (3.50). 

 

The drought was also charcaterized by developing Severity-Duration-Frequency (SDF) Curves by 

adopting and applying the Gumbel extreme value type 1 (EV1) approach. The Gumbel’s method 

was originally developed for flood estimation. However, it has previously been adapted in drought 

studies for instance by Dalezios et al. (2000). The form of Gumbel technique adapted for the 

present study for estimating the extreme drought event is expressed as: 

 vT KCDIDI  1                        (3.51) 

Where; 

DIT = probable cumulative droughtmagnitude/ severity with a return period of T years 

      Cv = coefficient of variation 

DI = mean cumulative drought magnitude/severity (m
3
/s) 

   K= frequency factor 

 

In this study, drought severities for different durations were calculated and then the return period 

(years) and probalility of each drought severity computed. The computed values were then fitted in 

the Gumbel extreme value type 1 (EV1) distribution function to obtain severities corresponding to 

each of the drought durations. The frequency factor and the coefficient of variation were 

determined from the relation: 

 

n

nT yy
K




                        (3.52) 

Q
Cv


                        (3.53) 













1
lnln

T

T
yT                       (3.54) 

Where;  

      yn, = expected mean value 

      σn = standard deviation of reduced drought extremes estimated from Gumbel’s Table 

Equation (3.53) adopted from Asad et al. (2013) used an equation developed to estimate K using 

the relation:  
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   






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



1/lnln5772.06 TT
K                     (3.55) 

 

For stream flow drought index for example the following relation was applied modelling drought: 

 

             
 

n

nTvT yyc

Q

Q
Y




 1                (3.56) 

Where; 

          QT=Probable hydrological drought discharge with a return period of T years (m
3
/s) 

          cv=coefficient of variation 

          Q =mean hydrological drought discharge (m
3
/s) 

          σn=standard deviation of drought extremes estimated from Gumel’s table 

            1/lnln  TTyT  

           yn=expected mean of extremes found from Gumbel’s table 

 

Although the above function (equation 3.55) improved the method of estimating the frequency 

factor K, which can now be computed based on return period T and not number of years of record, 

the method for calculating coefficient of variation (Cv) still remains as suggested by Gumbel. 

 

The corresponding cumulative severity (CS) for different drought durations was computed for 

selected return periods of 2, 5, 10, 20, 30, 50, 100, 500 years and the using the resulting data, plots 

of the return period of different drought durations on the abscissa and cumulative severities (CS) on 

the ordinate were generated to yield the Severity-Duration-Frequency (SDF) curves. 

 

3.8 Model calibration 

The measured data was partitioned into two data sets. The first set of data consisting of 70% of the 

total data set was used for calibration while the remaing 30% was used for validation. The 

Calibration data set was further divided into training and testing data taking 70% and 30% 

respectively. The calibration involved determination of suitable number of neurons in the hidden 

layer, connection weights and biases in the neural network. This was achieved by minimizing the 

mean square error of the training data set using the approach given by Tran et al. (2009). 
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 The number of neurons and hidden layers were determined to establish the ANN architecture. To 

establish the different function combinations of the variables adopted are log (N),  2n+1 to 

determine initial number of neurons in the hidden layer (Wanas et al., 1988; Mishra and Desai, 

2006). The  n is the number of input layers. The optimal number of neurons was then obtained 

through trial and error procedure by incresing or decreasing the initial number of neurons, while at 

the same time evaluating the value(s) of the performane measures. To effectively calibrate the 

models, training and testing data sets were used in parallel.  

 

In this study, the Levernberg-Marquadt (LM), Back-propagation (BP) and CG training algorihms 

described in section 3.2.5 were adopted. The preliminary calibration showed that the feed-forward 

neural network with LM training algorithm was the best model for SWSI, SDI, SPI, EDI, SMDI 

PDSI and NDI. The feed-forward neural network (FFNN) trained using LM algorithm was 

therefore used to present the final results for the selected drought indices that were considered in 

the upper Tana River basin.  

 

The Sigmoid and linear equations were used as the activation functions within the hidden and 

output neurons respectively. The two functions were selected because of the following advantages; 

the combination of sigmoid and linear functions has the ability to extrapolate values beyond the 

range of training data (Barua, 2010), and that the standardized range within the extreme limits of 

activation function prevents the weights from adjusting to extremely small values during 

calibration. The function used is of the form: 












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



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jiijhjkoforecast bbxwfwfDI
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                                   (3.57) 

Where; 

 xi = input at the i
th

 neuron i output layer 

 wij = weight connecting the i
th

 neuron in input layer and j
th

 neuron in hidden layer 

 bj = bias for the j
th

 hidden neuron 

 fh = activation function of the hidden neuron 

 wjk = weight connecting j
th

 hidden neuron in hidden layer and k
th

 neuron in output layer 

 bk = bias for the k
th

 output neuron 

 fo = activation function of the output neuron 

 

To determine the model performance, the MSE was minimized using training data through 

monitoring the output for different iterations.  For each iteration number, initial weights and biases 
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were taken as adjusted weights and biases of the previous iteration. The pattern of changes in MSE 

for both the training and testing data sets were plotted using the MATLAB GUI.  

 

The calibration stopped at a point when the MSE for training data decreased while the MSE for 

testing data was observed to increase according to an approach given by Bishop (1995) and Barua 

(2010). At such a point, the correct set of weights and biases constitute optimal values. The number 

of HN was changed sequentially by adding or subtracting a new neuron to create another ANN 

model. Again, LM algorithm was then applied in determination of connection weights and biases 

for the current ANN. The same early stopping technique was again employed to select best number 

of HN of the ANN.  

 

3.9 Model validation 

A validation data set was used as input into the performance measures; correlation coefficient, 

mean absolute error, Nash-Sutcliffe efficiency and modified index of agreement to validate the 

models. A performance criterion for each performance measure was adapted as presented in the 

following sections.  

  

3.9.1 The correlation coefficient 

The correlation coefficient (R) was used to determine the statistical relationship between the 

observed and the predicated drought conditions within the upper Tana River basin. The 

fundamental function was customised to the respective DI values using the relation: 

  

  












n

i

ForForObsObs

n

i

ForForObsObs

DIDIDIDI

DIDIDIDI

R

1

2

1               (3.58) 

Where; 

R = correlation coefficient 

DIObs = observed value of the drought index 

ObsDI = mean of the observed values of the drought index 

DIFor = forecasted value of the drought index 

ForDI = mean of the forecasted values of the drought index 

n = number of data points considered  
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The R is a measure of the strength of the linear relationship between the observed and forecasted DI 

values. It varies from 0 to 1. The values of 0 and 1 indicate a poor and perfect forecasting capability 

of the model respectively. 

 

3.9.2 Mean absolute error 

The mean absolute error (MAE) was determined from the relation: 





n

i

ForObs DIDI
n

MAE
1

1
                (3.59) 

Where; 

 MAE = the mean absolute error 

DIObs = observed value of the drought index 

DIfor = forecasted value of the drought index 

 n = number of data points 

 

The MAE was used to measure the average magnitude of errors of the set of forecasted values. The 

values of MAE increase from zero to large positive values. The higher the value of MAE, the higher 

the discrepancy between forecasted and observed values (Kim and Valdes, 2003). The lower values 

of MAE were considered to give the satisfactory results. 

 

3.9.3 Mean square error 

The Mean square error (MSE) is a measure of the difference between the observed and forecasted 

drought values from different indices.  It measures the average of the squares of the errors between 

two values being compared. In this study, Equation (3.58) was adopted for calculating MSE 

associated with drought forecasting: 

 



n

i

ObsiiFor DIDI
n

MSE
1

21

                (3.60) 

Where; 

 MSE = mean square error 

DIObs = observed value of the drought index 

DIfor = forecasted value of the drought index 

 n = number of data points 

The MSE ranges from 0 to 1. The smaller the MSE value the better the forecasting capability of the 

model. 
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3.9.4 Nash–Sutcliffe efficiency 

The Nash–Sutcliffe Efficiency (NSE) statistical approach has been used effectively to evaluate 

measured and predicted hydrologic data including drought (Nash and Sutcliffe, 1970; Biamah et 

al., 2002). The NSE was used to indicate how well the plot of observed versus simulated data fits 

the 1: 1 line: Its value ranges from   to 1.0. Mathematically NSE is given as: 
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DIDI

DIDI

NSE

1

2

2

10.1

               (3.61)

 

Where;  

NSE = Nash–Sutcliffe Efficiency 

DIi
obs 

= observed value of the drought index 

DIi
for 

= forecasted value of the drought index 

DI Obs= mean value of the drought index 

n = total number of observations 

The resulting values of NSE were compared with those given as acceptable levels of the efficiency 

as per Nash-Sutcliffe (1970) criterion. 

 

3.9.5 Modified index of agreement 

The modified index of agreement (d1) was applied in performance testing to supplement the other 

methods used because it is more sensitive to the differences on forecasted and observed hydro-

meteorological values than correlation coefficient  (R) (Krause et al., 2005). This index gives the 

ratio of mean square error and the potential error (Wilmot, 1984) and is mathematically expressed 

as: 

 












n

i

ObsObsObsFor

n

i

ForObs

DIDIDIDI

DIDI

d

1

1
1 0.1              (3.62) 

Where; 

d1 = modified index of agreement 

DIobs = observed value of the drought index 

DIfor = forecasted value of the drought index 

ObsDI = mean of the measured values  

n = number of observations.  



89 
 

CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1 Temporal and spatial drought conditions  

The results of the spatial and temporal drought conditions assessed using Surface Water Supply 

Index (SWSI), Stream Flow Drought Index (SDI), Standardized Precipitation Index (SPI), Effective 

Drought Index (EDI), Palmer Drought Severity Index (PDSI) and Soil Moisture Deficit Index 

(SMDI) are discussed in the following sections.  

 

4.1.1 Time series SWSI 

The results of drought assessement based on Surface Water Supply Index (SWSI) are presented in 

Table 4.1 for the Gura gauging station (ID. 4AD01) as an illustration for all the stations used in the 

upper Tana River basin. From Table 4.1, the highest and lowest values of weighted parameters for 

SWSI are the reservoir level and rainfall as denoted by c and a respectively.  

 

Table 4. 1: Weighted Parameters for SWSI at Gura gauging station for 1970 

Month 

(1970) 

Weighted parameters for SWSI Probability of non-exceedance 

a b c d PNrn PNsf PNrs PNdf 

Jan 0.096 0.126 0.605 0.173 0.371 0.116 0.605 0.173 

Feb 0.035 0.039 0.703 0.222 0.773 0.515 0.703 0.222 

Mar 0.061 0.034 0.673 0.232 0.592 0.576 0.673 0.232 

Apr 0.079 0.167 0.548 0.205 0.424 0.051 0.548 0.205 

May 0.252 0.097 0.475 0.176 0.049 0.119 0.475 0.176 

Jun 0.277 0.029 0.522 0.172 0.047 0.517 0.522 0.172 

Jul 0.011 0.036 0.739 0.214 0.945 0.594 0.739 0.214 

Aug 0.087 0.057 0.686 0.171 0.475 0.367 0.686 0.171 

Sep 0.007 0.061 0.771 0.161 0.961 0.381 0.771 0.161 

Oct 0.163 0.118 0.598 0.119 0.213 0.124 0.598 0.119 

Nov 0.221 0.044 0.597 0.138 0.138 0.412 0.597 0.138 

Dec 0.097 0.029 0.692 0.180 0.442 0.651 0.692 0.180 

Key: a,b,c and d ; PNrn, PNsf, PNrs and PNdf  are weight parameters; probability of non-

exceedance for rainfall, stream flow, reservoir levels and dam inflows respectively 

 

The sum of weighted parameters a, b, c, and d for each row data entry was found to be unity. This 

sum is in conformity with SWSI results obtained for other river basins such as those given by 
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Shafer and Dezman (1982), Kwon and Kim (2010). The results in Table 4.1 also indicate that the 

probability of non-exceedance was highest for the streamflow (PNsf), followed by rainfall (PNrn), 

reservoir level (PNrs) and dam inflow (PNdf) respectively.  

 

4.1.2 Sensitivity of SWSI to weighting parameters  

The results of the absolute sensitivity analysis show that different weighting parameters of SWSI 

influence the index output at varying magnitudes.  The results show that the sensitivity of SWSI to 

the four main weighting parameters increased in the order of c, b, d and a where these parameters 

correspond to reservoir level, stream flow, dam inflow, and precipitation respectively. The SWSI 

was found to be most sensitive when weighting variables related to precipitation (a) was reduced. 

On the other hand, the SWSI was least sensitive to both decrease and increase in reservoir levels 

(c). Generally, the SWSI was found to be more sensitive to a decrease than an increase in the 

weighted parameter values as given in Figure 4.1. The SWSI high sensitivity of weighting 

parameter a is attributed to the fact that precipitation is the most significant hydrological 

component that contributes to the runoff and the stream flow. Quantifying the SWSI sensitivity to 

parameter changes helped to understand its response to errors in parameter estimation prior to 

model calibration. 

 

  

Figure 4. 1: Sensitivity of SWSI to decrease in weighted parameters  
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Figure 4. 2: Sensitivity of SWSI to increase in weighted parameters 

 

4.1.3 Development and modification of SWSI equation 

The time series SWSI was computed based on the equations formulated for respective gauging 

stations. For instance, the results for the Kamburu (ID 4ED01) gauging station were obtained at 

regression coefficient “R” of 0.863 using the modified SWSI Equation (4.1) given as:    

  
1849.0

104.2 


dfrssfrn

m

PNdPNcPNbPNa
SWSI              (4.1) 

Where; 

 SWSIm = the modified surface water supply index,  

 

This procedure was repeated for all the selected gauging stations. Equation (4.2) that presents a 

general mathematical function of SWSI was formulated for all stations in the upper Tana River 

basin.  

  
3

21

k

kPNdPNcPNbPNak
SWSI

dfrssfrn

m


 `             (4.2) 

The parameters k1, k2 and k3 in the equation are conceptual parameters that are dependent upon the 

basin characteristics. As an illustration, these conceptual values for the Kamburu gauge station (ID 

4ED01) are 2.04, 1.0 and 0.1849 respectively. In addition, the results give time series of the SWSI 

values between -4.22 to +4.22. This equation resulted into values that ranged between -4.22 and 



92 
 

+4.22 and which are in agreement with the values given by Shafer and Dezman (1982), and 

supported by Kwon and Kim (2010). 

 

The time series SWSI results of the four gauging stations namely; Yatta furrow (ID 4CC03), 

Nyamindi (ID 4DA10), Tana sagana (ID 4BC02) and Amboni (ID 4AB05) are summarized in 

Figures 4.3 to 4.6.  

 

 

   

Figure 4. 3: Time series of SWSI for Yatta furrow gauging station  
 

 

   

Figure 4. 4: Time series of SWSI for Nyamindi gauging station 
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Figure 4. 5: Time series of SWSI for Tana sagana gauging station 

 

    

Figure 4. 6: Time series of SWSI for at Amboni gauging station 

 

From these results, it is observed that the drought magnitude varied from station to station with 

major droughts of different durations occurring between 1990 and 1997 for all the gauging stations. 

The results show that the SWSI values were consistently below -3.0 in all the stations for the period 

1990 to 1997. This means that most areas in the basin experienced severe drought in the stated 

years. The results also indicate that severe or moderate droughts at varying magnitudes as detected 

by the SWSI were experienced in 1973, 1978, 1984, 1994, 2000 and 2010 with the SWSI values 

equal or less than -2.0.  
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The results presented in Figure 4.7 show that the values of SWSIm for the months of April and 

September are -2.40 and -3.5 respectively.  
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Figure 4. 7:  Trend of the mean monthly SWSI and precipitation 

 

These values represent moderate (-2.00 to 2.99) and severe (-3.00 to 3.99) drought conditions in the 

river basin for the specified months. However, the SWSIm for the months of June (Jun), November 

(Nov) and December (Dec) are 3.3, 3.5 and 4.2 respectively. These values lie between 1.99 to 3.99 

and 4.00 or greater representing wet and abundant water supply condition for the months of Jun, 

Nov and Dec for the basin. These findings are are consistent with the results presented by Kwon 

and Kim (2010).  

 

4.1.4 Spatially distributed drought severity based on SWSI 

In terms of severity area coverage of the basin, the results of the computed drought severities for 

1970, 1980, 1990, 2000 and 2010 show that the temporal and spatial drought severity has been 

increasing over the years with values ranging between 1.69 to 2.22 and 3.59 to 4.17 (Figure 4.8a) 

for 1970 and 3.74 to 6.29 and 4.37 to 4.96 (Figure 4.8e) for 2010. On a spatial extent, the areas in 

south-eastern parts of the basin have generally the highest drought severity over all the years. These 

areas are within the Arid and Semi Arid Lands (ASALs) at low elevations and receive annual 

average precipitation of between 700 and 1000 mm. These south-eastern areas which exhibit the 

highest decadal drought severities are considered to be the most drought-risk prone areas. The areas 

north-west of the basin are within the humid zones at high elevations. These areas receive annual 

precipitation amount ranging from 1000 to 2000 mm and exhibit low drought severities as given in 
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Figure 4.8h.  The SWSI results were compared with similar findings given by Kwon and Kim 

(2010) where 32 and 112 sub-basins for a South Korean river basin were used; results from both 

the 32 and 112 sub-basin scenarios indicated variation of SWSI for different months of the year and 

spatial domain. 
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Figure 4. 8(a-e): Spatially distributed drought severity in the upper Tana River basin
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The results in Figure 4.9 show that the drought frequency and its variation for every decade and for 

the entire study period have been increasing. Due to varaiability of hydro-meteorological factors, 

and the non-homogeinity in land use/cover systems within the basin, the results show that the 

drought characteristics vary spatially.  

 

Decadal drought frequency distributions for the upper Tana River basin are presnted in Figure 4.9 

(a -d). From the results, it is observed that drought in the basin has become more frequent since the 

1970s reaching severe levels in 1990s when the frequency over the entire basin was greater than 

4.8%. However, there is notable frequency decline from 2000 to 2010 compared with that of 1990s 

(Figure 4.9(c) and (d). From Figure 4.9 (e), the the results show that minimum and maximum 

average drought frequency for the 41 years (1970 to 2010) range from 3.74 to 6.29 and from 10.61 

to 13.76% respectively. The results of decadal frequency indicate that the highest and lowest 

drought frequencies are in the south-eastern and north-western parts of the basin respectively. 

 

Similar research conducted by Shen et al. (2015) showed that the source areas of Waihe River are 

more drought-prone than the areas downstream of the river. The results of Shen et al. (2015) 

showed that the highest frequency of drought was more than 60% for source areas while the 

downstream areas exhibited drought frequency of less than 30% during the period 2000 to 2012.  

However, the results of frequency analysis for the upper Tana River basin are in contrast with these 

findings. Instead, the downstream parts of the basin located in south-eastern areas indicate higher 

drought frequencies (Figure 4.9) meaning that the south-eastern areas are more drought-prone than 

the source areas which are within the north-western and north-eastern parts. The difference in 

results of upper Tana Tana river basin and the waihe river basin is due to the fact that latter basin 

underwent more rapid land use/cover change in the source areas than the downstream parts for the 

period the research was conducted. The occurrence of drought events has significantly changed in 

most parts of the upper Tana River basin for the period 1970-2010. For the purpose of illustrating 

the drought frequency, the Severe Drought (SD) is shown using Figure 4.9. The highest drought 

frequency of between 10.61 and 13.76 occur in the south-eastern areas while the northern parts 

exhibit the lowest frequency ranging from 3.74 to 6.29 as shown in Figure 4.9. This drought 

frequency results again indicate that the areas in south-eastern parts of the basin are most prone to 

severe drought conditions.  
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Figure 4. 9(a-e): Spatially distributed drought frequency of severe drought for SWSI 
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Results from the Mann-Kendall trend test criteria described in section 3.2.13 show that there was 

an increase in drought trend in the south-eastern parts of the basin at 90% and 95% significant 

levels while no significant trend was detected in the north-western areas. An increase in trend in 

drought which is significant at 95% significant level and insignificant at 90% significant level for 

the middle elevations as given in Figure 4.10 was obtained. 

 

 

 

 

 

 

 

 

 

Figure 4. 10: Spatially distributed Mann-Kendall trend of severe drought for SWSI 

 

Variation of the drought frequency and coverage are influenced by the basin meteorological factors 

and climate change (Zhou et al., 2012). Some of the critical meteorological factors include 

humidity and temperature (Yao et al., 2013). According to Wu et al. (2015), temperature is a major 

climatic factor that influences exchange of substances such as water and energy within a basin.  

Based on the hydrometric stations data plots, there has been a significant increase in yearly and 

decadal mean temperature in the upper Tana River basin as shown in Figures 4.11 and 4.12. This 

increase leads to increase in maximum potential evapotranspiration, reduction of precipitation and 

reduction of terrestrial surface humidity. 
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Figure 4. 11: Mean yearly temperature at Nyeri hydrometric station for 1978-2012 
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Figure 4. 12: Mean decadal temperature at Nyeri hydrometric station for 1970-2010 

 

 4.1.5 Time series SDI 

The results of of monthly time series of SDI are presented in Figures 4.13 to 4.16 for gauging 

stations Amboni (ID 4AB05), Tana sagana (ID 4BC02), Nyamindi (ID 4DA10) and Kamburu (ID 

4ED01) respectively. 
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Figure 4. 13: Time series of SDI and stream flow for Amboni gauging station 

 

 

Figure 4. 14: Time series of SDI and stream flow for Tana sagana gauging station 
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Figure 4. 15: Time series of SDI and stream flow for Nyamindi gauging station 

 

 

Figure 4. 16: Time series of SDI and stream flow for Kamburu gauging station 

 

4.1.6 Time series SPI 

The results for monthly time series SPI and the spatial characteristics of droughts in the upper Tana 

River basin are presented. The results spatial maps are based on the partitioned basin into four 

elevations bands; low, lower-middle, middle and high elevations. The results of plotted drought 

conditions on monthly time series graphs are illustrated using the graphs for meteorogical stations 

Sagana FCF (ID 9037096), Kerugoya DWO (ID 9037031), Nyeri (ID 9036288) and Naro-moru (ID 

9037064) as presented in Figures 4.17 to 4.20. 
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Figure 4. 17: Time series SPI and precipitation for Sagana FCF meteorological station. 

 

 

Figure 4. 18: Time series SPI and precipitation at Kerugoya DWO meteorological station 

 

 

Figure 4. 19: Time series SPI and precipitation for Nyeri meteorological station 
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Figure 4. 20: Time series SPI and precipitation for Naro-moru meteorological station 

 

Both time series SPI and precipitation were plotted for ease of comparison as given in Figures 4.17-

4.20 for the four meteorological stations. The results show that the SPI varies with the monthly 

precipitation within the study period and across the river basin. For all the stations, extreme drought 

events based on SPI were detected using SPI for the periods 1972-1974, 1983-1984, 1987-1988, 

1999-2000 and 2011 within which the monthly SPI values were consistently below -2.00. The SPI 

is used to detect the occurrence of drought (negative values of SPI) or the wetness (positive values 

of SPI) in a river basin. The other drought conditions detected by SPI for the upper Tana River 

basin as defined in the SPI criterion presented in Table 3.5 include: severe drought, moderate 

drought, near normal, moderate wet, very wet and extremely wet conditions. Results of SPI time 

series within the upper Tana River basin show extreme wetness for 1985-1886, 1992, and 1998 

with SPI values being relatively above +2.00. 

 

4.1.7 Spatially distributed drought severity based on SPI 

Drought severities for the upper Tana River basin were computed and mapped using the Kriging 

approach for the selected years; 1970, 1980, 1990, 2000 and 2010. From Figure 4.21, it is observed 

that the spatial drought distribution in the south-eastern areas of the basin exhibit drought 

severitities ranging from 2.044 to 2.835 and from 4.416 to 5.207. In addition, the results show that 

the north-western parts of the basin experienced drought severity values of 1.822 to 2.463 and 

3.745 to 4.384 for 1970 and 2010 respectively. These results indicate that the south-eastern parts of 

the basin exhibit the highest drought severities while the north-western areas have the lowest. The 

spatial variation of drought is comparable with the drought distribution generated in other river 
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basins for instance by Mishra and Nagarajan (2011) in the Tel river basin and Rajput et al. (2014) 

in the upper Seonath sub-basin. 

 

The difference in drought severities is attributed to the variation of agro-ecological zones found 

across the basin. Most south-eastern parts of the basin are arid and semi-arid lands (ASALs) that 

fall in zones V and IV of Kenya’s agro-climatic zones. These areas are at low elevations (700-2700 

m a.s.l.) and receive low rainfall. On the other hand, the north-western parts which are at higher 

elevations (2700-4700 m a.s.l.), are humid and fall within agro-ecological zones III to I.  According 

to FAO (2006), the agro-ecological zones of the corresponding precipitation to evapo-transpiration 

(R/E0) Ratio values of the south-eastern and north-western areas are 25-50 and 50-80 respectively 

(Table 6A, Appendix A). 

 

Based on the SPI, the areal-extend of drought severities increased in both the south-eastern and 

north-western areas from 4868.7 km
2
 to 6880 km

2
, and 6163.9 km

2
 to 6985.5 km

2
 from 1970 to 

2010 respectively. Between 1970 and 1980, the drought areal-extend is almost the same but a 

significant increase occurred between 1980 and 2010.  
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Figure 4. 21(a-e): Spatially distributed drought severity based on SPI
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From Figure 4.22(a), the results show that the average drought frequency between 1970 and 2010 

for the south-eastern and north-western areas ranged from 12.16 to 14.93 and 3.82 to 6.63 

respectively.  The drought characteristics were also subjected to Mann-Kendall trend test across the 

basin. Results of the Mann-Kendall test show that drought trend increased in the south-eastern parts 

of the basin at 90% and 95% significant levels. However, the results given in Figure 4.22(b) shows 

that there was no significant trend that was detected in the north-western areas. This is an indication 

that the south-eastern parts are more prone to drought risks than the north-wetsern areas of the 

upper Tana River basin. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 22(a and b): Frequency of severe drought and its trend based on SPI 

 

4.1.8 Monthly time series EDI 

Monthy time series of EDI for meteorological stations Nyeri (ID 9036288), Kerugoya DWO (ID 

9037031), Sagana FCF (ID 9037096) and Naro-moru (ID 9037064) are presented in Figures 4.23 to 

4.26. 

 
 

(a) (b) 
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Figure 4. 23: Time series EDI and precipitation for Nyeri meteorological station 
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Figure 4. 24: Time series EDI and precipitation forKerugoya DWO meteorological station 
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Figure 4. 25: Time series EDI and precipitation for Sagana meteorological station 
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Figure 4. 26: Time series EDI and precipitation for Naro-moru meteorological station 

 

The results of the monthly time series EDI show that this index can be used to detect both the 

drought and wetness for different years. Typical droughts as presented by this index include the 

extreme droughts represented by the negative values of -2.5, -2.2, -2.2, -2.5, -2.5, and -2.5 for the 

years 1972, 1973, 1992, 1994, 2000 and 2010 respectively. At the same time, the index was used to 

detect the wet conditions of the basin where positive values of +3.0, +3.0 and 4.3 for the years 

1986, 1989 and 1998 respectively as illustrated by Figures 4.23-4.26 indicate wetness. 

 

4.1.9 Spatially distributed drougt severity based on EDI  

From the results of spatial distribution of drought based on EDI shown in Figure 4.27(a-e), it is 

observed that the drought severity values differ slightly from those determined using the SPI.  It is 

also noted that the drought severity values in south-eastern areas of the basin range from 3.850 to 

4.486 and 4.804 to 5.584 in 1970 and 2010 respectively. 
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Figure 4. 27(a-e): Spatially distributed drought severity based on EDI 
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 For the north-western parts, these values range from 1.822 to 2.463 and 3.745 to 4.384 for the 

years 1970 and 2010 respectively. Although the drought severity based on EDI is generally higher 

than the SPI, both indices exhibit similar trends in terms of spatial distribution, frequency and 

Mann-Kendall trend test as given in Figures 4.28 and 4.29.  

 

 

 

 

 

 

 

 

Figure 4. 28: Spatially distributed drought frequency based on SPI 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 29: Spatially distributed Mann-Kendall trend test of drought based on SPI 

 

4.1.10 Time series Soil Moisture Deficit Index (SMDI) 

The SMDI monthly series data was grouped into dry and wet periods for the computed values of 

SMDI at 60-cm soil depth that represents the most active Plant rooting zone for plant 
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evapotranspiration according to FAO (2013). Analyzing the seasonality of drought required 

definition of the distinct seasons. The seasonal occurrence of droughts was evaluated by analyzing 

drought events separated into each season (Birkel, 2005). The dry period includes the months of 

July to September (J-S) and January to March (J-M) while the wet period includes the months of 

October to December (O-D) and March to June (M-J). The average SMDI was computed for each 

season to describe the agricultural drought condition for the upper Tana River basin. From the 

results given in Figures 4.30 to 4.33, it is observed that the seasonal drought magnitudes vary from 

year to year. Such a trend is consistent with that presented by Nalbantis (2008) and Tsakiris (2009) 

in Evinos river basin in Greece. The results also show that the dry seasonal SMDI values in the 

months of January to March are consistently higher than the ones for July to September.  This 

significant discrepancy between the SMDI values for the months of January to March, and July to 

September is due to the influence of the normal hydrological regime of the basin manifested as long 

dry period and short dry period.  

  

By comparing the time series results of SMDI for dry and wet seasons for all meteorological 

stations and using the meteorological station MIAD (ID 9037112) for illustration, it is observed 

that the values of SMDI for the dry season are consistently lower than those for the wet seasons as 

given in Figures 4.30 and 4.31. From Figures 4.30 and 4.32, it is evident that the SMDI time series 

values for MIAD (ID 9037112) located at lower elevations of the basin is less than those for the 

meteorological station Naro-moru F.G.P (ID 9037064) which is at higher elevations.  Thus, it can 

be deduced that the areas within the lower elevations are more prone to drought risks than those in 

the higher elevations. 
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Figure 4. 30: Time series of SMDI for dry season of at MIAD meteorological station  

 

  

Figure 4. 31: Time series of SMDI for wet season at MIAD meteorological station 
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Figure 4. 32: Time series of SMDI for dry season at Naro-moru meteorological station 

 

  

Figure 4. 33: Time series of SMDI for wet season at Naro-moru meteorological station 

 

4.1.11 Spatially distributed drought severity based on SMDI  

The results of SMDI spatial distribution of drought as presented in Figure 4.34 show that the 

minimum and maximum drought severity values in 1970 are from -0.661 to 0.603 and 0.807 to 

0.769 respectively. These drought severities are experienced in the north-western and south-eastern 

areas of the basin as given in Figure 4.34a. From the results given in Figure 4.34c, it is observed 

that the values increased from -0.715 to -0.658 and -0.886 to -0.829 between 1970 and 2010. This 
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is an indication that the south-eastern parts of the basin are the most susceptible to droughts as 

detected by the SMDI while the north-western areas are least prone to the droughts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 34(a-c): Spatially distributed drought severity based on SMDI 

 

4.1.12 Time series Palmer Drought Severity Index (PDSI) 

From Figures 4.33 to 4.36 it is observed that for dry seasonal PDSI, the values in the months of 

January to March are constantly higher than the ones for July to September and the trend is 

 

(a) 

 

(b) 

 
(c) 
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comparable to that of SMDI. However, the range of PDSI values is greater compared to the SMDI. 

By comparing the time series results of PDSI for dry and wet seasons for MIAD (ID 9037112) 

meteorological station, it can be seen that the time series plots for the PDSI values for dry season 

are generally lower than those for the wet seasons (Figures 4.35 and 4.36). 

 

  

Figure 4. 35: Time series of PDSI for dry seasons of at MIAD meteorological station 

 

  

Figure 4. 36: Time series of PDSI for wet seasons at MIAD meteorological station 
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Figure 4. 37: Time series of PDSI for dry seasons at Naro-moru meteorological station 

  

Figure 4. 38: Time series of PDSI for wet seasons at Naro-moru meteorological station 

 

In addition, it can be seen in Figures 4.35 and 4.37 that the PDSI time series values for MIAD 

meteorological station (ID 9037112) located at the lower elevation of the upper Tana River basin 

are lower than those for the Naro-moru station (ID 9037064) which is at higher elevation.  Thus, 

similar to the SMDI, the PDSI results indicate that the areas within the lower elevations are more 

prone to drought risks than those in higher elevations. The average monthly PDSI at Amboni 

station is presented in Figure 16B, Appendix B whose trend is similar to that of SWSI described in 

Section 4.1.4. 

 

From the results of spatially distributed drought magnitude, it can be seen that there is a general 

increase in area under the extreme and severe drought as given by PDSI from 1970 to 2010. For 

instance, the area under extreme and severe droughts are 3758.01 (21.57%) and 1784.90 (10.25%) 
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respectively for the year 1970 while the values for 2010 are 4540.36 (26.06%) and 2537.55 

(14.57%) respectively (Tables 7A and 8A; Appendix A). The distribution of extreme and severe 

drought categories dominate in the south-eastern parts of the upper Tana River basin while extreme 

wet and moderate wet conditions dominate the north-western areas (Figure 4.39). As detected by 

the other indices, south-eastern parts of the basin have the highest risk of experiencing high drought 

magnitudes. However, the north-western areas have the lowest drought risks. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 39(a and b): Spatially distributed magnitude of PDSI-based drought in October 

 

Comparing the results in Figure 4.39 with similar research by Yan et al. (2013) in Luanhe River 

basin, showed that the lowest PDSI values (PDSI< -4.00)  are persistently observed in the north-

western areas of Luanhe basin. On the other hand, the south-eastern areas of the upper Tana River 

basin exhibit similar lowest values of PDSI (PDSI< -4.00). 

   

4.1.13 Spatially distributed drought severity based on PDSI 

The results of spatially distributed drought severity based on PDSI show that the ranges of 

maximum and minimum drought severity values in 1970 are -0.868 to -0.804 and -0.675 to -0.610 

respectively, and categorized in Figure 23B, Appendix B. These maximum and minimum drought 

severity values occur respectively in the north-western and south-eastern areas of the basin as 

summarised in Figure 4.40a. The maximum and minimum values increased from -1.478 to -1.348 

and from -1.087 to -.957 in 2010 as presented in Figure 4.40d. This is an indication that the south-

 

(a) 

 

(b) 
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eastern parts of the basin are the most susceptible to droughts while the north-western areas are 

least prone to the droughts. There is an increase in drought severity over the years of record. The 

trend in spatial PDSI severity values over time compared closely with the spatial patterns trend 

explained by Zoljoodi and Didevarasasl (2013). For instance, these authors showed that the PDSI 

severity values increased from -1.28 (1951-2005) to -7.68 (1999-2002) in Iran. In comparison with 

the present study, the results show that the PDSI increased from the range -0.675 to -0.610 in 1970 

and from -1.087 to 0.957 in 2010 for the north-eastern areas of the upper Tana River basin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 40(a-d): Spatially distributed PDSI-based drought severity 
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4.1.4 Characteristics of time series drought conditions 

Drought characteristics within the upper Tana River basin were esatablished using characteristic 

curves that relate drought probability, return period and magnitude. It is possible to determine the 

probability and frequency of drought with defined severity for different gauging stations. For 

instance, Figure 4.41 presents the results of drought characteristics for Amboni gauging station (ID 

4AB05) where the probability of occurrence of severe (-3.00 to -3.99) and moderate (-1.00 to -

1.99) droughts is 0.18 and 0.51 while the return periods for the two drought conditions are 8 years 

and 1 year respectively. From Figure 4.41, it can also be seen that the probability of drought events 

increased linearly with increase in magnitude of SWSI while the return period of drought events 

increased exponentially with decrease in magnitude of SWSI.  The associated regression 

coefficients of the resulting linear and exponential functions of 0.984 and 0.980 respectively 

indicate that the drought probability and magnitude, and the return period and magnitude have a 

strong correlation. Thus the functions in Figure 4.41 can effectively be used in determining the 

probability and return perion for any drought severity in the basin. 

  

Figure 4. 41: Drought characteristic curves of SWSI for Amboni hydrometric station 

 

In addition, the drought Severity-Duration-Frequency (SDF) curves for the upper Tana River basin 

were fitted. The results of the SDF curves at Amboni gauge station (ID 4AB05) as presented in 

Figure 4.42 show that for a 50-year return period, cumulative drought severity of 5.5, 7.2, 9.8, 13 

and 17 correspond to 2, 4, 5, 6 and 8-months duration.  The drought events of different return 
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periods exhibit a similar trend. It is thus inferred that the higher the cumulative drought severity for 

each return period, the higher the duration. The trend of the results presented in Figure 4.42 is 

similar to the SDF curves developed by Dalezios et al. (2000) using cumulative drought severity of 

PDSI for Volos hydrometric stations in Greece.  

 

  

Figure 4.42: Severity-Duration-Frequency (SDF) curves at Amboni based on SWSI 

 

Figure 4.43 shows the maximum cumulative drought magnitude based on SWSI for the duration of 

2 months which is expected to be equaled or exceeded once every 10 and 50 years. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 43: Drought-severity contour map for (a) 10 and (b) 50-year return period 
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Figure 4.43 present spatial drought for the upper Tana River basin. When such maps are developed 

using precipitation, as it is in the case of intensity-duration-frequency curves, they are referred to as 

isopluvial maps. However, in this study on drought, the maps are called iso-drought maps. The 

lines in Figure 4.43 define points with same drought magnitude for different combinations of one 

return period for a defined duration. From Figure 4.43, it can be deduced that the expected drought 

magnitude for a 50 year return period is higher than that of 10 year return period. The south-eastern 

parts of the basin exhibit higher values than the north-western and north-eastern areas. This means 

that the south-eastern areas are at the highest risk of drought than the other parts of the basin. 

  

The mean drought frequency was determined and the results are presented in Figure 4.44 and Table 

9A in Appendix A. 

. 

 

 

 

 

 

 

 

 

 

Figure 4. 44: Mean drought frequency for entire basin and south-eastern areas 

 

The results given in Figure 4.44 show that the upper Tana River basin experiences at least a 

hydrological, meteorological and agricultural droughts on average every 4, 3 and 3 years 

respectively. Results indicate that an extreme agricultural, meteorological and hydrological drought 

event is experienced every 4, 5 and 6 years respectively. The results show that there is more 

frequent drought occurrence in the south-eastern areas of the basin. For instance, the results show 

that the hydrological drought occurs every 3 years while its extreme event occurs every 4 years. 

 

The Stream Flow Drought Index (SDI) was also fitted for different return periods and then plotted 

together with the streamflow. Results of the fitted curves show that the absolute SDI increases with 

the increase in return period as given in Figure 4.45 for gauging stations; Amboni (4AB05), Tana 

Sagana (4BC02), Sagana (4AC03) and Gura (4AD01) respectively. Results show that the 
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hydrological droughts represented by absolute SDI of 0.667and 1.265 are equaled or exceeded on 

average once every 2 and 1000 years respectively. The same applies to the other hydrological 

droughts of defined absolute SDI. The results of the absolute SDI were tied to their respective 

stream flow magnitudes as shown in Figure 4.45. This is critical in water resources management 

since water managers can match specific absolute drought index with corresponding quantity of 

stream flow.   

 

Generally the results show that, the minimum and maximum drought episodes occurred within the 

areas where the gauging stations 4AB05 and 4CC03 are located in highest and lowest elevations, 

with absolute SDI ranging from 0.667 to 1.265 and 1.213 to 2.42 for 2 and 1000-year return period 

respectively. Using SDI criterion (Table 3.4) and results from Figure 4.45, the critical points are 

identified. The critical point is the level of hydrological drought beyond which the water facilities 

are significantly affected by drought. For instance, the critical point for gauging station 4AB05, as 

shown using the  dotted line, coincides with the return period of 28 years with absolute SDI of 0.92 

and stream flow of 3.6 m
3
/s (Figure 4.45a), while that of 4BC02 is 20 years with absolute SDI of 

1.2 and stream flow of 45 m
3
/s (Figure 4.45b). In this case, if a water resource system is to be 

designed for example at the Tana Sagana gauging station (ID. 4BC02) and Amboni (ID. 4AB05), 

the water storage systems should be designed to cope with drought corresponding to absolute 

severity 1.2 and of 0.92, with return periods of less or equal to  20 and  28 years respectively. 
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Figure 4. 45: Relation between the Qm, SDI and T for different gauging stations 
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From Figure 4.46, the results show that the ratio of QQT /  represented by Y (Equation 3.56) 

increases with Cv for different return periods; 5, 10, 20, 50 and 100-year return periods represented 

as T5, T10, T20, T50 and T100. This confirms that the Gumbel method is also applicable in 

drought frequency estimation as supported by Al-Mashindani et al. (1978) on development of a 

simple function of flood estimation in numerous river systems such as Tigris, Euphrates, Adhaim, 

Diyala and Yamuna.  

  

Figure 4. 46: Plot of Y versus Cv at Kamburu station in the upper Tana River basin 

 

4.2 Forecasted drought using DIs and ANNs 

The results of DIs under the hydrological, meteorological and agricultural drought types were 

investigated.  As shown in Tables 4.2 to 4.10, the performance of different artificial neural network 

models in forecasting of different drought indices at different gauging stations vary with lead-time. 

In this study, the lead times were categorized into short (1 to 3 months), medium (4 to 9 months) 

and long (10 to 24) lead time as presented in Tables 4.2 - 4.10. 

 

4.2.1 Hydrological drought forecasts 

The SWSI and SDI were the two indices used for hydrological drought forecasting at the gauge 

stations. For instance, at Yatta furrow gauging station (ID 4CC03), the SWSI values show that the 

best forecasting models give correlation coefficient (R) values of 0.857, 0.764, 0.726, 0.694, 0.674, 

0.503, and 0.382 for 1, 3, 6, 9, 12, 18 and 24-month lead times respectively. The corresponding R 

values for the same lead times based on SDI are slightly lower than R values for SWSI. Generally, 

the performance of the models in forecasting drought in the upper Tana River basin, declined with 

increase in lead time. Such a trend conforms to that presented by Mishra and Desai (2006) where 
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these authors showed a significant decrease of ANN models performance in drought forecasting 

from 1 to 6-months lead time in Kansabati River Basin, India. 

 

To identify the most appropriate model, different network models were formulated and tested for 

forecasting each drought index using the performance measures. The formulated models comprise 

input combination that are in conformity with those illustrated by Morid et al. (2007) and Mishra 

and Nagarajan (2012). From the results, the best forecasting model was adopted whose results are 

presented for each station in this study. For example, the best network model for forecasting SWSI 

(Table 10A, Appendix A) is expressed as: 

   2121)( ,,,,,   ttttttnt PPPSWSISWSISWSIfSWSI                (4.3) 

Where; 

 ntSWSI  = the forecasted SWSI for lead time n months 

 tSWSI = the SWSI at time t 

 t, t-1 and t-2 = present, one month before and two months before the current month  

 

For one-month lead time, the best ANNs architecture for forecasting SWSI are 6-5-1,  6-3-1, 6-5-1, 

6-9-1, 6-10-1, 6-3-1,  6-7-1 and 6-10-1 for gauging stations 4AB05, 4AC03, 4AD01, 4BC02, 

4CC03, 4DA10, 4DC03 and 4EB01 respectively. The ANNs acrchitecture defines the number of 

neurons in the structure. For instance, the architeture of 6-10-1 means 6, 10 and 1 neurons in the 

input, hidden and output of the ANN.  The ANNs architecture for all the other stations and different 

lead times are shown in the Tables 4.2-4.4. The best network model for forecasting SDI is also 

shown in Table 10A, Appendix A. These findings show that the forecasting ability of  all the 

network models decrease with increase in lead-time at all stations as indicated by different 

performance criteria; R, RMSE, MAE, d1 and NSE that were used in this study. In addition, the 

SWSI performed better than SDI in hydrological drought forecasting across all lead times. The 

SWSI  and SDI for instance, depicted R values of 0.752 and 0.732 for station 4AB05 for one-month 

lead time.   
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Table 4. 2: Best ANNs for short-term drought forecasting of SWSI and SDI 

Station IDa 

 

SWSI SDI 

ANN Archb R RMSE MAE d1 NSE ANN Archb R RMSE MAE d1 NSE 

1-month lead time 

4AB05 6-5-1 0.752 0.367 0.244 0.805 0.698 5-4-1 0.732 0.372 0.253 0.745 0.654 

4AC03 6-3-1 0.721 0.373 0.249 0.773 0.668 5-3-1 0.703 0.376 0.256 0.719 0.623 

4AD01 6-5-1 0.748 0.365 0.242 0.799 0.695 5-4-1 0.728 0.372 0.250 0.745 0.646 

4BC02 6-9-1 0.685 0.378 0.255 0.735 0.632 5-5-1 0.666 0.381 0.261 0.683 0.594 

4CC03 6-10-1 0.857 0.298 0.175 0.924 0.822 5-6-1 0.839 0.293 0.176 0.852 0.759 

4DA10 6-3-1 0.787 0.324 0.209 0.833 0.734 5-4-1 0.762 0.331 0.209 0.771 0.681 

4DC03 6-7-1 0.762 0.363 0.239 0.814 0.709 5-5-1 0.740 0.365 0.243 0.751 0.662 

4EB01 6-10-1 0.854 0.312 0.189 0.907 0.802 5-6-1 0.821 0.308 0.188 0.822 0.745 

3-months lead time 

4AB05 6-5-1 0.662 0.376 0.259 0.717 0.609 5-4-1 0.640 0.382 0.269 0.666 0.582 

4AC03 6-9-1 0.643 0.395 0.277 0.696 0.591 5-5-1 0.623 0.415 0.292 0.651 0.555 

4AD01 6-5-1 0.658 0.384 0.266 0.713 0.606 5-4-1 0.636 0.391 0.283 0.668 0.575 

4BC02 6-5-1 0.612 0.399 0.282 0.667 0.559 5-3-1 0.594 0.408 0.296 0.622 0.528 

4CC03 6-10-1 0.764 0.312 0.194 0.816 0.712 5-6-1 0.734 0.319 0.201 0.764 0.676 

4DA10 6-3-1 0.688 0.343 0.225 0.745 0.636 5-6-1 0.664 0.368 0.230 0.691 0.606 

4DC03 6-10-1 0.669 0.383 0.265 0.721 0.619 5-11-1 0.647 0.390 0.276 0.667 0.589 

4EB01 6-10-1 0.775 0.329 0.211 0.786 0.692 5-6-1 0.716 0.331 0.214 0.729 0.664 
aThe station IDs defined as 4AD01, 4AC03, 4AD01, 4BC02, 4CC03, 4DA10, 4DC03 and 4EB01refer to Amboni,Sagana, Gura,Tana sagana, Yatta 

furrow, Nyamindi, Rupingazi and Kamburu gauge stations respectively 
bThe short form of ‘Architecture’ 
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Table 4. 3: Best ANNs for medium-term drought forecasting of SWSI and SDI 

Station IDa 

 

SWSI SDI 

ANN Archb R RMSE MAE d1 NSE ANN Archb R RMSE MAE d1 NSE 

6-months lead time 

4AB05 6-5-1 0.632 0.396 0.274 0.684 0.579 5-4-1 0.631 0.401 0.285 0.637 0.538 

4AC03 6-10-1 0.613 0.418 0.296 0.665 0.561 5-9-1 0.613 0.425 0.310 0.622 0.522 

4AD01 6-5-1 0.626 0.406 0.284 0.674 0.573 5-4-1 0.625 0.412 0.297 0.633 0.533 

4BC02 6-9-1 0.589 0.422 0.299 0.638 0.545 5-5-1 0.591 0.429 0.314 0.597 0.508 

4CC03 6-10-1 0.726 0.324 0.202 0.776 0.674 5-6-1 0.722 0.321 0.203 0.719 0.622 

4DA10 6-4-1 0.658 0.363 0.241 0.708 0.605 5-6-1 0.655 0.364 0.250 0.657 0.561 

4DC03 6-7-1 0.642 0.405 0.283 0.693 0.589 5-4-1 0.638 0.411 0.296 0.642 0.547 

4EB01 6-10-1 0.713 0.348 0.227 0.763 0.663 5-6-1 0.705 0.347 0.232 0.691 0.614 

9-months lead time 

4AB05 6-5-1 0.611 0.435 0.272 0.665 0.558 5-4-1 0.599 0.442 0.286 0.621 0.521 

4AC03 6-12-1 0.582 0.459 0.296 0.632 0.529 5-5-1 0.574 0.468 0.314 0.594 0.495 

4AD01 6-5-1 0.598 0.449 0.286 0.654 0.545 5-4-1 0.587 0.457 0.302 0.615 0.509 

4BC02 6-9-1 0.563 0.465 0.302 0.612 0.509 5-12-1 0.555 0.475 0.321 0.572 0.477 

4CC03 6-10-1 0.694 0.356 0.193 0.758 0.642 5-6-1 0.675 0.368 0.196 0.703 0.595 

4DA10 6-10-1 0.629 0.397 0.234 0.685 0.575 5-8-1 0.615 0.399 0.246 0.637 0.536 

4DC03 6-7-1 0.615 0.446 0.284 0.669 0.563 5-3-1 0.602 0.453 0.301 0.621 0.525 

4EB01 6-10-1 0.681 0.382 0.219 0.737 0.628 5-6-1 0.663 0.382 0.226 0.667 0.584 
aThe station IDs defined as 4AD01, 4AC03, 4AD01, 4BC02, 4CC03, 4DA10, 4DC03 and 4EB01refer to Amboni,Sagana, Gura,Tana sagana, Yatta 

furrow, Nyamindi, Rupingazi and Kamburu gauge stations respectively 
bThe short form of ‘Architecture’ 
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Table 4. 4: Best ANNs for long-term drought forecasting of SWSI and SDI 

Station IDa 

 

SWSI SDI 

ANN Archb R RMSE MAE d1 NSE ANN Archb R RMSE MAE d1 NSE 

12-months lead time 

4AB05 6-5-1 0.589 0.487 0.356 0.647 0.537 5-4-1 0.566 0.502 0.381 0.603 0.505 

4AC03 6-4-1 0.562 0.508 0.376 0.619 0.508 5-9-1 0.538 0.523 0.404 0.581 0.477 

4AD01 6-5-1 0.578 0.498 0.367 0.636 0.525 5-4-1 0.553 0.511 0.394 0.599 0.492 

4BC02 6-9-1 0.544 0.517 0.385 0.601 0.489 5-4-1 0.518 0.532 0.414 0.562 0.461 

4CC03 6-10-1 0.673 0.395 0.267 0.731 0.618 5-6-1 0.640 0.397 0.280 0.679 0.575 

4DA10 6-7-1 0.613 0.439 0.317 0.668 0.559 5-5-1 0.587 0.446 0.324 0.621 0.522 

4DC03 6-5-1 0.594 0.496 0.364 0.652 0.541 5-7-1 0.567 0.509 0.390 0.605 0.507 

4EB01 6-10-1 0.657 0.427 0.295 0.715 0.604 5-6-1 0.627 0.432 0.316 0.648 0.564 

18-months lead time 

4AB05 6-5-1 0.483 0.576 0.456 0.534 0.482 5-4-1 0.472 0.599 0.493 0.502 0.455 

4AC03 6-9-1 0.465 0.643 0.523 0.516 0.453 5-7-1 0.455 0.673 0.593 0.488 0.431 

4AD01 6-5-1 0.475 0.612 0.492 0.526 0.472 5-4-1 0.464 0.639 0.535 0.501 0.446 

4BC02 6-12-1 0.448 0.608 0.486 0.498 0.437 5-8-1 0.439 0.634 0.528 0.470 0.416 

4CC03 6-10-1 0.503 0.487 0.365 0.637 0.564 5-6-1 0.490 0.501 0.395 0.594 0.528 

4DA10 6-9-1 0.504 0.543 0.421 0.542 0.505 5-5-1 0.491 0.562 0.442 0.508 0.476 

4DC03 6-10-1 0.498 0.587 0.463 0.545 0.487 5-5-1 0.485 0.611 0.501 0.509 0.460 

4EB01 6-10-1 0.506 0.502 0.398 0.612 0.549 5-6-1 0.493 0.517 0.427 0.555 0.516 
aThe station IDs defined as 4AD01, 4AC03, 4AD01, 4BC02, 4CC03, 4DA10, 4DC03 and 4EB01refer to Amboni,Sagana, Gura,Tana sagana, Yatta 

furrow, Nyamindi, Rupingazi and Kamburu gauge stations respectively 
bThe short form of ‘Architecture’  
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24-months lead time 

4AB05 6-5-1 0.368 0.667 0.547 0.426 0.317 5-4-1 0.348 0.703 0.601 0.368 0.307 

4AC03 6-5-1 0.356 0.756 0.636 0.412 0.303 5-7-1 0.337 0.802 0.706 0.395 0.295 

4AD01 6-5-1 0.364 0.713 0.586 0.418 0.311 5-4-1 0.345 0.754 0.644 0.403 0.302 

4BC02 6-4-1 0.343 0.723 0.595 0.395 0.287 5-3-1 0.327 0.765 0.655 0.377 0.281 

4CC03 6-10-1 0.382 0.576 0.458 0.473 0.379 5-6-1 0.359 0.602 0.492 0.478 0.362 

4DA10 6-5-1 0.386 0.685 0.541 0.442 0.346 5-4-1 0.363 0.723 0.557 0.418 0.333 

4DC03 6-12-1 0.381 0.686 0.561 0.436 0.328 5-9-1 0.359 0.724 0.616 0.411 0.317 

4EB01 6-10-1 0.388 0.605 0.492 0.456 0.364 5-6-1 0.365 0.637 0.544 0.442 0.349 
aThe station IDs defined as 9037112, 9037096, 9037202, 9037031, 9036288, 9137123, 9037212 and 9037064 refer to MIAD,Sagana FCF, Embu, 

Kerugoya DWO, Nyeri, Mangu HS, Maragua GEF and Naro-moru FGP weather stations respectively 
bThe short form of ‘Architecture’ 
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Figure 4.47 describes the best ANN forecasting performance efficiency with different number of 

hidden neurons (HN) for SWSI for 1-month lead time at hydrometric station 4CC03.  

 

 

 

 

 

 

 

 

 

Figure 4. 47: Forecasting efficiency verses trials at Yatta furrow gauge station 

 

In addition, Figure 4.47 shows that the highest forecasting efficiency is achieved when the number 

of Hidden Neurons (HN) in the hidden layer is 10 and which was realised in the fourth trial. 

However, beyond the fourth trial, the efficiency declined with increase in the number of trials.  

 

The results presented in Figure 4.48 show that the optimum ANN for the Yatta furrow (ID 4CC03) 

gauging station gave correlation coefficient R values of 0.878, 0.858 and 0.864 for training, 

validation and testing respectively. The correlation coefficient values were used as a measure of 

forecasting ability of the model. The results from Figure 4.48 were for a one-month lead time 

forecasting. This means that 87.8% of the output value of SWSI is explained by the input variables. 

The dashed line in Figure 4.48b is a perfect fit curve where outputs and targets are equal to each 

other, while the coloured solid line represents the best fit between outputs (forecasted) and targets 

(observed) values. From the validation results in Figure 4.48b, the close correlation value of 

0.85789 is realized. This means that the model can be used to make accurate predictions for the 

given conditions. 
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Figure 4. 48: Regression of the best ANNs of SWSI at Yatta furrow gauging station  

 

Figure 4.48 depicts the training, validation and testing mean square error values for Levenberg-

Marquardt algorithm with 6-10-1 model architecture. In this architecture, the minimum MSE values 

for the best model for training, validation and testing are 0.875, 0.926 and 0.863 respectively 

(Figure 4.49) at epoch 4. 
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Figure 4. 49: MSE results for L-M algorithm at Yatta furrow station  

 

Figure 4.50 shows the results of observed time series of the SWSI values against the finest 

forecasted values with lead times of 3, 6, 12 and 24 months respectively at gauging station 4AB05. 

The coefficient of correlation R values for these lead times are 0.662, 0.632, 0.589 and 0.368 

rspectively (Tables 4.2 to 4.4). The results show that the forecasted time series SWSI values 

accurately reflect that of the observed SWSI values at short and medium-term forecasting. The 

forecasting accuracy of the model declines with increase in lead time. The results of the other 

gauging stations follow a similar trend but indicate different performance levels of which the 

gauging station 4AB05 is used to illustrate the variation of time series data.  As far as a practical 

application is concerned, the accurate forecasting can be used to inform water resources managers, 

agricultural systems and hydropower generation of the expected severities of certain droughts. Such 

information is useful for timely formulation of mitigation and/or coping mechanisms. 
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Figure 4. 50: Observed SWSI and best ANNs forecasts at Amboni gauge station  
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For the purpose of comparing the performance of the two hydrological drought indices at low and 

high elevations, Figures 4.51 and 4.52 were plotted. The plots represent the performance of 

forecasting SWSI and SDI for the Amnoni (4AB05) and Yatta (4CC03) gauging stations and  

which represent high and low elevations of the basin. 

 

   

Figure 4. 51: Comparison of SWSI and SDI forecasts at Amboni gauge station  

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 52: Comparison of SWSI and SDI forecasts at Yatta furrow gauge station  
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From Figures 4.51 and 4.52, the NSE and modified index of agreement d1 values in forecasting of 

the SWSI are higher than the the ones for SDI. These forecasting performance measures at the 

validation step are therefore better for the SWSI compared to SDI. This is attributed to the fact that 

stream flow is the only input to the SDI while SWSI has four input variables which when integrated 

increases the accuracy of the forecasting. The results show that forecasting performance declines 

with increase in lead time and reduces more rapidly at gauging station 4AB05 than at station 

4CC03. This means that it is possible to forecast drought at 4CC03 more accurately at longer lead 

times than at 4AB05. These stations are located in Arid and Semi-arid Lands (ASALs), and humid 

areas respectively. 

 

4.2.2 Meteorological drought forecasts  

The best network models for meteorological drought forecasts are illustrated in Table 10A in 

Appendix A. The SPI and EDI network models formulated in this study for forecasting SPI and 

EDI were found to be in conformity with those developed by Morid et al. (2007) in a similar study. 

Different ANNs architecture were tested for the meteorological drought indices. For the 

meteorological drought forcasting, the SPI and EDI were used to formulate the network models. 

Although some of the ANNs artchitecture for SPI such as 5-6-1 for meteorological staion 9037212 

are consistent with Morid et al. (2007), the other best ANNs exhibit different and unique 

arcthitecture as shown in Tables 4.5 to 4.7. 
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Table 4. 5: Best ANNs for short-term drought forecasting of SPI and EDI 

Station IDa 

 

SPI EDI 

ANN Archb R RMSE MAE d1 NSE ANN Archb R RMSE MAE d1 NSE 

1-months lead time 

9037112 5-4-1 0.865 0.326 0.288 0.791 0.739 5-8-1 0.887 0.299 0.251 0.841 0.765 

9037096 5-11-1 0.832 0.296 0.268 0.761 0.711 5-4-1 0.849 0.266 0.235 0.809 0.735 

9037202 5-9-1 0.761 0.284 0.248 0.728 0.681 5-8-1 0.764 0.255 0.217 0.774 0.704 

9037031 5-7-1 0.768 0.276 0.241 0.735 0.687 5-4-1 0.774 0.248 0.211 0.782 0.711 

9036288 5-4-1 0.726 0.269 0.235 0.695 0.649 5-5-1 0.747 0.241 0.205 0.739 0.672 

9137123 5-9-1 0.732 0.274 0.24 0.677 0.633 5-5-1 0.755 0.246 0.199 0.72 0.654 

9037212 5-6-1 0.703 0.255 0.223 0.653 0.608 5-11-1 0.718 0.229 0.181 0.691 0.629 

9037064 5-3-1 0.684 0.23 0.203 0.634 0.591 5-10-1 0.694 0.226 0.167 0.673 0.612 

3-months lead time 

9037112 5-6-1 0.826 0.335 0.299 0.774 0.713 5-10-1 0.838 0.326 0.261 0.809 0.733 

9037096 5-4-1 0.764 0.313 0.288 0.754 0.686 5-5-1 0.813 0.306 0.251 0.779 0.725 

9037202 5-4-1 0.733 0.302 0.264 0.693 0.657 5-4-1 0.729 0.294 0.231 0.715 0.665 

9037031 5-8-1 0.724 0.292 0.258 0.707 0.663 5-8-1 0.737 0.286 0.226 0.742 0.681 

9036288 5-5-1 0.695 0.284 0.248 0.682 0.64 5-5-1 0.706 0.278 0.217 0.707 0.646 

9137123 5-6-1 0.704 0.29 0.254 0.664 0.623 5-8-1 0.695 0.284 0.223 0.698 0.628 

9037212 5-6-1 0.666 0.256 0.224 0.638 0.599 5-6-1 0.669 0.251 0.195 0.661 0.603 

9037064 5-7-1 0.649 0.233 0.214 0.626 0.582 5-4-1 0.658 0.228 0.187 0.649 0.599 
aThe station IDs defined as 9037112, 9037096, 9037202, 9037031, 9036288, 9137123, 9037212 and 9037064 refer to MIAD,Sagana FCF, Embu, 

Kerugoya DWO, Nyeri, Mangu HS, Maragua GEF and Naro-moru FGP weather stations respectively 
bThe short form of ‘Architecture’ 
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Table 4. 6: Best ANNs for medium-term drought forecasting of SPI and EDI 

Station IDa 

 

SPI EDI 

ANN Archb R RMSE MAE d1 NSE ANN Archb R RMSE MAE d1 NSE 

6-months lead time 

9037112 5-6-1 0.767 0.380 0.328 0.735 0.698 5-4-1 0.812 0.362 0.296 0.777 0.723 

9037096 5-4-1 0.745 0.348 0.305 0.703 0.672 5-12-1 0.775 0.341 0.266 0.729 0.673 

9037202 5-5-1 0.695 0.334 0.292 0.673 0.643 5-7-1 0.697 0.327 0.255 0.698 0.647 

9037031 5-10-1 0.681 0.325 0.284 0.679 0.646 5-9-1 0.708 0.318 0.248 0.704 0.653 

9036288 5-8-1 0.647 0.315 0.276 0.669 0.639 5-3-1 0.682 0.309 0.241 0.695 0.628 

9137123 5-4-1 0.667 0.323 0.283 0.652 0.623 5-7-1 0.678 0.316 0.247 0.676 0.622 

9037212 5-6-1 0.626 0.299 0.252 0.614 0.586 5-8-1 0.638 0.293 0.230 0.636 0.578 

9037064 5-8-1 0.616 0.282 0.237 0.597 0.571 5-6-1 0.628 0.257 0.197 0.629 0.562 

9-months lead time 

9037112 5-8-1 0.715 0.389 0.348 0.692 0.683 5-7-1 0.742 0.391 0.304 0.715 0.689 

9037096 5-9-1 0.674 0.367 0.321 0.652 0.643 5-10-1 0.681 0.359 0.283 0.698 0.673 

9037202 5-6-1 0.659 0.352 0.308 0.643 0.615 5-7-1 0.667 0.344 0.269 0.668 0.636 

9037031 5-5-1 0.656 0.342 0.299 0.649 0.621 5-4-1 0.663 0.335 0.266 0.673 0.648 

9036288 5-4-1 0.618 0.332 0.291 0.647 0.619 5-7-1 0.625 0.325 0.254 0.67 0.616 

9137123 5-6-1 0.635 0.340 0.298 0.633 0.603 5-6-1 0.641 0.333 0.260 0.653 0.598 

9037212 5-7-1 0.589 0.315 0.276 0.614 0.568 5-4-1 0.596 0.308 0.241 0.635 0.575 

9037064 5-7-1 0.567 0.277 0.252 0.589 0.559 5-8-1 0.573 0.271 0.221 0.614 0.561 
aThe station IDs defined as 9037112, 9037096, 9037202, 9037031, 9036288, 9137123, 9037212 and 9037064 refer to MIAD,Sagana FCF, Embu, 

Kerugoya DWO, Nyeri, Mangu HS, Maragua GEF and Naro-moru FGP weather stations respectively 
bThe short form of ‘Architecture’ 
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Table 4. 7: Best ANNs for long-term drought forecasting of SPI and EDI 

Station IDa 

 

SPI EDI 

ANN Archb R RMSE MAE d1 NSE ANN Archb R RMSE MAE d1 NSE 

12-months lead time 

9037112 5-5-1 0.681 0.421 0.389 0.676 0.646 5-9-1 0.695 0.432 0.338 0.684 0.669 

9037096 5-8-1 0.658 0.407 0.366 0.634 0.606 5-11-1 0.673 0.398 0.334 0.657 0.645 

9037202 5-11-1 0.635 0.390 0.349 0.602 0.576 5-7-1 0.648 0.382 0.305 0.624 0.618 

9037031 5-71 0.622 0.380 0.333 0.607 0.581 5-5-1 0.635 0.372 0.290 0.629 0.624 

9036288 5-9-1 0.588 0.369 0.323 0.607 0.579 5-8-1 0.605 0.361 0.282 0.627 0.591 

9137123 5-6-1 0.599 0.377 0.33 0.596 0.567 5-10-1 0.616 0.369 0.288 0.615 0.576 

9037212 5-6-1 0.567 0.354 0.316 0.576 0.551 5-4-1 0.578 0.342 0.27 0.597 0.554 

9037064 5-7-1 0.548 0.329 0.288 0.517 0.535 5-8-1 0.559 0.322 0.262 0.573 0.534 

18-months lead time 

9037112 5-10-1 0.657 0.523 0.479 0.593 0.563 5-3-1 0.675 0.521 0.438 0.615 0.620 

9037096 5-7-1 0.625 0.487 0.456 0.577 0.548 5-7-1 0.638 0.476 0.398 0.598 0.596 

9037202 5-5-1 0.596 0.467 0.429 0.551 0.523 5-8-1 0.609 0.457 0.374 0.571 0.571 

9037031 5-5-1 0.586 0.454 0.397 0.541 0.514 5-9-1 0.598 0.445 0.347 0.563 0.576 

9036288 5-4-1 0.556 0.441 0.386 0.528 0.502 5-8-1 0.568 0.432 0.337 0.547 0.544 

9137123 5-8-1 0.569 0.451 0.395 0.506 0.481 5-6-1 0.581 0.441 0.345 0.535 0.532 

9037212 5-4-1 0.537 0.418 0.366 0.495 0.472 5-7-1 0.548 0.409 0.319 0.515 0.509 

9037064 5-11-1 0.516 0.394 0.345 0.474 0.451 5-7-1 0.527 0.386 0.301 0.491 0.504 
aThe station IDs defined as 9037112, 9037096, 9037202, 9037031, 9036288, 9137123, 9037212 and 9037064 refer to MIAD,Sagana FCF, Embu, 

Kerugoya DWO, Nyeri, Mangu HS, Maragua GEF and Naro-moru FGP weather stations respectively 
bThe short form of ‘Architecture’ 
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24-months lead time 

 9037112 5-8-1 0.606 0.702 0.615 0.514 0.502 5-4-1 0.618 0.688 0.537 0.532 0.584 

9037096 5-9-1 0.585 0.680 0.596 0.511 0.481 5-8-1 0.598 0.667 0.520 0.512 0.558 

9037202 5-6-1 0.562 0.653 0.572 0.497 0.467 5-9-1 0.573 0.638 0.499 0.515 0.514 

9037031 5-11-1 0.548 0.634 0.555 0.486 0.458 5-4-1 0.558 0.621 0.485 0.504 0.539 

9036288 5-8-1 0.531 0.616 0.529 0.474 0.446 5-7-1 0.542 0.605 0.462 0.492 0.510 

9137123 5-9-1 0.542 0.630 0.552 0.453 0.426 5-6-1 0.554 0.601 0.482 0.469 0.497 

9037212 5-4-1 0.509 0.584 0.501 0.454 0.425 5-8-1 0.514 0.572 0.438 0.468 0.477 

9037064 5-10-1 0.474 0.542 0.455 0.437 0.411 5-7-1 0.484 0.514 0.419 0.434 0.446 
aThe station IDs defined as 9037112, 9037096, 9037202, 9037031, 9036288, 9137123, 9037212 and 9037064 refer to MIAD,Sagana FCF, Embu, 

Kerugoya DWO, Nyeri, Mangu HS, Maragua GEF and Naro-moru FGP weather stations respectively 
bThe short form of ‘Architecture’ 
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To compare the performace of the SPI and EDI in drought forecasting, the NSE and d1 for the 

meteorological stations MIAD (7ID 037112) and Nro-moru (ID 9037064) are plotted and results 

given in Figures 4.53 and 4.54.  

   

Figure 4. 53: Comparison of SPI and EDI forecasts at MIAD meteorological station  

 

   

Figure 4. 54: Comparison of SPI and EDI forecasts at Naro-moru meteorological station 

 



142 
 

The NSE and d1 for EDI are higher than those of the SPI for both stations. Similar trend is depicted 

in the other staions. This means that EDI performs better than the SPI in meteorological drought 

forecasting for the upper Tana River basin. 

 

4.2.3 Agricultural drought forecasts 

Agricultural drought forecasting was done using SMDI and the PDSI. The SMDI is a monthly 

average indiactor of soil moisture stress on land (Tessema, 2007). The results of the best network 

model for forecasting both the SMDI and PDSI are as indicated in Table 10A of Appendix A. 

These results indicate that the best network model for forecasting SMDI declined in accuracy as 

shown by decrease in coefficient of correlation from 0.689 to 0.324 at MIAD meteorological 

station (ID 9037112) for 1 and 24-months lead time respectively (Tables 4.8 to 4.10). The decline 

in network forecasting ability for the SMDI with increase in lead time is a trend that closely 

matches the findings presented by Morid et al. (2007) and Belayneh and Adamowski (2013). In 

their research, the drought forecasting was impelemented using the SPI and EDI. 
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Table 4. 8: Best ANNs for short-term drought forecasting of SMDI and PDSI 

Station 

IDa 

 

SMDI  PDSI 

ANN 

Archb R RMSE MAE d1 NSE 

ANN 

Archb R RMSE MAE d1 NSE 

1-months lead time 

9037112 5-4-1 0.689 0.389 0.277 0.659 0.580 5-10-1 0.553 0.472 0.347 0.507 0.464 

9037096 5-7-1 0.662 0.394 0.280 0.636 0.552 5-8-1 0.532 0.478 0.351 0.489 0.413 

9037202 5-8-1 0.686 0.389 0.273 0.659 0.573 5-5-1 0.551 0.472 0.342 0.507 0.429 

9037031 5-7-1 0.627 0.399 0.285 0.604 0.527 5-6-1 0.504 0.484 0.357 0.464 0.395 

9036288 5-6-1 0.790 0.307 0.192 0.753 0.673 5-7-1 0.635 0.372 0.241 0.579 0.504 

9137123 5-6-1 0.718 0.347 0.229 0.682 0.604 5-9-1 0.577 0.421 0.287 0.524 0.452 

9037212 5-7-1 0.697 0.382 0.266 0.664 0.587 5-4-1 0.560 0.463 0.334 0.511 0.440 

9037064 5-3-1 0.773 0.322 0.206 0.727 0.661 5-6-1 0.621 0.390 0.258 0.559 0.545 

3-months lead time 

9037112 5-3-1 0.597 0.400 0.297 0.624 0.538 5-8-1 0.574 0.436 0.334 0.487 0.438 

9037096 5-6-1 0.581 0.434 0.323 0.575 0.494 5-8-1 0.552 0.442 0.338 0.509 0.455 

9037202 5-6-1 0.593 0.409 0.313 0.591 0.512 5-6-1 0.572 0.436 0.329 0.527 0.473 

9037031 5-7-1 0.554 0.427 0.327 0.550 0.470 5-10-1 0.522 0.447 0.344 0.483 0.435 

9036288 5-8-1 0.684 0.334 0.222 0.675 0.602 5-7-1 0.658 0.344 0.231 0.602 0.555 

9137123 5-4-1 0.619 0.385 0.254 0.611 0.540 5-6-1 0.598 0.389 0.276 0.545 0.498 

9037212 5-4-1 0.603 0.408 0.305 0.590 0.524 5-10-1 0.581 0.428 0.321 0.531 0.484 

9037064 5-7-1 0.667 0.347 0.236 0.644 0.591 5-8-1 0.644 0.361 0.248 0.531 0.499 
aThe station IDs defined as 9037112, 9037096, 9037202, 9037031, 9036288, 9137123, 9037212 and 9037064 refer to MIAD,Sagana FCF, Embu, 

Kerugoya DWO, Nyeri, Mangu HS, Maragua GEF and Naro-moru FGP weather stations respectively 
bThe short form of ‘Architecture’ 
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Table 4. 9: Best ANNs for medium-term drought forecasting of SMDI and PDSI 

Station 

IDa 

 

SMDI  PDSI 

ANN 

Archb R RMSE MAE d1 NSE 

ANN 

Archb R RMSE MAE d1 NSE 

6-months lead time 

9037112 5-5-1 0.595 0.423 0.274 0.575 0.494 5-7-1 0.582 0.429 0.315 0.464 0.399 

9037096 5-4-1 0.571 0.434 0.276 0.561 0.460 5-6-1 0.566 0.450 0.343 0.641 0.570 

9037202 5-8-1 0.592 0.428 0.271 0.571 0.470 5-10-1 0.577 0.436 0.328 0.664 0.592 

9037031 5-2-1 0.543 0.440 0.281 0.539 0.448 5-8-1 0.545 0.454 0.347 0.609 0.545 

9036288 5-3-1 0.682 0.338 0.190 0.649 0.548 5-6-1 0.666 0.340 0.224 0.759 0.696 

9137123 5-6-1 0.620 0.383 0.226 0.593 0.494 5-10-1 0.604 0.385 0.276 0.687 0.624 

9037212 5-7-1 0.601 0.421 0.263 0.580 0.482 5-7-1 0.589 0.435 0.327 0.669 0.607 

9037064 5-5-1 0.650 0.354 0.203 0.624 0.541 5-6-1 0.667 0.367 0.256 0.512 0.423 

9-months lead time 

9037112 5-4-1 0.547 0.468 0.313 0.566 0.479 5-8-1 0.680 0.380 0.221 0.453 0.395 

9037096 5-7-1 0.524 0.495 0.343 0.542 0.436 5-8-1 0.653 0.385 0.224 0.705 0.681 

9037202 5-6-1 0.536 0.484 0.330 0.561 0.448 5-6-1 0.677 0.380 0.218 0.730 0.707 

9037031 5-3-1 0.507 0.503 0.351 0.522 0.420 5-10-1 0.618 0.390 0.228 0.669 0.650 

9036288 5-8-1 0.616 0.389 0.214 0.641 0.524 5-7-1 0.779 0.300 0.153 0.834 0.830 

9137123 5-6-1 0.562 0.422 0.269 0.581 0.472 5-8-1 0.708 0.339 0.183 0.756 0.745 

9037212 5-3-1 0.550 0.479 0.329 0.566 0.463 5-8-1 0.687 0.373 0.212 0.736 0.724 

9037064 5-5-1 0.605 0.404 0.247 0.586 0.515 5-6-1 0.762 0.314 0.165 0.482 0.41 
aThe station IDs defined as 9037112, 9037096, 9037202, 9037031, 9036288, 9137123, 9037212 and 9037064 refer to MIAD,Sagana FCF, Embu, 

Kerugoya DWO, Nyeri, Mangu HS, Maragua GEF and Naro-moru FGP weather stations respectively 
bThe short form of ‘Architecture’ 
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Table 4. 10: Best ANNs for long-term drought forecasting of SMDI and PDSI 

Station 

IDa 

 

SMDI  PDSI 

ANN 

Archb R RMSE MAE d1 NSE 

ANN 

Archb R RMSE MAE d1 NSE 

12-months lead time 

9037112 5-5-1 0.533 0.537 0.417 0.525 0.447 5-7-1 0.542 0.427 0.310 0.433 0.387 

9037096 5-3-1 0.506 0.559 0.442 0.522 0.422 5-8-1 0.521 0.432 0.313 0.461 0.387 

9037202 5-8-1 0.520 0.546 0.431 0.545 0.435 5-8-1 0.539 0.427 0.305 0.460 0.376 

9037031 5-2-1 0.487 0.569 0.453 0.508 0.408 5-8-1 0.493 0.438 0.319 0.438 0.374 

9036288 5-8-1 0.602 0.424 0.306 0.614 0.509 5-8-1 0.621 0.337 0.215 0.523 0.482 

9137123 5-6-1 0.552 0.477 0.354 0.562 0.462 5-6-1 0.565 0.381 0.256 0.487 0.441 

9037212 5-5-1 0.534 0.544 0.426 0.547 0.449 5-7-1 0.548 0.419 0.297 0.408 0.439 

9037064 5-4-1 0.590 0.462 0.346 0.566 0.499 5-8-1 0.608 0.353 0.230 0.474 0.347 

18-months lead time 

9037112 5-3-1 0.435 0.647 0.539 0.445 0.414 5-8-1 0.506 0.509 0.366 0.388 0.361 

9037096 5-4-1 0.486 0.419 0.370 0.559 0.486 5-8-1 0.727 0.516 0.648 0.432 0.377 

9037202 5-8-1 0.504 0.428 0.361 0.580 0.504 5-8-1 0.690 0.509 0.585 0.444 0.391 

9037031 5-8-1 0.461 0.405 0.377 0.531 0.464 5-6-1 0.685 0.523 0.577 0.416 0.364 

9036288 5-7-1 0.581 0.452 0.254 0.662 0.592 5-6-1 0.541 0.402 0.432 0.526 0.462 

9137123 5-6-1 0.528 0.453 0.303 0.600 0.532 5-7-1 0.607 0.454 0.483 0.450 0.417 

9037212 5-4-1 0.512 0.447 0.352 0.584 0.517 5-8-1 0.660 0.500 0.548 0.451 0.403 

9037064 5-3-1 0.454 0.559 0.467 0.492 0.452 5-10-1 0.568 0.422 0.272 0.434 0.321 
aThe station IDs defined as 9037112, 9037096, 9037202, 9037031, 9036288, 9137123, 9037212 and 9037064 refer to MIAD,Sagana FCF, Embu, 

Kerugoya DWO, Nyeri, Mangu HS, Maragua GEF and Naro-moru FGP weather stations respectively 
bThe short form of ‘Architecture’ 
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24-months lead time 

9037112 5-4-1 0.324 0.763 0.657 0.357 0.322 5-8-1 0.430 0.583 0.449 0.316 0.284 

9037096 5-7-1 0.314 0.591 0.454 0.445 0.374 5-8-1 0.413 0.870 0.762 0.352 0.262 

9037202 5-4-1 0.321 0.583 0.443 0.460 0.391 5-8-1 0.428 0.818 0.624 0.358 0.267 

9037031 5-9-1 0.305 0.598 0.462 0.423 0.358 5-8-1 0.391 0.830 0.716 0.336 0.249 

9036288 5-7-1 0.334 0.460 0.311 0.526 0.459 5-6-1 0.493 0.653 0.538 0.424 0.323 

9137123 5-6-1 0.338 0.520 0.371 0.477 0.411 5-10-1 0.448 0.754 0.609 0.372 0.295 

9037212 5-7-1 0.334 0.573 0.431 0.464 0.399 5-7-1 0.435 0.765 0.664 0.365 0.282 

9037064 5-2-1 0.340 0.691 0.595 0.392 0.359 5-9-1 0.482 0.483 0.334 0.326 0.276 
aThe station IDs defined as 9037112, 9037096, 9037202, 9037031, 9036288, 9137123, 9037212 and 9037064 refer to MIAD,Sagana FCF, Embu, 

Kerugoya DWO, Nyeri, Mangu HS, Maragua GEF and Naro-moru FGP weather stations respectively 
bThe short form of ‘Architecture’ 
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The performance of SMDI and the PDSI in forecasting drought at diffferent lead times was 

illustrated by ploting the performance level verses lead time for NSE and the index of agreement 

(d1) as shown in Figures 4.55 and 4.56. 

  

Figure 4. 55: Comparison of SMDI and PDSI forecasts for drought at MIAD station 

 

  

Figure 4. 56: Comparison of SMDI and PDSI forecasts for drought at Naro-moru station 
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4.3 Formulated NDI for the upper Tana River basin 

The (41x4) matrix of observations for the month of January, which was designated as HJan is as 

shown in Figure 26B (Appendix B). The matrix HJan was used in the principal component analysis 

module of  MATLAB to generate a (41x1) matrix which is defined as QJan of transformed 

variables, and a (4x1) matrix of eigenvectors called EJan. The (4x1) matrix was linked to the first 

Principal Component (PC1) used in this study. The two matrices QJan and EJan computed using 

Principal Component Analysis (PCA) are in agreement with the matrix generated by Keyantash and 

Dracup (2004) and Barua (2010) in development of Agrregated Drought Index (ADI), and Non-

linear Aggregated Drought Index (NADI) respectively. These indices are as presented in Figure 

27B (Appendix B).  The (41x1) matrix of PC1 designated as YJan was computed for the month of 

January based on Equation 3.50. The results are as shown in Figure 28B (Appendix B). The NDI 

values for the month of Janaury for each of the 41 years were calculated using Equation 4.4. The 

NDI results are shown in Figure 28B where the standard deviation of PC1 for January for all the 

years is 2.857 and the resuting NDI is presented in Table 4.11. The NDI values for all the other 

months were derived using the same procedure and then the data for all months for different years 

organized in a chronological order and plotted. 

Jan

JanY
NDI


                      (4.4) 

For the month of January the standard deviation was determined as 2.857 and thus Equation 4.4 

reduces to: 

 
857.2

JanY
NDI                      (4.5) 

Based on Equation 4.5, the NDI for January across the study period was computed and the monthly 

NDI time series  
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Table 4. 11: Computed NDI for January at Sagana FCF hydrometric station  

Year (January) NDI 

1970 -0.5964 

1971 -0.5785 

1972 -0.1773 

1973 -0.3406 

1974 -0.4022 

1975 -0.1293 

1976 0.0453 

1977 0.0095 

1978 0.9991 

1979 -0.3368 

1980 -2.2193 

1981 -1.2231 

1982 1.9215 

1983 -0.2722 

1984 -0.2836 

1985 0.4942 

1986 -0.5588 

1987 1.7361 

1988 -0.6682 

1989 -1.9123 

1990 2.6676 

1991 0.1884 

1992 -0.4358 

1993 0.5454 

1994 0.5912 

1995 -0.0134 

1996 0.6487 

1997 1.1426 

1998 1.3675 

1999 -0.0562 

2000 -1.1461 

2001 -0.9235 

2002 -0.9679 

2003 0.1722 

2004 0.5311 

2005 0.1092 

2006 0.3776 

2007 0.7366 

2008 1.2192 

2009 -0.8266 

2010 -1.4348 

 



150 
 

4.3.1 Sensitivity of NDI to the input parameters 

 To test the sensitivity of the NDI to its inputs, the absolute sensitivity was computed based on 

percent increase and decrease of the variables. Results of the sensitivity analysis are as shown in 

Figure 4.60. 

  

Figure 4. 57: Absoulute sensitivity for NDI at MIAD meteorological station 

 

Results of the sensitivity analysis show that the NDI is most sensitive to changes in precipitation 

(P), followed by soil water content (SWC), dam levels (df) and Stream flow (Q) respectively. 

Generally, the sensitivity of NDI declined with percent increase in input variables (Figure 4.60). 

However, its sensitivity increased with decrease in input variables as shown in (Figure 10B; 

Appendix B).   

 

4.4 Forecasts of NDI values using ANNs 

The results of the best network model for forecasting both the NDI is as shown in the Table 10A of 

Appendix A. This model was used in forecasting time series NDI at different lead times. As shown 

in Table 4.11, the value of R
 
decreased from 0.716 to 0.337 at meteorological station 9037112 for 1 

and 24 months lead times respectively. The best NDI forecasting for 1 month and 24 months lead 

times are 0.804 and 0.353 respectively at meteorological station 9037064.  From the results, the 

forecasting ability of NDI model using ANNs decreases with the increase in lead time. Such a trend 

is consistent with the findings by Morid et al. (2007) where it was found that the performance in 

prediction ability of drought indices decreased with increase in lead time. In their study, for 

instance, the coefficient of determination (R
2
) for forecasting EDI decreased from 0.85 to 0.44 for 1 
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and 12 months lead time respectively. The same R
2
 decreased from 0.78 to 0.42 in forecasting SPI 

for the same period. 

Table 4. 12: Best ANNs for different months lead time forecasts of NDI 

Station ID
a
 ANN Archb R RMSE MAE d1 NSE 

1 month lead time 

9037112 6-5-1 0.716 0.348 0.244 0.705 0.631 

9037096 6-3-1 0.688 0.351 0.247 0.680 0.601 

9037202 6-4-1 0.713 0.348 0.241 0.705 0.623 

9037031 6-5-1 0.652 0.356 0.252 0.646 0.573 

9036288 6-6-1 0.801 0.274 0.170 0.806 0.732 

9137123 6-4-1 0.746 0.309 0.202 0.729 0.657 

9037212 6-7-1 0.724 0.341 0.235 0.710 0.639 

9037064 6-4-1 0.804 0.288 0.182 0.778 0.719 

3 months lead time 

9037112 6-5-1 0.620 0.357 0.262 0.630 0.564 

9037096 6-3-1 0.604 0.388 0.285 0.616 0.538 

9037202 6-4-1 0.616 0.365 0.276 0.632 0.557 

9037031 6-6-1 0.575 0.381 0.289 0.588 0.512 

9036288 6-5-1 0.711 0.298 0.196 0.723 0.655 

9137123 6-4-1 0.643 0.344 0.224 0.654 0.587 

9037212 6-7-1 0.627 0.365 0.269 0.631 0.571 

9037064 6-4-1 0.694 0.309 0.209 0.690 0.643 

6 months lead time 

9037112 6-5-1 0.605 0.379 0.278 0.615 0.516 

9037096 6-3-1 0.588 0.401 0.302 0.601 0.500 

9037202 6-4-1 0.599 0.389 0.290 0.611 0.511 

9037031 6-4-1 0.567 0.405 0.306 0.577 0.487 

9036288 6-5-1 0.692 0.303 0.198 0.694 0.596 

9137123 6-4-1 0.628 0.344 0.244 0.635 0.538 

9037212 6-7-1 0.612 0.388 0.289 0.620 0.524 

9037064 6-4-1 0.676 0.328 0.226 0.667 0.589 

9 months lead time 

9037112 6-5-1 0.568 0.418 0.276 0.606 0.500 

9037096 6-3-1 0.545 0.442 0.303 0.580 0.475 

9037202 6-4-1 0.557 0.432 0.292 0.600 0.488 

9037031 6-5-1 0.527 0.449 0.310 0.558 0.457 

9036288 6-6-1 0.640 0.348 0.189 0.686 0.570 

9137123 6-4-1 0.583 0.377 0.238 0.622 0.514 

9037212 6-7-1 0.571 0.428 0.291 0.606 0.503 

9037064 6-4-1 0.629 0.361 0.218 0.651 0.560 

12 months lead time 

9037112 6-5-1 0.553 0.479 0.368 0.583 0.486 

9037096 6-3-1 0.526 0.499 0.390 0.562 0.459 

9037202 6-4-1 0.541 0.488 0.380 0.580 0.474 
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9037031 6-6-1 0.506 0.508 0.400 0.544 0.444 

9036288 6-5-1 0.626 0.379 0.270 0.657 0.554 

9137123 6-6-1 0.574 0.426 0.313 0.601 0.503 

9037212 6-7-1 0.554 0.486 0.377 0.585 0.488 

9037064 6-4-1 0.613 0.412 0.305 0.627 0.543 

18 months lead time 

9037112 6-5-1 0.452 0.578 0.476 0.476 0.434 

9037096 6-3-1 0.436 0.649 0.573 0.462 0.411 

9037202 6-4-1 0.444 0.616 0.517 0.475 0.425 

9037031 6-5-1 0.420 0.612 0.510 0.445 0.396 

9036288 6-4-1 0.469 0.483 0.381 0.563 0.503 

9137123 6-4-1 0.470 0.542 0.427 0.481 0.454 

9037212 6-7-1 0.465 0.589 0.484 0.482 0.438 

9037064 6-4-1 0.472 0.499 0.412 0.526 0.492 

24 months lead time 

9037112 6-5-1 0.337 0.681 0.580 0.349 0.296 

9037096 6-3-1 0.326 0.777 0.682 0.375 0.284 

9037202 6-4-1 0.334 0.730 0.622 0.383 0.291 

9037031 6-7-1 0.316 0.741 0.632 0.358 0.271 

9036288 6-5-1 0.347 0.583 0.475 0.454 0.349 

9137123 6-4-1 0.351 0.700 0.538 0.397 0.321 

9037212 6-7-1 0.347 0.701 0.595 0.390 0.305 

9037064 6-4-1 0.353 0.617 0.525 0.420 0.336 
aThe station IDs defined as 9037112, 9037096, 9037202, 9037031, 9036288, 9137123, 9037212 and 

9037064 refer to MIAD,Sagana FCF, Embu, Kerugoya DWO, Nyeri, Mangu HS, Maragua GEF and 

Naro-moru FGP weather stations respectively 
bThe short form of ‘Architecture’ 

 

The ability of the NDI forecasting was also found to differ with elevation. Generally the 

performance was better for higher elevation than lower elevations. This is attributed to the high 

sensitivity of the NDI to precipitation as illustrated by absolute sensitivity analysis (Figure 4.57) 

and that high precipitation amounts occur in higher elevations. For the purpose of illustrating this, 

the NSE and d1 for Mwea Irrigation and Agricultural Centre (MIAD) and Naro-moru 

meteorological stations were plotted. From the results given in Figures 4.61 and 4.62, it can be seen 

that the NDI can forecast the drought accurately (NSE<0.5) upto 9 and 15-months lead time at 

MIAD (ID 9037112) and Naro-moru F.G.P. (ID 9037064) stations respectively. 
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Figure 4. 58: Performance of NDI forecasts at MIAD meteorological stations 

 

 

Figure 4. 59: Performance of NDI forecasts at Naro-moru meteorological stations 

To illustrate the pattern of NDI forecasting, the time series plots of both curves of the observed and 

forecasted values for the best ANN models is presented in Figure 4.63. The forecast results are for 

3, 12 and 24 months lead time respectively. The observed NDI time series curves are for Sgana F. 

C. F and Naro- moru hydrometric stations are presented in Figures 17B and 18B, Appendix B.    
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  

Figure 4. 60(a-c): Observed NDI and best ANNs forecast results at Sagana FCF station 

 

From the time series plots at the at Sagana FCF metorological station (ID 9037096), and using the 

NDI drought of magnitude -1.7, -1.8, -1.8, -1.5, -2.0, and -2.2 for the years 1973, 1981, 1983, 1992, 

2000 and 2010 was detected. According to the NDI crietrion (Table 3.12) the values -1.7, -1.8, -2.0 

and -2.2 represent severe drought while -1.5 represent moderate drought. The occurrence of the 
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drought episodes for these years is consistent with the historical droughts in the area as given by 

UNDP (2012) report (Table 4.13). The NDI values for Kamburu hydrometric station (ID 4ED01) 

were used to detect and classify drought for the basin. It was found that the droughts years were 

effectively detected and severity of drought classified as shown in Table 4.13. 

 

Table 4. 13: Classification of the reported drought at Kamburu hydrometric station 

Reported drought 

(Year) 

Remarks on the reported drought 

 

Classification of drought 

based on the developed NDI 

1972 Water shortage livestock deaths Extreme drought 

1973-1974 Human and livestock deaths Severe drought  

1974-1976 

 

Heavy livestock losses, food and water 

shortages Severe drought  

1980 

 Low crop production, water shortages 

Severe drought 

 

1981 Famine and water shortage Severe drought 

1983 

 

Water shortages, human and livestock 

migration 

Severe drought 

 

1984 Huge food shortages Extreme drought 

1987 Severe food shortages Severe drought 

1992-1994 Moderate food shortages Extreme drought 

1999-2000 

 

 

Deficit food supply, interuption of 

electricity supply, water scarcity 

Severe drought 

 

 

2010 Food and water deficit Severe drought 

 

4.4.1 Drought projections  based on NDI and RMSNN  

The most notable drought episodes expected for the upper Tana river basin is as presented in Figure 

4.61 at Kamburu hydrometric station (ID 4ED01). Kamburu station is selecetd because it coincides 

with the outlet of the basin.  Thus an output representative of drought for whole basin;  the 

projected extreme droughts (Values of NDI less than -2.27) include the years 2019 to 2020, 2028 to 

2030, 2040 to 2041, 2050, 2053 to 2054, 2060 to 2063, 2070 to 2073 and 2081 to 2083. In addition 

the projected severe drought (NDI values 64.127.2  to ) events are in the years 2017, 2026, 

2033, 2046, 2056 to 2057, 2066 to 2067, 2074 to 2075, 2079 and 2087 to 2088 as shown in Figure 

4.61. The drought projection for SMDI and SWSI are as shown in the Figure 19B and 21B 

Appendix respectively. B. 
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Figure 4. 61: Observed and projected drought at Kamburu hydrometric station 

 

 

 

 

Observation period 1970-2010 
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4.4.2 Spatially distributed drought severity based on NDI 

Different parts of the basin exhibit different drought severity magnitudes as detected by the NDI. 

The magnitude of drought severity decreased from the areas located in Low Elevations (LE), 

Lower Middle Elevation (LME), Middle Elevation (ME) and High Elevation (HE) in that order for 

different years. The highest severity range -1.200 to 1.390 was for 1970, while the lowest is –0.768 

to -0.534 for the Lower and Higher elevations respectively (Figure 4.62). A similar trend is 

reflected in the spatially distributed severities for the years 1990 and 2010. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 62: Spatially distributed drought severity for the years based on NDI 

 

(a) 

 

(c)  

 

(b) 



158 
 

CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

This research assessed and forecasted drought conditions using indices and artificial neural 

networks. Hydro-meteorological data from sixteen hydrometric stations in the upper Tana River 

basin was used. The focus was to formulate the most appropriate models for assessment and 

forecasting of drought using Indices and Artificial Neural Networks (ANNs). In addition drought 

characteristics that can be used for timely drought mitigation measures and/or coping mechanisms, 

guide in decision making for water resources planning and management were determined. The 

specific conclusions drawn from the research are: 

i) The temporal variation of drought showed that the DIs were able to effectively detect severe 

or moderate droughts in the upper Tana River basin during the study period. The findings 

indicate that the hydrological, meteorological and agricultural droughts presented an 

extreme drought event with a frequency corresponding to 6, 5 and 4 years respectively for 

the entire basin. On further analysis using Man-Kendall trend test trend test it was observed 

that there was an increasing trend of severe drought in south-eastern areas and no trend in 

north-western and north-eastern parts of the basin. In spatial context, south-eastern areas 

located in the lower elevations of the basin are more prone to severe drought risks than the 

areas which are at higher elevations. The least drought risk areas are in the north-western 

parts of the basin.  

 

ii) From this research, the best models for drought forecasting at 1, 3, 6, 9, 12, 18 and 24-

months lead time were developed for each drought type. Based on this study the best 

drought indices are presented as SWSI, EDI and SMDI for forecasting short, medium and 

long-term hydrological, meteorological and agricultural droughts respectively. 

 

iii) A Non-linear Integrated Drought Index (NDI) was formulated for the upper Tana River 

basin. This was based on an aggregation process called Principal Component analysis 

(PCA) of four hydro-meteorological variables; precipitation, stream flow, soil-moisture and 

dam levels. The NDI was found to effectively detect droughts in conformity with a similar 

and previously developed index called NADI. Since the NDI is developed by aggregating 

input variables that represent different types of droughts; it is thus presented as a single tool 

which can be adopted for a synchronized assessment and forecasting of all the three 
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operational drought types (hydrological, metorological and agricultural droughts) in the 

basin.  

 

iv) Using the formulated NDI, the drought was forecasted at different lead times of 1, 3, 6, 9, 

12, 18 and 24. Based on the performance measures (R, RMSE, d1, NSE) of drought 

forecasting models, it is inferred that the formulated NDI effectively forecasts drought in 

high and low elevations at a range of 1 to 12, and 1 to 10-months lead time respectively 

with R value greater than 0.5. Beyond 10 and 12-months lead times, the forecast accuracy 

significantly decline giving R and NSE values below 0.5 and thus cannot be relied upon. 

 

5.2 Recommendations 

From these research findings, more research work can be done: 

i) Temporal and spatial drought is influenced by both climate and land use/cover changes. 

Thus, there is need for further research on relative effect of climate change and land 

use/cover change on drought based on DIs in the upper Tana River basin. This research used 

monthly and 90-m temporal and spatial resolutions in assessing drought using the DIs. 

Further research involving finer resolutions is recomemded to compare the effectiveness of 

of DIs in drought assessment at finer resolutions. 

 

ii)  Further research is required involving a comparative study to compare multiple data driven 

and remote sensed drought indices in forecasting of drought conditions at different lead-

times in the upper Tana River basin. In addition, drought forecasting based on climate 

projections and scenarios to formulate risk assessment tools should be conducted in the 

upper Tana River basin. 

 

iii) A further research to formulate a Nonlinear-Integrated Drought Index (NDI) using principle 

component analysis based on additional basin hydro-meteorological variables such as 

temperature, evaporation, humidity, sunshine should be conducted.   

 

iv)  Further research to calibrate, validate and assess the performance of formulated NDI in 

drought forecasting in other river basins is required. It is recommended that the formulated 

DIs and be adopted as decision support tool in managing drought and water resources 

systems. A network of automatic hydrometric stations that convey real- time data to the 

algorithms of DIs for managing impending droughts should be incorporated (Figure 11B of 

Appendix B). 
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APPENDIX A: TABLES 

 

Table 1A:  The major drought impacts for different drought categories 

Impact category 

Impact sub-

category 

Hydrological 

drought 

Meteorological 

drought 

Agricultural/ 

soil moisture drought 

Agriculture  

Rain-fed  

Irrigation  X 

x 

 

x 

x 

River 

basins/ecosystems 

Terrestrial  

Cooling  

X 

X 

x 

 

x 

 

Energy and 

industry 

Hydro-power 

Cooling water 

X 

X 

  Navigation  

 

X 

  Drinking water 

 

X 

  Recreation  

 

X 

  Source: Van-loon and Laaha (2015) 

 

Table 2A: Best ANN structure used in filling of missing stream flow data for each gauge station 

Gauge station Gauge ID Epoch 

No 

Coordinates  Input function into the 

neurons 

ANN 

architecture 

R 

Train 

R  

validation 

MSE 

train 

MSE 

validation Longitude  Latitude  

Amboni  4AB05  9 36.989 -0.350  21)1( ,,   tttt QQQfQ  3-9-1 0.545 0.735 0.214 0.105 

Sagana  4AC03  14 37.043 -0.449  1)1( ,   ttt QQfQ  2-9-1 0.621 0.724 0.312 0.213 

Gura  4AD01  20 37.076 -0.517  1)1( ,   ttt QQfQ  2-6-1 0.583 0.655 0.362 0.351 

Tana sagana  4BC02  9 37.207 -0.672  1)1( ,   ttt QQfQ  2-5-1 0.643 0.563 0.384 0.346 

Yatta furrow  4CC03  20 37.361 -1.094  21)1( ,,   tttt QQQfQ  3-9-1 0.701 0.732 0.276 0.242 

Nyamindi  4DA10  8 37.317 -0.621  1)1( ,   ttt QQfQ  2-2-1 0.684 0.654 0.332 0.344 

Rupingazi  4DC03 9 37.438 -0.533  21)1( ,,   tttt QQQfQ  3-6-1 0.595 0.673 0.346 0.318 

Kamburu 4ED01 10 37.683 -0.800  1)1( ,   ttt QQfQ  2-2-1 0.643 0.686 0.278 0.229 

Mean values        0.627 0.678 0.313 0.269 
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Table 3A: Best ANN structure used in filling of missing precipitation data for each gauge station 

Gauge station Gauge 

ID 

Epoch 

No 

Coordinates  Input neurons ANN 

architecture 

R 

Train 

R 

validation 

MSE 

train 

MSE 

validation Longitude  Latitude  

MIAD 9037112 1000 37.350 -0.700  21)1( ,,   tttt PPPfP  3-10-1 0.758 0.897 0.325 0.056 

Embu  9037202 80 37.450 -0.500  21)1( ,,   tttt PPPfP  3-9-1 0.654 0.752 0.287 0.172 

Kerugoya DWO 9037031 100 37.327 -0.382  1)1( ,   ttt PPfP  2-5-1 0.664 0.718 0.361 0.123 

Sagana FCF 9037096 90 37.054 -0.448  21)1( ,,   tttt PPPfP  2-4-1 0.587 0.653 0.294 0.195 

Nyeri  9036288 100 36.970 -0.500  21)1( ,,   tttt PPPfP  3-10-1 0.625 0.694 0.302 0.237 

Muragua G. E. F. 9036212 50 36.850 -0.750  1)1( ,   ttt PPfP  2-4-1 0.581 0.635 0.275 0.228 

Naro-moru F.G.P. 9037064 80 37.117 -0.183  1)1( ,   ttt PPfP  2-3-1 0.596 0.736 0.311 0.279 

Mangu HS 9137123 100 37.033 -1.100  1)1( ,   ttt PPfP  2-5-1 0.603 0.729 0.273 0.234 

Mean values       0.634 0.727 0.304 0.191 
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Table 4A:  Procedure for objectively determining of weighting parameters for SWSI 

Steps:  

i) Determine the monthly averages of each component  

ii) Normalize the average monthly values by using the normalization equation 3.38 ( Xmax=0.9; Xmin=0.1) /dividing through by average value 

for the highest month 

 
 

 minmax

minmax

min
min XX

xx

xX
XX o

n 





                                                        (3.38)

 

iii) Monthly coefficient for each component is determined by determining/calculating each fractional contribution (to a total of 1 as per the 

illustration below) 

  Example coefficient a,b,c,d,e (average for one station) 

 

Month (C1) 

Average 

value of  

P 

(mm)=(

C2) 

Xn=C3 

 

Highest value of 

the record H =(C4) 

Precipitation  

4

3

C

C
X P   =(C5) Stream flow 

Xn=C6 

Dam inflow, 

Xn=C7 

 a 

 

 

=C8 

 

b 

 

=C9 

 

c 

 

=C10 

Jan  12 0.90 0.90 1.00 0.93 0.25 0.46 0.43 0.11 

Feb  10 0.77 0.90 0.85 0.81 0.72 x x x 

March  0 0.10 0.90 0.11 0.3 0.61 x x x 

Apr  5 0.43 0.90 0.48 0.52 0.35 x x x 

May  6 0.50 0.90 0.56 0.71 0.24 x x x 

Jun  7 0.57 0.90 0.63 0.75 0.37 x x x 

Jul  8 0.63 0.90 0.70 0.5 0.67 x x x 

Aug  10 0.77 0.90 0.85 0.41 0.51 x x x 

Sept  11 0.83 0.90 0.93 0.62 0.5 x x x 

Oct  2 0.23 0.90 0.26 0.25 0.34 x x x 

Nov  4 0.37 0.90 0.41 0.48 0.21 x x x 

Dec  11 0.83 0.90 0.93 0.85 0.57 x x x 
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Consider the row for January 

The ratio is of a:b:c is 1.00:0.93:0.25 which must total to 1 

Thus the total for this January row is 1.00+0.93+0.25=2.18 

The contribution of component a (for rainfall) is thus calculated as 

00.111.043.046.0

11.01
18.2

25.0

43.01
18.2

93.0

46.01
18.2

1
1









checkingThus

c

bSimilarly

T

NP
a Jan

 

Similarly the procedure is repeated for coefficients for all the other months to fill the x values 
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Table 5A: Average characteristics of dominant soils for upper Tana River basin 

Elevat

ion 

Dominant 

soil type 

MC at 

saturation % 

MC at field 

capacity % 

MC at wilting 

point % 

AWC 

(%) 

TAW 

(mm) 

HE Andosols 60 40 24 16 172 

ME Nitosols 53 31 22 9 98 

LME Cambisols 48 28 14 14 74 

LE Ferrasols 53 26 17 9 82 

HE, ME, LME, LE means highest elevation, middle elevation, lower middle elevation and lowest 

elevation respectively 

Source: Hunink et al., (2009) 

Table 6A: Agro-climatic zones of Kenya 

Zone  

 

Clasiification  

 

Mean annual 

rainfall R 

(mm) 

Evapo-

transpiration 

E0 (mm) 

R/E0 

ratio 

 

Approximat

e actual area   

(km
2
) 

% of the 

total land 

area 

Potentail for 

plant growth 

I Humid  1400-2700 1200-2000 >80 17411.1 3 Very high 

II Sub-Humid 1000-1600 1300-2100 65-80 23214.8 4 high 

III Semi-Humid  800-1400 1450-2200 50-65 29018.5 5 

High to 

medium 

IV 

 

Medium to 

Semi-Arid 600-700 1500-2200 40-50 29018.5 5 Medium  

V 

 

Semi-Arid 

 

500-600 

 

1650-2300 

 

25-40 

 

87055.5 

 

15 

 

Medium to 

low  

VI Arid  300-550 1900-2400 15-25 127681.4 22 Low  

VII Very Arid <300 2100-2500 <15 266970.2 46 Very low 

58 % of the land amounting to 394,651.6 km
2
 lies within the arid and semi-arid lands (ASALs) 

Source: FAO (2006) 

Table 7A. Different drought categories distribution as detected using PDSI in October 1970 

Drought category Drought criterion Area (km
2
) Percent 

Extreme drought -4 or less 3758.01 21.57 

Severe drought -3 to -2.99 1784.90 10.25 

Mild drought -2.00 to -2.99 2062.56 11.84 

Slight drought -1.00 to -1.99 2643.58 15.18 

Normal  0.49 to -0.49 1946.48 11.17 

Slightly wet 2.00 to 2.99 1782.32 10.23 

Moderate wet 3.00 to 3.99 1681.05 9.65 

Extremely wet 4.00 or more 1761.10 10.11 
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Table 8A: Different drought categories distribution as detected using PDSI in October 2010 

Drought category Drought criterion Area (km
2
) Percent 

Extreme drought -4 or less 4540.36 26.06 

Severe drought -3 to -2.99 2537.551 14.57 

Mild drought -2.00 to -2.99 1675.444 9.62 

Slight drought -1.00 to -1.99 1824.072 10.47 

Normal  0.49 to -0.49 1964.556 11.28 

Slightly wet 2.00 to 2.99 1893.08 10.87 

Moderate wet 3.00 to 3.99 1420.637 8.16 

Extremely wet 4.00 or more 1564.297 8.98 

 

Table 9A: Mean frequency of drought in the upper Tana River basin 

Frequency for entire basin 

Drought type 

Mean drought 

Frequency (years) 

Mean Frequency of 

extreme drought (years) 

Hydrological 4 6 

Meteorological 3 5 

Agricultural 3 4 

Most prone-lower southeastern areas 

Hydrological 3 4 

Meteorological 2 3 

Agricultural 2 3 

 

 

Table 10A: List of the best network models for drought forecasting of different Drought 

Indices 

Drought Index Network input variable The best net work model 

SWSI SWSI, P    2121)( ,,,,,   ttttttnt PPPSWSISWSISWSIfSWSI  

SDI P, Q, SDI      111)( ,,,,,   ttttttnt SDISDIQQPPfSDI  

SPI P, SPI    121)( ,,,,   tttttnt SPISPIPPPfSPI  

SDI P, EDI    121)( ,,,,   tttttnt EDIEDIPPPfEDI  

SMDI P, SMDI    311)( ,,,,   tttttnt SMDISMDISMDIPPfSMDI  

NDI P, NDI    2121)( ,,,,,   ttttttnt PPPNDINDINDIfNDI  

PDSI PDSI, P      121 ,,,,   tttttnt PPPDSIPDSIPDSIfPDSI  
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Table 11A: Elevation bands for the upper Tana River basin used in this study 

Elevation band  Elevation symbol Elevation (m amsl)  

Lowest elevation  LE 700-1800 

Lower middle elevation LME 1700-2800 

Middle elevation ME 2800-3900 

Highest elevation HE 3900-5000 

 

Table 12A: Occurrence of historical drought in Kenya 

Period 

(years) 

Areas significantly affected 

 

Remarks on the drought effects 

 

1883 Coast  Caused worst famine in 30 years 

1889-1890 Coast  One year of drought and femine 

1894-1895 Coast  Information on distinct effects not available 

1896-1900 

 

Countrywide  

 

Three consecutive rain seasons failed causing human 

deaths  

1907-1911 

 

Lake victoria, Machakos, Kitui 

and Coastal 

Minor food shortages 

 

1913-1919 Eastern and coastal areas Impacts increased by war 

1921 Coastal  Dry year recorded at coast 

1925 Rift valley, central and coastal Food shrtage, crop and livestock losses 

1938-1939 

 

Norhern, rift valley and central 

regions 

Loss of livestock, deaths occured, Lorian swamp dried 

up 

1947-1950 Central and coastal lands Very severe droughtespecially in coast region 

1952-1955 

 

Eastern, central, coast, nyanza, 

western and rift valley regions 

Food and water shortages 

 

1960-1961 Eastern, rift valley  Caused Cattle deaths 

1972 Widespread countrywide drought Water shortage livestock deaths 

1973-1974 Most areas in Kenya  Human and livestock deaths 

1974-1976 

 

Eastern, nothern, and central 

regions Heavy livestock losses, food and water shortages 

1980 

 

Central, eastern, western and 

coast Low crop production, water shortages 

1981 Eastern  Famine and water shortage 

1983 Country wide Water shortages, human and livestock migration 

1984 

 

Central, rift valley, eastern, north 

eastern 

Huge food shortages 

 

1987 Eastern and central  Severe food shortages 

1992-1994 Norhern, central and eastern Moderate food shortages 

1999-2000 

 

Countrywide 

 

Deficit food supply, interuption of electricity supply, 

water scarcity 

2010-2011 

 

 

Eastern, central, coastal,north 

eastern(Machakos, Kitui,Mwingi 

and Tharaka) 

Food and water deficit 

 

 

Source: (UNDP, 2012) 
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Table 13A: Definition of soil types found within different elevations within upper Tana River 

basin (FAO) 

S. No Soil type Description  Elevation  

1 

 

 

Andosols 

 

 

-These are soil types which are highly porous, dark colured 

soils. the are developed from parent material or volcanic 

origin , with high aluminium content 

High 

 

 

2 Vertisols -Clayey soils that form deep and wide cracks when dry  Mid 

3 

Ferrasols 

 

-Highly weathered soils rich in sesquiside clays and with low 

cation exchange capacities  

Low 

 

4 Nitosols  -Are soils with shiny surfaces on structural faces of the soil Low 

 

Table 14A: Summary of different drought indices for (Hydrological (H), Meteorological (M), 

Agricultural (A) and Remote Sensing (RS)) 

Drought index/Developed by 

 

Type of 

drought 

 

Key notes 

, 

Surface Water Supply Iindex 

(SWSI), 

(Shafer and Dezman, 1982) 

H 

 

 

Calculates the weighted average of the standardized 

anomarlies for precipitation,reservoir storage, runoff 

and snowpack  

Palmer Drought Severity Index 

(PDSI), (Palmer, 1965) 

 

H 

 

Analysies precipitation and temperature in a water 

balance model. It compares meteorological and 

hydrological drought on spatial and temporal domain 

Aggregated Drought Index 

(ADI), 

(Kayantash and Dracup, 2004) 

 

 

 

MHA 

 

 

 

 

 

It is a multivariate, aggregate drought index with five 

to six hydrological inputs such as precipiattion, 

streamflow, reservoir storage, evapotranspiration, soil 

moisture and snow water content. Its fist priciple 

component(PC1) is normalized by the standard 

deviation  

Standardized Precipitation Index 

(SPI), (Mckee et al., 1993) 

 

 

 

M 

 

 

 

 

It is a simple index,has reliable spatial consistency, its 

probablistic in nature and useful in risk and decision 

analysis. It is adjustable to user defined time periods 

and can be used to determine three main dimensions of 

drought; intensity, duration and spatial extend 

Crop Moisture Index (CMI), 

(Palmer 1968) 

A 

 

It analyses precipitation and temperature in a water 

balance model 

Normalized Difference Drought 

Index (NDVI) 

 

A 

 

 

It uses visible red and near infrared bands  for 

calculation of vegetation conditions. An adnanced 

radiometer is used to capture ad reflect the bands.  

Regional Stream flow 

Defiiciency Index (RSDI), (Stahl, 

2001) 

 

 

H 

 

 

 

 

It is used to characterize drought within a 

homogeneous region. It uses flow duration curve for 

for discharges that exceed 90% of the time defined as 

Q90. A RSDI is computed for each homogeneous 

region using time series stream flow 

Soil moisture deficit index 

(SMDI), (Narasimhan and 

A 

 

It considers spatial variability of hydrological 

parameters of soil type, land cover and meteorological 
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Srinivasan, 2005) variables. 

Palmer Modified Drought Index  

(PMDI), (Palmer 1965) 

 

M 

 

 

It is used to calculate the beginning and end time of 

drought and wet periods which may otherwise be 

impossible to detect using the PHDI. 

Z-Index, (Palmer 1965) 

 

 

M 

 

 

a monthly standrdized anormally of the available 

moisture; its an intermediate term within the oroginal 

PDSI and used for short term drought forecasting  

Effective Drought Index (EDI), 

(Byun and Wilhite, 1999) 

 

M 

 

 

Used to detect drought beginning and ending and 

accumulated stress while ignoring the effect of runoff 

and ET 

Reclamation Drought Index 

(RDI), (Weghorst, 1996) 

H 

 

Similar to SWSI and incorporates temperaure-variable 

and duration into basin-wise index computation  

Crop Water Stress Index (CWSI), 

(Idso et al., 1981; Jackson et al., 

1981) 

 

 

RS 

 

 

 

 

The CWSI is calculated from the expression: 

PET

AET
CWSI 1 where aet is the actual ET, PET is 

the potential ET. The index is mainly used for 

irrigation scheduling 

Vegetation Condition Index 

(VCI), (Kogan 1990) 

 

RS 

 

 

It is used to determine the departure of amount of 

NDVI from long term NDVI as a measure of the health 

of the vegetation 

Crop Specific Drought Index 

(CSDI) (Meyer et al., 1993) 

 

A 

 

 

It uses the crop and soil phenology and climatological 

data to estimate soil water availability for different 

zones and soil types 

Keetch-Byram Drought Index 

(KBDI), (Keetch and Byram, 

1968) 

M 

 

 

M for analysinsg precipitation and soil moisture in a 

water budget model. It is used to monitor forest fires 

and is for fire control and management 

Temperature Condition Index 

(TCI), (Kogan, 1995) 

 

 

 

 

 

 

 

RS 

 

 

 

 

 

 

 

 

It uses te brightness temperature to determine the 

deviation of month from recorded maximum 

temperature.in general, the highre the temperature the 

higher the drought. It is computed from: 

100
minmax

max



















BTBT

BTBT
TCI

j
  

Btmax=maximum brightness 

temperature,Btmin=minimum brightness 

temperaturebtj=the jth month brightness temperature 

Normalized Difference Water 

Index (NDWI), (Gao, 1996) 

RS 

 

Used to determine volumetric water content based on 

physical principles  

Vetetaion Health Index (VHI), 

(Kogan, 1995) 

 

 

RS 

 

 

 

It combines vci and tci with some weight factor a for 

the contribution of vci and tci. The factos amay be set 

to 0.5 where information is lacking . the following 

relation applies:  aTCIVCIaVHI  1  

Evapo-transpiration Drought 

Index (ETDI) (Narasimhan and 

Srinivasan, 2005) 

 

 

 

A 

 

 

 

 

 

It combines the hydrological parameters of soil and 

land use material  in a spatial domain. The ETDI 

considers water stress ratio as expressed in the form: 

PET

AETPET
ETDI


 weekly values reflect short-term 

droughts 

Standardized precipitation index 

(SPI), (Vicente-Serrano et al., 

M 

 

Used to fatcor in the impact of cliamte change on 

drought characteristics which could not be detected by 
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2010) 

 

 

 

 

the original spi. It uses both the precipitation and the 

temperature data sets. It considers water balance and 

evapotranspiration 

Hybrid Drought Index (HDI), 

(Karamourz et al., 2009) 

M,H,A 

Integrated 

It combines the SPI, PDSI, and SWSI to represent 

various drought impacts 

Vegetation Drought Response 

Index (VegDRI) (Brown et al., 

2008) 

M.A,RS 

 

 

Used to characterize specific droughts and combines 

indices SPI,PDSI and NDVI  

Modified Perpendicular Drought 

Index (MPDI), (Ghulam et al., 

2007a) 

 

 

 

RS 

 

 

 

 

 

It is best used to accurately differentiate between the 

surfaces that are bare soils and densely vegetated 

agricultural or forest areas. A vegetation fraction that 

considers soil moisture and vegetation growth is used 

for undulating topography and variable soil types, the 

mpdi performs better than PDI. 

Recconnaissance Drought Index 

(RDI), (Tsakiris and Vangelis, 

2005) 

 

 

 

M 

 

 

 

 

 

It uses the precipitation and potential 

evapotranspiration. It is a more comprehensive DI than 

SPI. It is a physically based and calculates the deficit 

between the evaporative demand of atmosphere and 

precipitation. It is a simple index in computation of 

drought. 

Normalized Multi-band Drought 

Index (NMDI), (Wang and Qu, 

2007) 

RS 

 

 

It is an index used to improve sensitivity od ndwi and 

ndii by using inrformation from nir and swi bands. It 

extracts both vegetation and soil water content. 

Relative Soil Moisture (RSM) 

Index, (Thornthwaite and 

Mather, 1955) 

 

A 

 

 

 

It is a water component calculated from water balance. 

It considers climate, soil physical properties, potentail 

ET ,precipitation, and crop charcetristics and 

managemnet pracices variables  

Agricultural Drought Index,  

(Matera et al., 2007) 

A 

 

Uses water balance model and crop transpiration to 

calculate an integrated transpiration deficit  

Rainfall Anormally Index (RAI), 

(Van-rooy 1965) 

 

 

 

 

M 

 

 

 

 

 

An average precipitation based on weekly, monthly 

and annual time periods is used to characterize relative 

drought. The resulting drought is then ranked with 

respect to fisrt ten severe droughts in a long-term 

record. The drought is then asigned a magnitude  based 

on resulting values 

Drought Severity Index (DSI), 

(Bryant et al., 1992) 

M 

 

Accumulated monthly deficit of precipitation, 

temperature and ground water conditions data  

National Rainfall Index (NRI), 

(Gommes and Petrassi, 1994) 

 

 

M 

 

 

 

The total annual precipitation agianst its long term 

average are correlated. It reveals patterns and 

abnormalities of yearly precipitation on continental 

scale. 

Drought frequency index (DFI), 

(Gonzalez and Valdes, 2006) 

M 

 

The index uses the mean frequency of of reccurrence 

for assessing the magnitude of drought in an area. 

Ground water resource index 

(GRI), (Mendicino et al., 2008) 

 

 

H 

 

 

 

A simplified distributed water balance model is 

applied. It considers river basin geo-physical 

characteristics that  affect hyrological response to 

precipitation 

Water balance drought derived 

index (Vasiliades et al., 2011) 

 

H 

 

 

A water balance model is used to simulate runoff and 

the index is created by developed by normalizing and 

standardizing the generarted runoff to the mean runoff  

Vegetation outlook (VegOut), Aggregate  It combines the cliamte information and RS data of 
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(Tadesse and Wardlow, 2007) 

 

 

 

 

 

current vegetation conditions with oceanic index data 

and environmental information including land cover 

type, irrigation status, soils and ecological settings to 

predict future outlook of vegetation condition 

Ration Vegetation Index (RVI), 

(Pearson and Miller, 1972) 

 

 

RS 

 

 

 

The index is computed from the relation: 

R

NIR
RVI  where the NIR is near infra red and R is red 

bands repsectively 

Weighted Diffrence Vegetation 

Index (WDVI), (Clevers, 1988) 

 

RS 

 

 

The index is a function of near infra-red (NIR), rainfall 

(R) and slope of soil line  as expressed in the relation: 

RNIRWDVI   

Perpendicular Vegetation Index 

(PVI), (Richardson and Wiegand, 

1977) 

RS 

 

 

this index is calculated for the function: 

   RaCosNIRaSinPVI   where a is the angle 

between the soil line and the NIR 

Difference Vegetation Index 

(DVI), (Lillesand and Kiefer 

1987; Ray, 1994) 

RS 

 

 

The index is a function of near infra red band and the 

rainfall computed from the relation: RNIRDVI   

 

Soil Adjusted Vegetation Index 

(SAVI), (Huete, 1988) 

 

 

 

RS 

 

 

 

 

It is a function of near infrared band, red band and soil 

adjustiment fcator as per the expression: 

 
 LRNIR

LRNIR
SAVI






1
where L is the soil adjustment 

factor to account for soil variation 

Infrared Percentage Vegetation 

Index (IPVI), (Crippen, 1990) 

 

RS 

 

It is calculated from the following function: 

2

1





NDVI

RNIR

NIR
IPVI  

Atmospherically Resistant 

Vegetation Index (ARVI), 

(Kaufman and Tanre, 1992) 

 

RS 

 

 

 

It based on atmoshperic variables as per the relatiion: 

 
RBNIR

RBNIR
RBRRB




   where   is a 

correlation parameter which is optimum at  =1 

Anormally Vegetation Index 

(AVI)/Chen et al., 1994 

RS 

 

It uses the annual ndvi to assess vegetation dynamics 

and surface dryness of land 

Cubed Ratio Vegetation Index 

(CRVI), (Thenkabail et al., 1994) 

 

 

RS 

 

 

 

The 

3











MIR

NIR
CRVI MIR is the landsat-5 thematic 

mapper mid infrared 

Simple Ratio Water Index 

(SRWI), (Zarco-Tejada and 

Ustin, 2001) 

RS 

 

 

Uses NDVI applied in  MODIS with feedback loops to 

minimize atmospheric and soil bias that is present in 

NDVI and other DIs 

Vegetation Tempertaure 

Condition Index (VTCI), (Wang 

et al., 2006) 

 

 

 

 

RS 

 

 

 

 

 

 

Uses NDVI and LST and is computes from: 

minmax

max

NDVIiNDVIi

NDVIiNDVIi

LSTLST

LSTLST
VTCI




 where  LSTNDVIimax 

and LSTNDVIimin are the maximum and minimum land 

surface temperature of the pixels in the study region 

and lstndvii is the land surface temperature of the pixel 
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Table 15A: Examples of supervised ANN 

Broad classification Sub-class Specific types 

Feedforward Neural 

Network 

 

 

 

 

Linear  

 

 

 Hebbian NN 

 Perceptron  

 Adaline  

Mulilayer 

perceptron   Back propagation  

 

 Radial basis function 

Classification 

only 

 Learning Vector Quantification  

 Probability neural network (PNN) 

Regression 

only  General Regression Neural Networsk 

Feed back Neural 

Networks 

 

 

 

 Back-propagation 

 

 Elman network 

 

 Recurrent back propagation 

 

 Time delay neural network (TDNN) 

 

 Real time neural network  

 

 Hopfield neural network 
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Table 16A: Summary of part of the data plotting in matlab 

Duration (months) 

 

Dependent variables 

(SPI Observed and SPI Forecasted) Precipitation (mm) 

x1=[1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40] 

x2=[1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40] 

y1=[-2.000000   -2.419800000 

-1.804132587   -1.982741713 

-0.5475678   -0.360177701 

-0.5475678   -0.460177701 

-0.695221696   -0.764048644 

-1.84330607   -2.025793371 

-1.954799828   -2.514832501 

-1.927679724   -1.611852002 

-1.719758932    -1.489001507 

-0.074472665   -0.098184546 

0.214808437   0.127360745 

-1.942746449   -2.413507835 

-1.996986655   -2.419468833 

-1.933706414   -2.125143349 

-1.852346104   -2.035728368 

2.730951356   3.001315540 

4.394317693   4.829355144 

-1.813172622   -1.992676711 

-2.000000000   -2.198000000 

-1.623331898   -1.878404176 

-1.623331898   -1.784041756 

0.675850194   0.874275936 

-0.07145932  -0.078533793 

-1.984933276   -2.18144167 

-0.891089109  -0.979306931 

-1.19242359  -1.310473526 

-0.96039604  -1.105547525 

0.962117951  1.057367628 

0.528196298   0.658048773 

-1.71975893   -1.890015067 

-1.01764959  -1.118396901 

-1.87343951  -2.05891003 

-1.960826517   -2.154948343 

-0.930262591  -1.022358588 

0.229875161 0.252632802 

-1.493758071  -1.641640121 

-1.873439518  -2.05891003 

-2.00000000  -2.19800000 

-1.445544554   -1.588653465 

0.841584158  0.92490099] 

y2=[0 

0.65 

4.82 

4.33 

0.52 

0.15 

0.24 

0.93 

6.39 

7.35 

0.19 

0.01 

0.22 

0.49 

15.7 

21.22 

0.62 

0 

1.25 

8.88 

6.4 

0.05 

3.68 

2.68 

3.45 

9.83 

8.39 

0.93 

3.26 

0.42 

0.13 

3.55 

7.4 

1.68 

0.42 

0 

1.84 

9.43 

5.94 

0.03] 
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Table 17A: Annual average weight parameters and the non-exceedance probabilities of the 

SWSI 

month 

 

precipitatio

n (mm) 

Average monthly Weighting parameter for 

SWSI Average Non-exceedance probability  

a B c d PNrn PNsf PNrs PNdf 

Jan 3.321 0.0325 0.1217 0.6721 0.1737 0.6298 0.9361 0.4784 0.3884 

Feb 1.6674 0.0268 0.0893 0.7054 0.1785 0.6507 0.9558 0.4840 0.3142 

Mar 0.1101 0.0649 0.0758 0.6834 0.1759 0.4096 0.9633 0.4901 0.2670 

Apr 6.7602 0.1910 0.1327 0.5396 0.1366 0.1535 0.9129 0.4904 0.2128 

May 7.1243 0.1014 0.2250 0.5274 0.1462 0.2762 0.8476 0.4801 0.0532 

Jun 3.1200 0.0208 0.1542 0.6505 0.1745 0.5780 0.9194 0.5223 0.1171 

Jul 0.1099 0.0198 0.1057 0.6908 0.1837 0.6231 0.9493 0.5330 0.2074 

Aug 0.3250 0.0244 0.0886 0.7003 0.1867 0.6007 0.9583 0.5372 0.2607 

Sep 0.0005 0.0214 0.0844 0.7050 0.1892 0.6862 0.9594 0.5291 0.3085 

Oct 4.9018 0.0702 0.0789 0.6692 0.1817 0.4543 0.9597 0.4926 0.5107 

Nov 10.2346 0.1000 0.1517 0.5897 0.1587 0.4035 0.9039 0.4887 0.5585 

Dec 8.1245 0.0375 0.1453 0.6441 0.1730 0.5688 0.9218 0.4745 0.6277 

Key: a,b,c, d and PNrn, PNsf, PNrs and PNdf  are weight parameters and probability of non-exceedance for rainfall, 

stream flow, reservoir levels and dam inflows respectively 

 

Table 18A: Monthly average streamflow of the gauged stations used in the study 

Month 

 

Average Streamflow (m3/s) at Gauged stations 

4AB05 4AD01 4BC02 Maragua (ID) Thiba (ID) 4DA10) 

Jan 1.5538 

 

14.6725 9.9112 3.4482 10.1985 

Feb 0.8015 

 

13.4871 7.5241 3.0565 7.9876 

Mar 0.7354 

 

15.7390 7.3303 2.7166 7.7111 

Apr 2.2727 

 

45.4088 20.8813 6.1387 16.4643 

May 2.7747 

 

76.6992 29.7100 19.8789 43.2541 

Jun 1.0557 

 

37.9182 15.3258 12.4697 29.1793 

Jul 0.7413 

 

21.1989 9.5936 5.8657 15.7863 

Aug 1.0998 

 

17.7013 7.6427 4.4726 13.3713 

Sep 0.9768 

 

15.1034 6.5295 3.6266 11.3016 

Oct 1.7069 

 

19.9140 9.7869 6.0722 13.1231 

Nov 2.9718 

 

37.4919 18.8439 7.5825 18.5222 

Dec 2.0621 

 

26.1597 14.1239 5.2174 14.4553 
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Table 19A:  Estimated of precipitation at a station Naro-moru (N-M) using inverse distance 

weighting (IDW) technique 

Station 

point  

P (mm) Jan-

1980 

precipitation  Δx Δy d
2
= Δx2+ Δy2 2

1

d
wi   

Product 

=wxp 

N-M ___ ___ ____ ___ _____ __-_ 

A 3.90 25.40 27.26 1388.27 0.000072 0.018290 

B 62.70 19.25 51.50 3022.81 0.000331 0.006368 

C 7.01 51.00 32.84 3679.47 0.000271 0.013860 

D 1.29 26.80 2.70 725.530 0.001378 0.036939 

E 3.80 7.50 2.50 62.500 0.016000 0.120000 

F 1.24 22.40 50.70 3072.250 0.000325 0.007290 

Total  0.019027 0.202755 

Key A=Kerugoya DWO, B=Nyeri, C=Embu, D=GP3, E=GP4 and F=GP9 

 

         mm
w

pw
P

i

ii

MN 6565.10
019027.0

202755.0








  

 

Table 20A: Summary of the drought indices for the study 

Drought index  Input variables Drought type 

SWSI 

P,Q reservoir level, Reservoir 

Inflow, dam inflow Hydrological  

SDI Q Hydrological 

SPI P Meteorological  

EDI P Meteorological  

PDSI P, T, AWC Agricultural 

SMDI SWC Agricultural  

Generic NDI P,Q, reservoir level, sm 

Hydrological, Meteorological, 

Agrcicultural 

 

Table 21A: Drought severity in 1980 computed for upper Tana River basin 

Station name Station ID Drought severity, S 

Kamburu 4EB01 4.023 

Yatta furrow 4CC03 4.651 

Nyamindi  4DA10 3.581 

Rupingazi  4DC03 3.248 

Sagana 4AC03 2.354 

Tana sagana 4BC02 2.288 

Amboni 4AB05 1.041 

Gura  4AD01 1.051 
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 Table 22A: SWSI critical values of the performance measures extracted from Figure 22B 

Cross sectional 

point 

Graphs 

 

Lead time 

(x)(months) 

Performance 

value (y) 

Values at R2=0.50 

 

P1 NSE and  RMSE 12 0.59 Index 

Threshold Value 

range (y) 

P2 R2 and RMSE 13 0.62 R2 0 to 0.50 

P3 d1 and RMSE 14 0.64 RMSE 0 to 0.72 

P4 MAE  and NSE 14 0.56 NSE 0.49 to 0.99 

P5 MAE and R2 14 0.57 MAE 0 to 0.68 

P6 MAE and d1 15 0.59 d1 0.52 to 1.00 

 

Tabe 23A: Regression equations for filling data for defined stations 

S.No Regression equation Correlation 

coefficient (R
2
) 

1 2.7736.0  SFCFE PP  0.882 

2 9.332.1  KeSFCF PP  0.891 

3 8.4878.0  KeKi PP  0.908 

4 4.1458.1  KeKe PP  0.831 

Key: P is precipitation (mm) , while subscripts E, SCFC Ki 

and Ke stands for embu, Sagana FCF, kerugoya and kirinyaga 

stations 
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Table 24A: Steps in formulation of SWSIm model for upper Tana River basin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i) By considering the regression equation for Kamburu (ID 4ED01) hydrometric 

station plotted for SWSIp against the normalized SWSIn 

4096.5082.11  xy                    (1) 

ii) Factoring 5.4096 outside bracket yields 

  104.24096.5  xy                  (2) 

iii) Guided by the original equation which has a denominator, writing the value 

5.4096 in form of a fraction shows that  

1849.0

1
4096.5                     (3) 

iv) Thus substituting the right hand side of Equation 3 in Equation (2) yields 

  
1849.0

104.2 


x
y                   (4) 

v) But from the SWSI the x is an expression defined by: 

dfrssfrn PNdPNcPNbPNax      (5) 

vi) Substituting the right hand expression of equation (5) into equation (4) and y 

with SWSI yields: 

  
1849.0

104.2 


dfrssfrn PNdPNcPNbPNa
SWSI               (6) 

vii) Repeating this process for all the other stations gave an equation of the same 

form. Thus it is concluded that the general equation takes the form: 

  
3

21

k

kPNdPNcPNbPNak
SWSI

dfrssfrn

m


                             (7) 
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Table 26A: The selected drought indices for different drought types as applied in the study 

 

Drought index Drought type for which the index is adopted  

SWSI Hydrological 

EDI Hydrological 

SPI Meteorological 

EDI Meteorological 

SMDI Agricultural 

PDSI* Agricultural 

*Index could also be used for hydrological drought 



194 
 

APPENDIX B: FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1B: Categories of impacts of drought 
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Figure 2B: Bimodal distribution of the precipitation for upper Tana River basin  
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Figure 3B: Double mass curve based on precipitation upper Tana River basin 
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Figure 4B: Double mass curve based on strem flow for upper Tana River basin 
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Figure 5B: Flow chart of Levernberg-Marquardt algorithm (Source Toushmalani, 

2013) 
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Figure 6B: Flow chart showing the steps used in soil water (SW) simulation in Aquacrop 

model 
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Figure 7B: spatial distribution of annual precipitation in the upper Tana River basin 

 

 

Figure 8B: the location of hydro-metric stations in upper Tana River Basin based on IDs 
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Figure 9B: Mean monthly temperature at Embu hydrometric station 

 

 

 

 

 

 

 

 

 

 

 

Figure 10B: Absolute sensitivity of NDI for a decrease in parameter values at MIAD 
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Figure 11B: Telemetric data transmission for drought forecasting and management 
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Figure 12B:  Relationship between the magnitude, duration and severity of a drought event 
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Figure 13B: agro-ecological zones in the upper Tana River basin (Source; GoK, 2012) 
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Figure 14B: Flow chart for back-propagation training 
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Figure 15B: The sub-basins in the upper Tana River basin (Source,;GoK, 2012) 
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Figure 16B: Monthly average PDSI at Amboni hydrometric station 
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Figure 17B: NDI time series for Sagana F. C. F. station 
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Figure 18B: NDI time series for Naro-moru F.G.P. station 
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Figure 19B: observed and projected SMDI at Naro-moru F.G.P. station 

 

 

Figure 20B: The location of hydro-metric and global data stations in upper Tana River basin 
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Figure 21B: Observed and projected SWSI at Amboni hydrometetric station 

 

 

Figure 22B: Comparison of SWSI forecasts at different lead times 
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Figure 23B: The spatially distributed drought based on PDSI for upper Tana river basin 
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Figure 24B: Regression of SWSn and SWSIm for kamburu hydrometric station 
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Figure 25B: Average monlthly precipitation for upper Tana River basin 
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Figure 26B: Observed data matrix for January at Sagana FCF hyrometric station 

(Columns 1, 2, 3 and 4=monthly average rainfall, R(mm), reservoir level, rs(m asl), dam inflow df, 

(MCM) and Soil-water content (SWC) (cm)  

 2.54 1055.44  695.95  2.986 

1.52 1051.37  704.68  4.505 

13.21 1052.27  506.36  5.691 

0.76 1055.46  757.94  4.511 

1.52 1051.27  694.46  5.533 

0.76 1055.16  663.40  5.855 

8.13 1055.26  648.50  6.248 

17.27 1051.37  758.36  6.566 

64.77 1056.66  1236.06  6.436 

41.91 1039.40  1487.95  6.237 

4.06 1020.33  1497.94  4.869 

7.37 1036.40  771.96  5.351 

156.46 1045.48  723.40  8.632 

0.76 1054.27  739.10  5.300 

0.76 1054.52  676.95  5.193 
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32.77 1055.15  697.10  7.177 

32.77 1056.34  482.60  7.177 

43.18 1054.61  685.70  3.434 

38.10 1056.58  1542.8  6.339 

55.88 1055.96  1359.4  8.073 

72.39 1055.42  920.90  8.531 

4.32 1056.16  821.28  5.562 

0.00 1038.26  738.10  5.752 
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Figure 27B: PC1 for the month on January at Sagana FCF hydrometric station 
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Figure 28B: NDI values for January at Sagana FCF hydrometric station 
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Figure 29B: The location of hydropower stations in the upper Tana river basin 

           (Droogers, et al., 2006) 
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