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ABSTRACT 

Surface waves have significant effects on the hydrodynamics of offshore bodies or structures on 

a fluid of finite depth. Wind, moving vessels, seismic disturbances of shallow sea floors 

(tsunamis) and the gravitational disturbances of the sun and the moon are factors responsible for 

generation of waves. Their influence is very crucial in engineering analysis, design, and 

optimization. Many researchers in the field of hydrodynamics have analyzed the effect that 

surface waves have on bodies with cylindrical cross section. However, little has been done on 

structures that have rectangular cross-section especially on incompressible fluids. This study, 

therefore, focused on the analysis of wave motions acting on rectangular offshore structures. The 

analysis of surface waves characteristics arising from incident wave potential was carried out. 

This is because the ability to predict offshore structure behavior begins with the study of the 

nature of ocean in which the vessel operates. These characteristics included: incident wave 

potential, incident wave elevation, wave velocity and acceleration. The influence of water depth 

on the wave characteristics was also investigated. Consequently, the wave exciting force 

resulting from the interaction of such waves on a rectangular floating barge was investigated and 

analyzed. Boundary integral method together with Green functions in its series form was used to 

obtain the radiation potentials. These radiation potentials were used to solve diffraction and the 

Froude-Krylov forces for the rectangular floating barge. The forces aforementioned were used in 

the calculation and the analysis of wave exciting forces. Research finding shows that, the vertical 

wave acceleration and wave velocity were quite high leading to high vertically induced motions. 

Acceleration are used in the determination of cargo loads and also in the predictions of sea 

sickness. Change in water depth was also found to have adverse effect on the wave properties 

and consequently on the hydrodynamic forces, this was in accordance with shallow water effect. 

For the surge exciting forces it was evident that the forces increased up to a certain level and then 

they were radiated away to avoid interference at far field. Moreover heave wave exciting forces 

was found to be inversely proportional to the wave frequency. Heave motion is the limiting 

factor in drilling of oil. To reduce the heave forces acting on a body it was observed that there 

was need to increase the distance of the body from the free surface, that is, the draught length. 

The results obtained would be of great importance to Kenya in the prospects of exploitation of 

oil on the southern coast and indeed also in the sand harvesting process that is taking place at the 

Kenyan coast for the construction of the standard gauge railway.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background information  

The prediction of sea keeping parameter, for example, body response, wave load, deck wetness, 

slamming, among others, are some of the most important aspects in ship design (Faltinsen, 2005;  

Manyanga, O.D., Duan, W.Y., Xuliang H., and Cheng, P., 2014). Furthermore, peak loads 

created by hurricanes winds and waves and fatigue loads generated by waves over the body are 

also important design consideration for offshore construction. Offshore platforms, which is part 

of offshore construction, have many uses including oil exploration and production, navigation, 

ship loading and unloading and to support bridges and causeways. However, offshore oil drilling 

is one of the most visible and imperative application. The structures aforementioned must 

function properly and safely for a longer period, although they are subject to harsh marine 

environment (Sadeghi, 2007). Therefore, sea keeping analysis is an imperative aspect that should 

be incorporated into the design phase of any offshore structure. If this analysis is considered in 

the design loop, it is, in principle, possible to construct efficient and safer offshore structures. In 

the classical view of ocean hydrodynamics, fluid density is always assumed to be constant (Koo 

and Kim, 2010). This study adopted the same single-layer fluid approach that had been used in 

other studies of a similar nature (Beck and King, 1989; Rahman and Bahtta, 1993; Fonesca and 

Soures, 2002; Dai and Duan, 2008) where the main point of divergence was a rectangular 

floating barge that was considered and also the fact that the problems were solved in time 

domain study but in this research the problem was solved in frequency domain. 

Various studies have established that surface waves cause periodic loads on all man-made 

structures in the sea regardless of whether these structures are rigid or floating, or whether they 

are deep in the ocean or on the surface. These periodic loads are caused by the interaction 

between water waves and floating bodies. The study of these periodic loads has received 

considerable attention from designers. This attention is attributable to the fact that accurate 

predictions for the hydrodynamic loads are crucial in designing of any offshore structure and 

construction taking place in shallow fluids (Wehausen and Laitone, 1960; Zakaria, 2009; 

Manyanga and Duan, 2011). The hydrodynamic interaction of a floating body and surface waves 

which cause periodic loads, can be decomposed into the radiation problem (where the body 



2 
 

undergoes oscillatory and translatory motion), and the diffraction problem (where the body is 

fixed and restrained from oscillating). Much of the available body of literature focuses on 

radiation and diffraction problems from the perspective that most, if not all, offshore structures 

are cylindrically shaped (Garrett, 1971; Yeung, 1981; Bhatta and Rahman, 2003; Hassan and 

Bora, 2012; Finnegan, W., Meere, M. and Goggins, J., 2013). From the previous studies, it is 

evident that there is a deliberate effort by researchers to understand and analyze the impulsive 

hydrodynamic loads acting on cylindrical or spherical bodies. However, little effort has been put 

in analyzing hydrodynamics loads acting on rectangular floating bodies especially in 

incompressible fluids. However, Gou, Y., Chen, X., Teng, B. and Zheng, Y. (2012) advice that it 

is not realistic to presuppose that all structures are and will always have a cylindrical cross-

section. This study assessed the reaction of a floating rectangular barge in the presence of surface 

waves, where body motions were attributed to incident waves and the scattering of these waves. 

The study derived the wave exciting force acting on a rectangular floating barge at zero forward 

speed using panel methods developed by Hess and Smith (1964). Although Manyanga et al. 

(2014) explored the said method in the analysis of the wave exciting forces for a two layer fluid, 

the method had not been studied in analyzing the exciting forces for a fluid of constant density.  

1.2 Statement of the problem 

Analysis of wave interaction with bodies is an important and active field in hydrodynamics. 

Interaction of ocean waves with floating bodies lead to forces and moments. These forces 

significantly affect offshore structures and bodies. For instance, they cause additional resistance, 

reduced sustained speed, and increased fuel consumption for ships; and even in oil exploration, 

they reduce the amount of resources drilled at a time. However, many past studies focused on 

hydrodynamic forces on cylindrical offshore bodies. In addition, previous studies have not 

addressed the impact of hydrodynamic forces on bodies having the profile of a rectangular shape, 

on water of finite depth. Due to maritime technological advancement, many rectangular bodies 

are increasingly being used on the ocean. Therefore, this study analyzed the surface wave 

characteristics and consequently explored the impact of wave exciting forces on a rectangular 

floating barge at zero forward speed for a fluid of finite depth.  
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1.3 Objectives 

1.3.1 General objective 

To analyze the wave exciting forces on a rectangular floating barge at zero forward speed for a 

fluid of constant density. 

1.3.2 Specific objectives 

i) To analyze the incident surface wave characteristics in three-dimension for a fluid of 

finite depth and their effects on a rectangular floating barge.    

ii) To determine the Froude-Krylov force acting on a rectangular floating barge due to the 

presence of surface waves. 

iii) To determine the diffracted force acting on a rectangular floating barge due to the 

presence of surface waves. 

iv) To investigate and analyze the wave exciting force on a rectangular floating barge. 

1.4 Assumption of the study 

i) The fluid to be considered is homogeneous, incompressible, inviscid and without surface 

tension. 

ii) The motion of the fluid is irrotational and harmonic with time dependence. 

iii) The bottom of the channel or the seabed is stationary, impermeable and horizontal. 

1.5 Justification 

Knowledge of wave-induced loads and motion of ships and offshore structures is very important 

both in design and operational studies. Presently, there is an increase in the advancement of 

ocean technology. Consequently, high-tech marine vehicles for transportation of goods and 

passengers have been constructed. Furthermore, ocean engineers have also been of help in open 

sea fishing, recovery of deep sea minerals, and development of marine energy resources. All 

these areas require the study of hydrodynamics loads due to wave-induced motion. Mostly, 

researchers in this field have analyzed these hydrodynamic loads using circular floating bodies. 

However, the fundamental question is whether or not it is realistic to assume that most of the 

bodies on the sea have circular cross-section. This study was premised on the fact that not all 

floating bodies are circular in nature. Therefore, in this study a rectangular floating barge was 

used in the analysis of the wave exciting force in the surge and heave direction. This research 

came at a time when Pan continental oil and Gas Company discovered oil and completed the 
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drilling of sunbird-1 well off the southern coast of Kenya, which is the first offshore oil column 

to be discovered in East Africa. The development of this new offshore energy fields in Kenya is 

expected to bring in new technical and economic challenges, particularly in respect of 

transferring the oil and gas products from the seabed to the sea surface. In addition the 

construction of standard gauge railway has led to sand harvesting on the Kenyan Coast which is 

another area of application of hydrodynamic forces. 

 The equipment to be used in the exploitation of these resources are subject to the principles 

advanced in this study; that is, the study of waves and body response to them. In addition, the 

results obtained would be of great help to researchers and oceanographers since it would help 

them in understanding the response of floating rectangular bodies in the ocean such as ships due 

to surface waves. For instance, the results findings on the relative vertical motion could be used 

to evaluate the possibility of slamming, damage due to slamming and volume of the water on the 

deck. The results of this study can be used in analyzing the heave motion which the drillers and 

designers of drilling equipment can rely on and help them to design structures with low heave 

motion to ensure that it is possible to extract more minerals at a time. Furthermore, in case of 

ships the information would be used to choose optimum ship routes based on relevant criteria 

like minimum fuel consumption or the shortest time of voyage. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Waves 

When the surface of a body of water is disturbed in the vertical direction, the force of gravity 

always tries to return it to equilibrium. The returning of surface water to equilibrium has inertia, 

which causes oscillation. This oscillation is responsible for the propagation of the waves. Some 

disturbing forces, therefore, generate waves in water surface. A wave motion can be defined as 

any fluid motion in a gravitational field and with a free surface on an interface. There are 

different types of waves brought about by the changes in their periods. These include waves 

generated by winds, moving vessels, seismic disturbances of shallow sea floors (tsunamis) and 

the gravitational disturbance of the sun and the moon. From these causes, arise different types of 

waves, including internal waves and surface waves. Internal waves may occur due to density 

differences of a fluid, caused by variation in salinity and/or temperatures (Gou et al., 2012; 

Manyanga and Duan, 2012; Manyanga et al., 2014). Surface waves are those that occur at the 

surface of the ocean and the fluid involved is of constant depth. 

The effects of internal waves on the surface and internal wave amplitude and the influence of 

internal waves on wave characteristics such as wavelength, frequency and period had been 

studied (Manyanga and Duan, 2011). The analysis and prediction was of great practical 

significance. The importance is attributable to the fact that ocean surface waves are known to 

cause periodic loads on all offshore structures, whether these structures are fixed, floating or 

sailing and whether on the surface or deeper in the sea (Zakaria, 2009). To understand these 

loads, a good comprehension of the physics of water waves was necessary. The analysis of 

incoming wave characteristics is especially of great importance to ocean engineers and designers 

in understanding the wave exciting forces. For instance, Baarholm and Faltinsen (2004), while 

studying the extreme wave impact on the deck, acknowledged that it was important to design an 

offshore structure in such a way that the lower deck was above the predicted wave level. For 

wave impact on floaters, vertical forces are critical. Furthermore, the study predicted that impact 

forces might influence the vertical platform significantly. Due to the presence of large volume 

structures, the body’s free surface wave elevation and even kinematics are disturbed. In ship 

wave elevation, which is one of the characteristics that was analyzed, contributed significantly in 
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wave-deck problem. Linear theory (Coastal engineering research center, 1977) has been used and 

is still in use in the prediction of sea environment. This theory aids in giving a good analysis of 

surface waves and the wave induced motions. Over the years, researchers used linear theory in 

predicting the kinematic and the dynamic characteristics of waves and also the effects they have 

on offshore structures, especially diffraction problems (Salvesen, N., Tuck, E. O. and Faltinsen, 

O., 1970; Vasquez, G.A., Fonseca, N. and Soures, G. C., 2011). According to this theory, water 

is assumed to be inviscid, irrotational and incompressible, and the wave slope is assumed to be 

asymptotically small (Faltinsen, 1990). This assumption helps in giving a linear description of 

surface gravity waves of any homogeneous fluid. Furthermore, it helps in relating the wave-

induced motion and the load amplitudes, which have been found to be linearly proportional 

(Faltinsen, 2005). This theory has generated good results, which are in agreement with the 

practical results.  

2.2 Dispersion relation 

Dispersion relation relates the wave number k , the angular frequency , and the wave celerity c . 

For a linear dispersion relation, k  is regarded as eigen- value (Rahmann and Bhatta, 1993). 

tanhgk kh  ,
                            (1) 

However, the wave celerity c , is given by; 

c
k


              (2) 

then substituting equation (1) into equation (2) we have 

tanh
g

c hk
k

 
  

 
                        (3) 

  

These equations show that the wave celerity does not depend on the height of the wave or on the 

amplitude. In addition they uniquely relate the wave frequency and wave number given the water 

depth. Consequently, for waves with different periods, the one with a longer period propagates at 

high celerity and moves ahead unlike the one with shorter period. It can therefore be concluded 

that the wave frequency increases with depth (Manyanga and Duan, 2012). This shows that 

waves generated by seismic disturbances (tsunamis) move ahead of others at very high celerity 

and their effects are catastrophic as compared to other surface gravity waves. Wave dispersion 
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and how changes in the fluid depth affects the wave angular frequency and wave number on the 

surface waves was analyzed in this research. 

2.3 Boundary conditions 

Analyses of waves and the effects they have on offshore structures have been made possible by 

certain conditions. This possibility is due to the fact that the distinction between fluid motion 

occurs due to the boundaries imposed on the fluid domain (Linton and Mclver, 2001; Malik, 

S.A., Guang, P., and Yanan, L., 2013). In particular, in order to complete the mathematical 

problem of deriving the velocity potential, these boundary conditions are important in aiding the 

work of researchers interested in the study of hydrodynamics loads.  

2.3.1 Free surface conditions 

Surface waves are created by the presence of the free surface. Therefore, in all problems 

involving waves, free surface conditions always play a major role. Two free surface conditions 

are successful in describing most practical situations of sea environment, namely dynamic free 

surface and the kinematic free surface condition (Bahtta and Rahman, 1993). The dynamic free 

surface condition requires that the pressure of the fluid be equal to the pressure on the free 

surface, which is always taken to be the atmospheric pressure (Herman, 2011). On the other hand 

kinematic free surface condition requires that the fluid particle remain on the free surface, that is, 

the particle follows the free surface, and the free surface follows the particle as long as the 

motion is smooth and the wave does not break. The label kinematic is derived from the fact that 

it addresses the motion of the fluids and proposes that the normal component of the fluid velocity 

must be equal to the normal component velocity on the free surface itself. The linear dynamic 

condition comes from the Bernoulli principles (Faltinsen, 1990). 

 
2

2
p gy c

t

 
  


    


                                                (4) 

The Bernoulli’s principle is a non-linear equation, and hence linear analysis is used, where the 

boundary conditions on the free surface and the body boundary are linear. 

2.3.2 Radiation condition 

This condition states that surface waves and hence the velocity potential, disappear at any 

distance away from the body. Hence, 0   as r    (Faltinsen, 1990). 
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The boundary conditions highlighted here are of paramount importance. These boundary 

conditions were applied in the derivation of the velocity potentials and, consequently, the 

mathematical formulation of the Froude-Krylov and the diffraction forces. 

2.4 Body response in waves 

Behaviors of offshore structures operating in the ocean environment are influenced by various 

kinds of external loads such as incident waves, thermal change, traffic loads, currents, and 

buoyancy. For any structure to be designed properly, the hydrodynamics loads must be predicted 

accurately. Furthermore, vertical acceleration and the relative vertical motion between the 

floating body and the waves are very important responses. For instance, they have always been 

associated with slamming (impulse loads with high pressure peaks that occur between the ship 

and the water) (Baarholm and Faltinsen, 2004). One of the main reason for studying fluid motion 

and waves on a floating or a rigid body is to determine the forces and moments acting on the 

body; that is, the hydrodynamic loads. These loads are present due to many factors, especially 

due to wave excitation (Rahman and Bhatta, 1993). In the analysis of wave exciting force, 

incident waves were the most influential and most important in the determination of 

hydrodynamic forces especially the diffraction and the Froude Krylov forces. 

When an offshore body encounters surface waves with amplitude A  and direction   incident 

upon the body, moved with response to these waves in six degrees of freedom, translatory 

motions, that is the heave, surge and sway and oscillatory angular motions about the same axis, 

which were referred to as yaw, roll and pitch (Baghfalaki and Samir, 2013). The resulting motion 

acting on these offshore structures according to linear theory was very small. The corresponding 

velocity was sinusoidal and the corresponding frequency equal to that of the incident waves. 

According to linear potential theory, the potential of a floating body can be expressed as a sum of 

the potential due the undisturbed incoming waves, the potential due to diffraction of the 

undisturbed incoming waves on the fixed body and the radiation potential due to the six body 

motions as shown in equation (5) below (Sarantopoulos, 2004; Nguyen’ and Yeung, 2011; 

Marvrakos and Konispoliatis, 2012; Manyanga et al., 2014). 

6

1

j I D

j

   


  
                            (5)
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It is worth noting that each potential function must satisfy all the important and appropriate 

boundary conditions. In addition the velocity potential can be written using the superposition 

principle shown in equation (6) which is another form of equation (5) 

     
6

1

, , Re , , , ,
i t

j j A

j

x y z x y z A x y z e


   


   
   

   
                                              (6) 

From the assumption of small amplitude motion then the kinematic boundary condition on the 

immersed surface of the body is satisfied in its mean position, that is; (Manyanga et al., 2014), 

, 1, 2, ..., 6
j

j
i t n j

n





  


 ,          

3
, 4, 5, 6

j

j
i r j

n


 




  


                                            (7)                                

and 

                                                        

0A

n




                              (8)
 

The waves generated by a moving body are absent if the floating body is permanently fixed. 

Bernoulli’s principle is used in the calculation of hydrodynamic loads by the integration of the 

pressure. These hydrodynamic loads problem in regular waves are categorized into two cases: 

i) The forces and moments on the body when the body is restrained from oscillating.  

The hydrodynamics loads considered are the wave exciting loads, which comprise the 

Froude-Krylov and diffraction forces and moments (Faltinsen, 1990). 

ii) The forces and moments on the body when the structure is forced to oscillate with the 

wave excitation frequency in any rigid body mode. In this case, incident wave is not 

considered. The hydrodynamics loads comprise added mass, damping and restoring 

force (Faltinsen, 1990). 

The presence of a body on the surface wave field results in the diffraction of the incident waves 

and the scattering effect, hence the velocity potential can be written as the sum of incident 

potential and diffracted potential (Manyanga et al., 2014).  

 Re

B

ji t

ex I D

S

F i Ae dS
n




   
 

    
 

                                                                      (9) 

The wave exciting force is divided into two parts (Manyanga et al., 2014). The first part of (9) 

represents the hydrodynamic part of the Froude-Krylov force. This force, as mentioned earlier, is 
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the dominating part of wave-induced forces acting on any offshore body in the surge, heave and 

pitch direction. This force is generated by the pressure fields created between the floating body 

and the incident wave. It is the potential associated with the incident wave in the absence of an 

offshore structure (Faltinsen, 1990). The second part is the diffraction part or the scattering 

potential, which describes the interaction between the incident wave and the rigid body. It results 

from the presence of the body on the wave terrain.  

2.5 Velocity Potential  

Velocity potential is a consequence of the irrotationality of a flow, and can be defined for a 

general three-dimensional flow. The velocity potential function satisfies the Laplace equation 

with a set of boundary conditions; namely, the free surface linear boundary condition, the 

kinematic bottom boundary condition, the radiation condition which is satisfied at infinity and 

the body boundary condition applied on the moving body surface in its equilibrium position 

(Faltinsen, 2005). In addition, the wave velocity potential helps in deriving equations that define 

the various wave characteristics (such as surface profile, wave celerity, pressure field and 

particle kinematics).Various analytical methods have been used in the derivation of the velocity 

potential. For instance, Finnegan et al. (2013) used separation of variables and derived an 

analytical solution for the wave scattering problem for an infinitely long truncated cylinder. In 

this research, separation of variable method together with linear theory was used in the 

derivation of the incident velocity potential. From the velocity potential, waves characteristics 

such as the wave velocity, wave acceleration and wave elevation were derived and used to study 

such behaviors as effects of the surface waves on the wave amplitude. Furthermore, an 

investigation of the influence of surface waves on the wavelength, frequency, and period were 

made. 

However, for the study of the effects of surface wave characteristics on the wave exciting force, 

there was need for appropriate Green functions. Green function, which had an interpretation of a 

point wave source of unit strength, had been widely used in representing velocity potential such 

as that developed by Wehausen and Laitone (1960). In addition, Manyanga and Duan, (2012) 

also developed and used a three dimensional Green functions from Pulsating Sources in a two-

layer fluid of a finite depth.  
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In this study, results in both the surface wave characteristics and internal waves were developed 

and the results compared. However, most studies adopted the Green function developed by 

Wehausen and Laitone (1960) in the derivation of the radiation potentials given by equations 

below,  

   
1

( , , ) , , , , , , ,
4

B

j

S

x y z f G x y z dS      


  , 1, 2, ..., 6j           (10) 

satisfying the Laplace equation, 

       
2

, , , , ,G x y z x y z                                   (11) 

where,       

 
   

 

 
2

22 22 2
0

cosh cosh1 1
, 2

( 2 )( )
sinh cosh

kh

o

k y h k h
G P Q k e J kR dk

R h y gR y
k kh ky

g








  

    
      



and      

   

( , , )P p x y z

   
( , , )Q q   

                                                                                                                                                                                    
2 2

R x z    
                         (12) 

 

Furthermore, the Green function satisfies not only the Laplace equation but also all the boundary 

conditions excluding the boundary condition on the body surface. 

2.6 Numerical methods 

Numerical methods for assessing the sea keeping parameters of offshore structures to predict 

their motions and loads in waves had been used over the years after the strip theories, which 

were developed in the early 60’s. In addition, there exist practical numerical tools based on 

three-dimensional analyses that predict linear wave-induced motions and loads on large volume 

structures at zero Froude number. Nevertheless, strip theory is still used widely (Ghadimi, P., 

Bandari, P.H. and Rostami, B.A. (2012). This method, however, only provides good results for 

the vertical responses. In addition, this theory is based on the assumptions of potential flow, 

slender body and small amplitude motions. Consequently, the theory is computationally efficient, 
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but cannot give accurate hull pressure predictions (Malik et al., 2013). Moreover, for horizontal 

wave responses, this method needs some modifications to improve the result. 

Due to the shortcomings of this theory, researchers have devised better numerical methods to 

understand the hydrodynamic loads acting on offshore structures. For instance, Yeung (1981) 

used the eigen function expansion to study forces on a freely floating circular cylinder. The idea 

of eigen function expansion was extended by Calisal and Sabuncu (1984) to the case of a freely 

floating circular cylinder and a submerged cylinder resting on the seabed. However, this method 

has considerable degrees of limitation. For instance, it is insufficient to model structures 

requiring a very large number of modes, which limits the size of the cross-section for 3-

dimensional problems. Other numerical methods such as Boundary Element Method (BEM) and 

Finite Element Method (FEM) have also been used in the analysis of the hydrodynamics loads of 

floating structures on the wave terrain. BEM and FEM are efficient in the numerical analysis of 

hydrodynamics. Unfortunately, they give rise to fully populated matrices. Hence the computation 

time tends to grow depending on the size of the problem leading to complex computational 

procedures (Ghadimi et al., 2012). Therefore, to predict properly the interactions between 

different sections of the floating structure with waves, three-dimension panel method, which is 

based on potential theory, was developed by Hess and Smith, (1964). Over the years, this method 

has proved to be more efficient especially in sea-keeping calculations and analysis (Manyanga et 

al., 2014). 

Panel methods attempt to solve the Laplace equation in the fluid domain by distributing sources 

and dipoles on the body and, in some methods, on the free surface. The surfaces are divided into 

panels, each of which is associated with a source and dipole distribution of unknown strength, 

(Malik et al., 2013). The boundary conditions to be applied to the problem are often linearized 

and they determine either the potential or the normal velocity on each panel. Green's theorem is 

used to relate the source and dipole distribution strength to the potential and normal velocity on 

each panel. The number of panels plays a vital role in representing the shape of the body more 

accurately. Large number of panels ensures more accuracy on the shape of the body, and hence 

more accurate results. In each panel the potential is taken to be constant. This method has 

advantages because it helps in reducing the dimensionality of the problem by one and helps in 

transforming an infinite domain of interest to finite boundaries in which the far field condition is 
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automatically satisfied. Panel method, developed by Hess and Smith (1964), has been used to 

obtain the radiation potentials and the diffraction potential  which are very paramount in the 

calculation of the diffraction force and the Froude Krylov force (Manyanga et al., 2014). This 

study applied the same Hess and Smith (1964) method in the determination of the hydrodynamic 

forces. 

2.7 Summary 

The body of literature outlined showed clearly that the analysis of hydrodynamic forces 

especially the wave exciting forces and the effect they had on any offshore body was very 

important to ocean engineers. It was also evident that many researchers had deliberately failed to 

analyze these forces with respect to bodies of rectangular cross-section for a fluid of constant 

density. Therefore, this study investigated and analyzed the forces acting on a rectangular 

floating barge present on the wave terrain. In addition, due to the limitations of some numerical 

methods such as BEM, FEM and eigen function expansion the panel method developed by Hess 

and Smith (1964) was used in this study. 
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  CHAPTER THREE 

WAVES CHARACTERISTICS 

3.1 Introduction 

When working on offshore rigid or floating bodies, it is important to understand how these 

structures responded to waves. Ocean surface waves are known to cause periodic loads on all 

man-made structures in the sea, whether these structures are fixed, floating or sailing and on the 

surface or deeper in the sea. To understand these loads, a good understanding of the physics of 

water waves is necessary. Analysis of incoming waves is especially of great importance to ocean 

engineers and designers. Furthermore, these waves have essential characteristics, which need 

proper understanding. These characteristics include; incident wave potential, incident wave 

elevation, wave velocity and acceleration. For instance, the incidence wave velocity potentials 

are very important for the analysis of the plane progressive wave. In this study analysis of 

vertical wave elevation, velocity and acceleration, as a result of incident wave potential was 

done. The influence of water depth on the wave characteristics was also investigated. The 

incident velocity potential was solved by separation of variables where appropriate boundary 

conditions were imposed. 

3.2 Mathematical formulations 

A Cartesian system was adopted, o xyz , fixed on the fluid with oy opposing the direction of 

gravity and o xz lying on the undisturbed free surface. The plane 0y  denotes the undisturbed 

free surface. The surface displacements of the water from the mean was given by 

 , ,y x y z which is the wave elevation. The water depth h , was measured between the sea 

bed  y h  and the still water level  0y  . Surface water waves were considered. The 

amplitude of the wave which is the distance between the still water level and the wave crest was 

assumed to be small than it wavelength  . The wave was assumed to be periodic so that the 

wave period was taken as the time required by one wave to pass a particular point. The problem 

was governed by certain boundary conditions. 

3.3 Governing equations  

Since the fluid is incompressible, the divergence of its velocity field is zero everywhere,  
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0V                                                                                                                                 (13) 

The flow in this study is assumed irrotational. Then, there exist a velocity potential ( , , )x y z  

such that the velocity components in the , ,x y z axis  is given as; 

, ,u v w
x y z

    
  

  
                                                          (14)  

Substituting equation (13) into equation (14) the velocity potential satisfies Laplace equation 

2
0                                                                                    (15) 

2 2 2

2 2 2
0

u v w

    
  

  
                                                                                                            (16) 

The velocity potential is subject to kinematic and dynamic free surface boundary conditions. 

The boundary conditions for this case are as follows: 

i) The sea bottom condition, that is, the velocity components in the y -direction must go to 

zero at the sea bottom.  

           0,v
y


 


  y h                                                                       (17)  

ii) The dynamic free-surface condition which simply means that the fluid pressure at the free 

surface is equal to the atmospheric pressure. 

22 2

1
0

2

p
gy

t x y z

   



        
          

         

                                           (18)  

Since in this study linear theory (velocity potential is proportional to the wave amplitude) was 

used then the high powers in equation (18) were ignored, and also by use sea bottom condition 

equation (18) at the sea bed reduces to: 

0

y h

g
t






 
  

 
                                                           (19) 
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where, 

 , ,y x z t                      (20)                                                                                                                 

Introducing a function  , , ,F x y z t then the substantial derivative of the function F , defined by 

equation (21), is given by equation (22). Substantial derivative expresses the time rate of change 

when we follow a fluid particle as it moves in space. 
 

 , , , ( , , ) 0F x y z t y x z t                (21) 

Equation (21) states that a fluid particle on the free surface always remain on the free surface. 

The material derivative of equation (21) becomes, 

0

0

y

DF F F F
u w y

Dt t x z


   
     

                                                                       (22) 

Applying the same material derivative on equation (20) we obtain,  

y y y
t x x z z y

  

     

  

         
       

          
                                                        (23) 

But from equation (19), we have, 

0

0

y

g
t






 
  

 
           (24) 

However, from the free surface condition equation (23) reduces to, 

0y
t y

 



  
  

  

           (25)  

From equation (24) and equation (25), we have, 

2

2
0, 0g y

t y

  
  

 
             (*) 

When the velocity potential is oscillating harmonically in time with circular frequency , then 

equation (*) can be written as 
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2
0g

y


 


  


, at y=0           (26) 

 

3.3 Solution for the velocity potential  

Assuming that the free surface wave elevation   take the form given by equation (27) below 

 1 2cos sini k x k z t
ae

  


 
                                                              (27) 

The aim is to find the velocity potential   satisfying the above boundary conditions. Assuming 

that the velocity potential can be represented as product of functions where each function depend 

on only one independent function then equation (16) is solved by the separation of variables.  Let 

the incident wave velocity potential takes the form given by equation (28) 

1 2( cos sin )
( )

i k x k z t
f y e

  


 
                                             (28) 

Finding the second order derivative of equation (28) we have; 

 
2

2 2

2
0

f
k f y

y



   


                                 (29) 

where,  

 2 2

1 2
k k k                                                                                                                             

(30)
 

The solution of equation (29) is given by equation (31) below,  

ky ky
y Ae Be


                              (31)                                                                                                                      

Substituting equation (31) into equation (28), we have, 

   1 2( cos sin )i k x k z tky ky
Ae Be e

  


 
                                                         (32) 

From the second order derivative of equation (32) and by use of equation (16) then it follows 

that;    
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kh kh

kh kh

Ae Be o

Ae Be





 



                      (33) 

Substituting equation (32) in equation (26), we have  

   2 2
0gk A gk B                                                            (34) 

Writing equation (33) and equation (34) in matrix form, we have  

2 2
0

hk hk
e e

gk gk 





 

                                                                                                                (35) 

Solving equation (35) and making 2
  the subject of the formula we obtain,  

2
tanh

kh kh

kh kh

e e
gk gk kh

e e






 
  

 

                       (36)

 

But the wave celerity, c is given by equation (37) below,   

c
k


            (37) 

Hence applying equation (36) into equation (37) we have 

tanh
g

c hk
k

 
  

 
                                        (38) 

Let 
2

kh kh D
Ae Be


             (39) 

Applying equation (39) on equation (32) we obtain, 

       cos sin1

2

k h y k h y i kx kz t
D e e e

  


    
                                       (40) 

But considering the definition of hyperbolic function then equation (40) can be reduced to 

equation (41) below,  
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 
 cos sin

cosh (
i kx kz t

D k h y e
  


 

                                              (41) 

However equation (24) can be rewritten in the form of equation (42) below.  

0y

g
t






 
  

 
                                                                                                                           (42)  

Differentiating equation (41) with respect to time and applying equation (42) we obtain 

  cos sin 1
cosh

i kx kz w ti
D kh e

g g t

  


   
    

 
                                                       (43) 

Equation (43) can be reduced into equation (44),  

 cos sini kx ky t
ae

  


 
                       (44) 

Then from equation (36) we have, 

2

cosh sinhkh k kh
g




                  (45)                                                                                                                                                       

1

cosh sinh

ag a
D i i

kh k kh




                          (46) 

Substituting equation (46) into equation (41) the velocity potential due to incidence waves is 

given by equation (47) below, 

   cos sin
cosh

sinh

i kx kz t
k h ya

i e
k kh

  


 


 

                                                       (47)
 

However, by Euler’s formula,  

cos sin
i t

e t i t


              (48) 

Hence, using equation (48), equation (34) becomes; 

 
   

cosh
cos cos sin sin cos sin

sinh

k y ha
i kx kz wt i kx kz t

k kh


     


        

 
 

cosh
sin cos sin

sinh

k y ha
kx kz t

k kh


   


  

                                                       (49)  
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Equation (49) is the velocity potential satisfying the boundary conditions aforementioned. 

3.4 Wave elevation 

Wave elevation was an important aspect of the wave that needed investigation this is because it 

was used in the determination of the vertical relative motion of any floating structure with 

respect to the undisturbed wave surface. Vertical motion was a very significant aspect that 

coastal engineers should always put into consideration. For instance in ships, vertical motions 

were and are still used to predict damages that might occur due to slamming and water in the 

deck. From equation (49) and the boundary condition on equation (42), the wave elevation is 

given by equation (50) below. 

 
 

2
cosh

cos cos sin
sinh

a k y h
kx kz t

t k kh


   


   


                                                         

(50) 

This is a cosine wave profile. 

3.5 Wave velocity 

Wave velocity is an important aspect that needs to be considered by researchers in the field of 

hydrodynamics. Vertical velocity has been associated with high vertically induced motions 

Vasquez et al., 2011). Wave velocity was derived directly from the velocity potential. This was 

possible due to the irrotationality condition of the fluid. Differentiating equation (49) partially 

along each axis we obtain;  

 
cos cosh ( )

cos cos sin
sinh

a k y h
u kx kz t

x kh

  
  

 
   
  

 
sinh ( )

sin cos sin
sinh

a k y h
v kx kz t

y kh

 
  

 
   
            (51) 

 
 

sin cosh
cos cos sin

sinh

aw k y h
w kx kz t

z kh


  


   
  

Equation (51) represents the of the wave velocity in 3-dimension. These velocity equations 

express the local fluid velocities at any distance (y+h) above the impermeable bottom. 

Furthermore, they are periodic. The hyperbolic functions give the exponential decay of the 
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magnitude of the velocity components in respect to increase of distance below the free surface. 

This means that as the depth of the fluid increases the wave motions reduces. This is in 

accordance with shallow water effect. 

3.6 Wave acceleration 

Wave acceleration is an important aspect since acceleration is associated with the forces. This is 

in accordance with Newton second Law of motion.  Acceleration represents the change that a 

wave undergo with respect to time. This therefore means that differentiating equation (51) with 

respect to time we obtain the acceleration in 3-dimension given by equation (52) as follows,  

 
 

2
cos cosh

sin cos sin
sinh

t

a k y h
u kx kz t

kh

 
  


    

 
 

2
cosh

cos cos sin
sinh

t

a k y h
v kx kz t

kh


  


                                                                     

(52)
 

 
 

2 2
sin cosh

sin cos sin
sinh

t

a k y h
w kx kz t

kh

 
  


    

The negative sign in one of the above equations shows that the direction of the wave is changing 

with respect to the origin. The acceleration of the wave is linearly proportional to that of the 

body. Vertical acceleration in particular between the body and the waves is responsible for 

determining the cargo weight in a ship and has also been associated to sea sickness. 

 

3.7 Results and discussion 

When the above equations were coded using Fortran software they led to the development of the 

following graphs. 
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Figure 1: Graph showing the relationship between wave elevation and vertical velocity and 

acceleration. 

 

 

Figure 2: Graph showing the relationship between wave elevation, velocity and acceleration 

on the x direction 
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Figure 3: Graph showing the relationship between wave elevation, velocity and acceleration 

in z direction 
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Figure 4: Graph showing the wave elevation at different water depth from the mean 

surface.  



24 
 

Figure 1 shows the relationship between wave elevation, velocity and acceleration in the vertical 

direction. From the figure it was observed that the wave’s vertical velocity and acceleration were 

out of phase by 90 . However, the period of this wave remained constant. This was in agreement 

with the results obtained by Manyanga, O. D., and Wen-Yang (2011) in their study of Three 

Dimension Internal Waves due to Pulsating Sources and Oscillation of floating Bodies. It was 

also evident that the amplitude of the wave velocity motion was larger than that of acceleration. 

Moreover, wave energy was directly proportional to the square of the amplitude of the wave. 

Furthermore, from the oscillatory wave structures we observed that when the velocity amplitude 

was at a maximum, the acceleration amplitude was at a minimum. 

Waves with high vertical velocity induced a lot of motion on a body especially if the body was 

too close to the origin of the wave. Very high velocity impacts between offshore structures and 

the waves were associated with slamming. However, since the impact occurs over a small period 

of time, the gravity accelerations was assumed negligible relative to the impact induced 

accelerations (Baarholm and Stansberge, 2005). 

When an offshore structure came into contact with these waves, the added mass and damping 

coefficients corresponded to components that were in phase with the accelerations and velocity 

of the offshore structure. However if the added mass and the damping coefficients of the body 

was zero then the oncoming waves is predicted to be equal to the outgoing waves. In summary, 

acceleration and velocity of the structure were proportional to the acceleration and velocity of the 

surface waves respectively.  

Figure 2 shows the relation between elevation, velocity and acceleration in the direction of wave 

propagation. On the other hand, comparing figure 2 and figure 1, it was found that the velocity in 

x  direction and the elevation had a very big difference. For instance, when wave elevation 

motion amplitude was at maximum, the velocity amplitude was at minimum, this lead to the 

formation of a standing wave. This showed that the horizontal force generated by the waves did 

not induce a lot of motions on the floating body. This study concluded that the horizontal 

characteristic of wave did not lead to high-induced motion and hence the effect they had on a 

floating body were not catastrophic. 
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It is clearly depicted from figure 3, that the velocity of the wave motion in the z -axis is 

negligible. The amplitude of the entire wave characteristic as far as this axis is concerned was so 

small contrary to the other axes. 

Figure 4, shows that the depth of the fluid greatly affects the number of oscillations. As the depth 

increased, the frequency also increased. Furthermore, increase in depth led to an increase on the 

wavelength though at a slower rate. In addition, another interesting observation was that the 

horizontal particle displacement was large when the depth was small. The numerical results were 

as expected for the shallow water effects on the wave force. 

In summary, it was observed that most waves’ characteristics that is; celerity, height, length, 

surface profile, water particles velocity and acceleration were highly affected by change in depth. 

However, the wave period remained constant.  
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CHAPTER FOUR 

                                            HYDRODYNAMIC FORCES 

4.1 Introduction 

The problem of determining the hydrodynamic forces acting on a rigid floating body present on 

the wave terrain has been studied extensively over the years, though not much has been done on 

rectangular floating barge in incompressible fluid. Most researchers who embarked on the study 

of these forces in respect to rectangular floating bodies did so with the assumptions that the 

density of the fluid is not constant due to factors such as salinity and temperature change on the 

ocean (Manyanga et al., 2014; Nguyen’ and Yeng, 2010). The hydrodynamic forces are 

associated with surface waves generated by; the interaction between winds and the sea surface, 

moving vessels, hurricanes, seismic disturbances or the gravitational pull of the sun and the 

moon. However in this study the research was carried out for fluids of constant density. The 

hydrodynamic forces considered in this study were the Froude Krylov force and the diffraction 

forces. The study of the aforementioned forces is of great help to researchers in the analysis and 

prediction of wave exciting forces.  

4.2 Mathematical Formulation 

Three-dimensional problem concerning the hydrodynamic behavior of a rectangular floating 

barge in the coastal marine environment was considered. The barge measurements were taken as 

follows; Length, L = 2.25 m; Breadth, B = 2.25 m; and Draught, T = 1.00 m. The floating body 

was taken to be at a distance H  from the free surface and was assumed to have zero forward 

speed. In addition, the sea bed was taken to be at a distance h  from the free surface. This 

problem was analyzed in response to oncoming regular waves with small amplitude A  as 

compared to the wavelength  . The sea environment consisted of a water layer of finite depth 

bounded above by the free surface and below by a rigid bottom. A fixed Cartesian 

coordinate  , ,x y z
 
was introduced with its origin at some point on the mean water level which 

was taken to coincide with the centre of floatation of the rigid floating body, and the 

y axis pointing upward through the centre of gravity of the body as shown in figure 5. The 

body surface of the barge was defined by a set of points which were presumably exactly on the 

surface. These points were associated in a group of four to form quadrilateral surface elements. 

Each point on the surface was used in the formation of four quadrilaterals, and thus the total 
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number of quadrilateral was approximately the same as the number of points used to define the 

body surface. The integration of pressure on each panel was carried out by the method of Hess 

and Smith (1964), 1 9 2  Panel were used. In order to evaluate the physical problem, the study was 

based on the assumptions that the fluid is homogeneous, inviscid and incompressible and that the 

flow is irrotational. 

 

    y  

 

    Incident wave                                                                            free surface 

 

                                        A           

                x   

  z  

 

       h 

 

Sea bed 

 

 

 

Figure 5: Schematic diagram representing rectangular floating body on the incident wave 

field. 

 

4.2.1 Diffraction problem 

The boundary integral method together with the Greens Function was used in getting the velocity 

potentials on the wetted surface of the rectangular floating barge. The wetted surface of the 

rectangular floating barge was divided into small rectangular panels capable of representing a 

curved surface so as to reduce the deflection of wave due to the edges of the body and avoiding 

“leakage” gaps, and small enough so as to help in assuming that the source strength and the fluid 

pressure (velocity potential) are constant in each panel. This approach was carried out as follows: 

the body surface was defined by a set of points which were presumably exactly on the surface. 
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These points were associated in a group of four to form a quadrilateral surface element. Each 

point on the surface was used in the formation of four quadrilaterals, and thus the total numbers 

of quadrilateral were approximately the same as the number of points used to define the body 

surface. The integration on each panel was carried out by the method of Hess and Smith (1964). 

In this case, the velocity potential was assumed to be constant over the panel. The boundary 

integral equations for radiation potentials were derived for the rectangular floating barge. These 

radiation potentials were used to solve diffraction forces and the Froude-Krylov forces for the 

rectangular floating barge on fluid of finite depth. Consequently, a Fortran code was written to 

help in getting the wave exciting forces. The data obtained was imported to Origin software 

where graphs showing the magnitude of heave and surge wave exciting forces on a rectangular 

floating barge were obtained. The results obtained were compared to other results that had been 

obtained by Manyanga and Duan (2014) and Endo (1987). 

From the assumptions of linear water wave theory, the total velocity potential can be divided into 

a known incident potential and an unknown diffracted potential (Manyanga et al., 2014) 

I D
   

                                                                       (53)
 

The diffraction potential must satisfy the following boundary conditions and governing 

equations. 

The Laplace equation;                                              2
0                                  (54) 

The sea bottom boundary conditions;                     ,D I Seabed
y y

  
 

 
                              (55) 

The kinematic free surface boundary conditions;    , 0D D y
t y

  
 

          (56) 
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The body surface boundary condition;                             , 0D

D
g y

t





  

                             (57)

 

Radiation boundary condition;                                           0, ,t s


                  (58)                                                          

It is worth noting that both the 
D

  and D

t




are bounded uniformly on s


. Furthermore, since the 

free surface boundary conditions is second order in time, then the velocity of the body 

disturbances decays to undisturbed flow away from the body, then it follows that,   

0,
D

t                   (59) 

0,D t
t


  



                                     (60) 

4.2.2 Integral equations  

In the derivation of the integral equations for the diffraction potential, the Wehausen and Laitone 

(1960) time dependent Green’s function given by equation (61) below is used 
 

   
1

( , , ) , , , , , , ,
4 B

B

S

s

x y z f G x y z      


 
.                                 (61) 

This green function in equation (61) satisfies the Laplace equation (62) 

 
       

2
, , , , ,G x y z x y z            

                                                                     (62)   

where  , , , , , ,G x y z     corresponded physically to the potential of the oscillatory source. 

Equation (61) and equation (62) shows the transformation of a function  , ,f x y z  to the 

function  , ,f    . In addition the green function is subject to the same boundary conditions as 

the incident velocity potential that is, the conditions on the free surface and at the sea bottom as 

well as the radiation conditions. The green function at a source and a field point can be described 

by equation (63) below, 
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 
   

 

 
2

22 22 2
0

cosh cosh1 1
, 2

( 2 )( )
sinh cosh

kh

o

k y h k h
G P Q k e J kR dk

R h y gR y
k kh ky

g








  

    
      



                                                         (63) 

where  

( , , )P p x y z

  

( , , )Q q   

 

   
2 2

R x z    

 

Applying the Green’s second identity below,  

 2 2
0D

D D D

V s

G
G G dv G ds

n n


  

 
      

  
 

                                (64) 

into equation (63) we obtain the integral equation (65) below, 

 
   

,
2 ( ) , D

D D Q Q

Q QS S

G P Q
P dS G P Q Q dS

n n


 

 
  

 
                                                          

(65) 

Equation (65) is the Fredholm equation of the second kind for the values of the potential on the 

body surface, the entire surface of integration will be described by the sum of all its parts; 

B F
S S S S S

 
   

                                    (66)
 

4.2.3 Wave exciting force 

The wave exciting force is a combination of the Froude Krylov and the diffraction force.  

These forces are heavily related to the velocity potential given by equation (49) and equation 

(61) 

I D
   

                                                                                                                                   (67)
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Where, ,
I D

    are the velocity potential of the incident wave and diffraction wave respectively. 

In addition due to the assumption of small amplitude motions then these velocity potentials must 

satisfy the following boundary conditions as aforementioned. 

i) Free surface boundary conditions 

2

y g

 






, at 0y                (68) 

ii) Bottom boundary condition  

0,
y





 at y h                           (69) 

iii) I

I
n

n




 
  


                          (70) 

and, I D

n n

  
 

 
              (71) 

iv) The radiation boundary condition 

lim 0
R

R ik
n






 
  

 
                        (72) 

Suppose that the diffraction potential is known and from equation (49) the incident velocity 

potential is given by:
 

( cos sin )cosh ( )

cosh

ik x z t

I

ag k y h
e

kh

  




 
                         (73) 

This implies that the total velocity potential given by equation (74) below is known,
 

I D
   

                                                 (74)
 

Consequently, the dynamic pressure can be derived from equation (4) that is; 

 
2

2
p gy c

t

 
  


    
                         (75) 

Applying linear theory, equation (75) reduces to 

I Dp
t t t

 
  

 
    

                                                  (76) 
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The hydrodynamic forces acting on the body were found by integrating the pressure (equation 

(76)) over the body surface. In general each mode of motion can induce forces in all the six 

direction, therefore, the dynamic force and the moments acting on the body can be defined as; 

, 1, 2, 3
j

S

F P n dS j
 

 
              (77) 

3
( ) dS, 4, 5, 6j j

M P r n j



                           (78)

 

Where p in the above equations is the fluid pressure and can be derived through Bernoulli’s 

principle.  

Substituting equation (76) into equation (77) the net force is obtained as 

I D

S S

F n dS n dS
t t

 
 

   
 

 
 

                                                         (79) 

       

Equation (79) is the wave exciting force which is a combination of the Froude Krylov force and 

the diffraction force. 

From equation (79) diffraction force is obtained as; 

D

D

S

F n dS
t




 





                                      (80) 

but  

j

n
n

 



                                                                                (81) 

Then substituting equation (81) to equation (80) the diffraction forces can be expressed as shown 

in equation (82) below, 

jD
D

S

F dS
t n







 


                                                           (82) 

But  

D

D
i

t







           

Equation (82) can be rewritten as 
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j
D D

S

F i dS
n


 





                                     (83)

 

or 

D
D j

S

F i dS
n


 

 





                          (84) 

but the incident velocity potential and the diffraction potential are related by equation (71) that 

is;  

D I

n n

  
 

                                                       

Therefore, applying equation (71) on equation (84) the diffraction force is obtained as follows, 

, j 1, 2, ..., 6I

D j

S

F i dS
n


 

 
 




                                                         (85) 

We now derive the Froude Krylov force which is related to the incoming wave potential. 

I
I

S

F n dS
t




  
   

  
                                                                                                              (86)  

but from equation (68) we have, 

2

I I

I
i

t g

  



 


                                                                                                                       (87)

  

Consequently, substituting equation (87) into equation (86) we obtain; 

 

I I

S

F i ndS


 
                                                           (88)

 

      

j

I

S

i dS
n


 







 

However, wave exciting forces acting on a body is a combination of the Froude Krylov force and 

the diffraction force, combining equation (85) and equation (88) then the wave exciting force 

becomes; 

 I D I D j

S

F F i n dS     
                                (89)                                                                    
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j I
E I j

S

F i dS
n n

 
  

 
  

  
                         (90) 

4.2.4 Mathematical scheme 

Rewriting equation (49) and equation (90) respectively;  

( cos sin )

2

cosh ( )

cosh

ik x z t

I

g k y h
e

kh

  




 


                                                                                          

                                      

NOTE 

Unit normal vector   

, j 1, 2, ..., 6
j

j
n

n


 

                                                                           (91)         

where,                                                                                                        

1 2 3
, ,

x z y
n n n n n n  

                 (92)                                            

x z y

i j k

D x z y

n n n



                                      (93) 

     y z y x z x
D zn yn i xn yn j xn zn k     

 

Then from equation (93) we have; 

4 5 6
, ,

y z x y z x
n zn yn n yn xn n xn zn     

                                                           (94) 

Therefore, 

j

I I j

S S

ds n ds
n


 





 

                                    (95) 

For heave motions equation (95) becomes     

3

I I y

S S

ds n ds
n


 





 

                                      (96) 
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I

I
n

n




 
  

                                                  (97) 

Where, the unit normal is given by the equation (98) below; 

1 2 3
n n i n j n k


  

                                                (98) 

    
 

x z y
n i n j n k  

   

I I I

I
i j k

x z y

  


   
   

                                                  (99) 

The velocity potential normal to the surface is given by,  

 

 I I I I

x z y
n i n j n k i j k

n x z y

       
      

                                                (100) 

        

I I I

x z y
n n n

x z y

    
  

    

I I I I

j j x z y

s s

ds n n n ds
n x z y

   
 

    
   

    
 

                                           (101) 

 

4.3 Results and discussion  

For the analysis of the hydrodynamics loads a Fortran code was written which read to the 

formulation of the graphs below. 
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Figure 6: A graph showing the magnitude of surge wave exciting forces 
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Figure 7: Graph showing the magnitude of heave wave exciting force 
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Figure 8: Graph showing the magnitude of surge wave exciting force in varying water 

depth 
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Figure 9: Graph showing the magnitude of heave wave exciting forces in varying water 

depth 
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In the present method, a rectangular floating barge was used in obtaining the hydrodynamic 

forces that is the Froude Krylov and wave exciting forces due to incidence waves. The 

dimensions of the box were taken as; Length, L = 2.25 m; Breadth, B = 2.25 m; and Draught, T = 

1.00 m. The dimensions were taken as those of study done by Manyanga et al. (2014).  This was 

to help in the comparison of two-layer and single layer cases. After writing a Fortran code 

containing all the information above and the mathematical formulation aforementioned, the 

graph in figure 6, figure 7, figure 8 and figure 9 were obtained. The graphs were in agreement 

with others that were obtained by other researchers (Endo, 1987; Manyanga et al., 2014). Figure 

6 shows the magnitude of the surge wave exciting forces. 

It is evident that the surge force increases significantly until it reaches the peak then it is radiated 

away at infinity. The forces decay to avoid interference. Figure 7 shows the magnitude of heave 

wave exciting which is very crucial to ocean engineers. The magnitude of the wave exciting 

force on the heave direction was inversely proportion to the wave frequency. At high frequency 

the forces and moments tend to approach zero that is, they decay. In addition when the dispersion 

relation was applied 
2

tanhgk kh    it showed that water depth had a significant effect on both 

heave and surge motion. It was evident that if the water depth was increased, the frequency also 

increased, as clearly shown in figure 9. This is in accordance with shallow water effect. It is clear 

from figure 9 that in shallow fluids the heave exciting forces is very high. This explains why 

waves generated by seismic disturbances are very catastrophic compared to other surface gravity 

waves, since tsunamis behave like shallow fluids. Consequently, the results predict that any 

offshore body would thrive well when the sea is deep. 

 From the results obtained it is possible to understand and appreciate the reason why harbors are 

constructed at very deep point near the shore. Moreover, offshore bodies do operate efficiently 

and safely in presence of low heave motion. Therefore from the results obtained there is need for 

very high wave frequency which lead to very low heave motion. Moreover, to reduce these 

forces the offshore body should be located at deeper from the free surface. As aforementioned 

figure 7 which shows the magnitude of the heave wave exciting force was in agreement with 

other results that had been used by other researchers Endo (1987) and Manyanga et al. (2014). 

However, comparing the surge and the heave wave exciting forces it was evident surge motions 

did not have a lot of impact on offshore bodies and this explain why it is not given a lot of 
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attention by most researchers of hydrodynamic loads.  However, Manyanga et al. (2014) 

analyzed the magnitude of the surge wave in two layer fluid and the two results were convergent. 

From figure 8 it is evident that change in water depth has adverse effect on the magnitude of the 

wave exciting force. As the depth decreases the surge wave exciting force increases. The results 

that were obtained in this study were in agreement with others that had been established by Endo 

(1987) and Manyanga et al. (2014). Although the two study applied different methods to analyze 

waves characteristic the results were tremendous and convergent.  

It was established that the use of Green Method developed by Wehausen and Laitone (1960) in 

its series form together with the Hess and Smith (1964) panel method were not only 

computationally simple but also very accurate in the analysis of the hydrodynamic loads. This is 

because the results obtained in this research were convergent to those of Endo (1987) and 

Manyanga et al. (2014) 
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CHAPTER FIVE 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

5.1 Summary  

This study showed that it is possible and indeed important to analyze wave characteristics and 

consequently analyze their effects on a rectangular floating barge with high degree of accuracy, 

efficiency and confidence. It was evident that the study of surface waves and hydrodynamics 

loads is very critical. Therefore, there is need for them to be considered in the marine 

engineering designs and constructions. Furthermore, the system of equations that resulted from 

using the boundary integral method was in excellent agreement with results obtained by other 

researchers in similar studies.  

5.2 Conclusions 

This study achieved the objectives of solving the forces created by presence of an offshore body 

in wave terrain. By virtue of potential flow the study assumed that the fluid is incompressible 

and inviscid, and the flow is irrotational. In addition, by assuming that the problem is linear the 

study ignored the high order terms in all boundary conditions. However, these assumptions were 

valid and produced accurate results since the study only considered small perturbations about the 

body’s mean position.  

The complexity of the problem dictated that it is not possible to solve the velocity potential 

analytically and therefore there was need to develop a robust numerical scheme for the purpose 

of calculating the potential and forces acting on offshore bodies. The panel method was used in 

this respect where the body was divided into 192 panels. Many but small sized panels were used 

so as to reduce the deflection of wave due to the edges of the barge. Results showed that incident 

waves had adverse effects on the sea environment and on any floating structure on the wave 

field. For instance, it was observed that the vertical velocity and vertical acceleration 

significantly contributed to vertically induced motions. In this sense, there is need for ocean 

engineers to be knowledgeable on the wave characteristics. This would enable them design new 

and even modify the existing offshore structures in such a way that can withstand extreme wave 

fluctuations. 
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In this study Hess and Smith (1964) panel method was employed to investigate the 

hydrodynamic forces acting on a floating rectangular barge. The green functions that was applied 

in this study was in series form, hence it removed the points of singularity on the free surface 

unlike the integral green function used by Endo (1987). The results obtained could be used by 

engineers and designers of offshore structure in the field of oil exploitation to help them design 

structure with low heave motion. This would have the potential of increasing the amount of oil 

drilled at a time. From the research findings, this can be done by increasing the draught distance. 

The results obtained in this study were convergent to those of Endo (1987) and Manyanga et al. 

(2014).  

5.3 Recommendations 

This research analyzed the surface wave characteristics and wave exciting force acting on a 

rectangular floating barge at zero forward. The research could be extended in the following 

directions: 

i Analysis of the hydrodynamic forces acting on a body moving in water at a given speed.  

ii Investigations of radiation problems; that is, added mass, damping and restoring force 

acting on a freely moving body.  



42 
 

REFERENCES 

Baarholm, R. and Faltinsen, O. (2004). Wave impact underneath horizontal decks. Journal of 

 Marine Science Technology, 9: 1-13. 

Beck, F.R. and King, B. (1989). Time-domain analysis of wave exciting forces on floating 

 bodies at  zero forward  speed. Journal of Applied Ocean Research, 11:1. 

Bhatta, D.D. and Rahman, M. (2003). scatterring and radition problem for a cylinder in water of 

 finite depth. International. International  Journal of Engineering Science, 49(9): 931-967 

Baghfalaki, M. and Samir, K. D. (2013). Mathematical Modeling of Roll Motion for a 

 Floating Body in Regular Waves Using Frequency Based Analysis with Speed. 

 Universal Journal of Engineering Science, 1:34-39. 

Calisal, S.M. and Sabuncu, T. (1984) Hydrodynamic coefficients for vertical composite 

 cylinders.  Journal of Ocean Engineering, 11(j): 529-542 

Coastal Engineering Research Center, (1977). Shore protection manual/ U.S. Army Coastal 

 Engineering Research Center. Fort Belvoir, Va. Washington: Supt of Docs. 

Dai, Y.S. and Duan, W.Y. (2008). Potential Theory of Ship Motion in Waves. National Defence 

 Industry Press, China. 

Endo, H. (1987). Shallow-water effect on the motions of three-dimensional bodies in waves. 

 Jounal of ship research, 31(1): 34-40 

Faltinsen, M.O. (1990). Sea Loads on Ships and Offshore Structures. Cambridge University 

 Press, Cambridge, UK. 

Faltinsen, M.O. (2005). Hydrodynamic of High-Speed Marine Vehicles. Cambridge University 

 Press, Cambridge, UK.U.S. Govt. Print.  

Finnegan, W., Meere, M. and Goggins, J. (2013). The wave excitation forces on truncated 

 vertical cylinder in water of infinite depth. Journal of Fluids and Structures, 40:201-213 



43 
 

Fonesca, N. and Soures, G.C. (2002). Comparison of numerical and experimental results  of 

 nonlinear wave-induced vertical ship motions and loads. Journal of Marine 

 Science and Technology, 6: 193-204. 

Garrett, C. J. R. (1971). Wave forces on a circular dock, Journal of Fluid Mechanics   

 46(01): 129-139. 

Ghadimi, P., Bandari, P.H. and Rostami, B.A. (2012). Determination of the Heave and Pitch 

 Motions of a Floating Cylinder by Analytical Solution of its Diffraction Problem and 

 Examination of the Effects of Geometric Parameters on its Dynamics in Regular Wave

 International Journal of Applied Mathematical Research, 1(4): 611-633 

Gou, Y., Chen, X., Teng, B. and Zheng, Y. (2012). Study on Wave Diffraction from a 3D Box in 

 a Two-layer Fluid by Time-Domain Approach. Proceedings of the Twenty second (2012) 

 International Offshore and Polar Engineering Conference. 

Hassan, M. and Bora, S.N. (2012). Exciting forces for a pair of coaxial hollow cylinder and 

 bottom-mounted cylinder in water of finite depth. Ocean Engineering, 50(0): 38-43. 

Herman, A. J. (2011). Water Waves and Ship Hydrodynamics. Springer science Business Media. 

Hess, J. L. and Smith A.M.O. (1964). Calculation of non-lifting potential flow about arbitrary 

three-dimensional bodies. Journal of ship research, 8(2): 22-24 

Koo, W. and Kim, M.  (2010). Radiation and Diffraction Problem of a Floating Body Two-layer 

 Fluid, Proceedings of the Twentieth (2010) International Offshore and Polar Engineering 

 Conference. SBN 978-1-880653-77-7 (Set); ISSN 1098-6189 (Set); www.isope.org 

Lee, C.-H. and Newman, J. N. (2004). Computation of Wave Effects Using the Panel Method. 

 Journal of Numerical Models in Fluid-structure Interaction. Preprint, S. Chakrabarti.Ed., 

 WIT  press, Southhampton. 

Leppington, F. G. (1973). On the radiation and scattering of short surface waves. Part 3, Journal 

 of Fluid Mechanics, 59(01): 147-157. 

http://www.isope.org/


44 
 

Linton, C. M. and McIver, P. (2001). Handbook of Mathematical Techniques for Wave/Structure 

 Interactions. Boca Raton, FL: Chapman & Hall/CRC. 

Liu, Y., Li, H.-J. and Li, Y.-C. (2012). A new analytical solution for wave scattering by a 

 submerged horizontal porous plate with finite thickness. Ocean Engineering journal. 

 42(0): 83-92. 

Malik, S.A., Guang, P., and Yanan, L. (2013). Numerical Simulations for the Prediction of Wave 

 Forces on Underwater Vehicle using 3D Panel Method Code. Research Journal of 

 Applied Sciences, Engineering, and Technology. 5(21): 5012-5021. 

Manyanga, O.D. Duan, W.Y., Xuliang, H., and Cheng, P. (2014). Internal wave exciting force 

 on a rectangular barge in a two-layer fluid of finite depth. Advancement in scientific 

 Engineering Research, 2(3): 48-61. 

Manyanga, O.D. and Duan, W. Y. (2012). Internal Wave Propagation from Pulsating 

 Sources in a Two-layer Fluid of Finite Depth. Applied Mechanics and Materials,  

 201-202: 503-507. 

Manyanga, O.D. and Duan, W.Y. (2011). Three Dimension Internal Waves due to  

 Pulsating Sources and Oscillation of floating Bodies. AIP Conference Proceedings, 

  1376: 265; doi 10.1063/1.3651893. 

Mavrakos, S.A and Konispoliatis, D. N. (2012). Hydrodynamics of a Free Floating Vertical 

 Axisymmetric Oscillating Water Column Device. Journal of Applied Mathematics. 

 2012: 142850-142877.  

Ngina, P.M., Manyanga, O.D., and Kaguchwa, J.N. (2015). Wave Exciting Force on a Floating  

 Rectangular Barge Due to Surface Waves. International journal of scientific &  

 Engineering research. 6(6): 1480-1485 

Nguyen’, C.T. and Yeung, W.R. (2011).Unsteady three-dimensional sources for a two-layer fluid 

 of finite depth and their applications. Journal of Engineering Mathematics. 70:  67-91. 

Rahman, M. and Bhatta, D. D. (1993). Evaluation of Added Mass and Damping Coefficients  

 of an Oscillating Circular Cylinder. Applied Mathematics modeling. 17: 70-77. 



45 
 

Sadeghi, K. (2007). An Overview of Design, Analysis, Construction and installation of offshore 

 petroleum Platforms Suitable for Cyprus Oil/Gas fields. Social GAU journal and applied 

 sciences. 2(4): 1-16. 

Salvesen, N., Tuck, E. O. and Faltinsen, O. (1970). Ship motions on sea loads. Trans. SNAME, 

 78: 250-287. 

Sarantopoulos, S.S. (2004). A cost-effective method for modeling and numerically solving the 

 hydrodynamic behavior of floating units supporting multi moving bodies’ compensation 

 system. 1st International Conference from Scientific Computing to Computational 

 Engineering. 

Vasquez, G.A., Fonseca, N. and Soures, G. C. (2011). Analysis of Vertical motions and Bending 

 Moments on Bulk Carrier by model tests and numerical predictions. Center for Marine 

 Technology and Engineering, 11th proceeding. 

Yeung, R. W. (1981). Added mass and damping of a vertical cylinder in finite-depth waters. 

 Journal of applied ocean and research, 3(3): 119-133. 

Wehausen, J.V. and Laitone, E.V. (1960). Surface Waves in Fluid Dynamics III. Handbuch 

 Der Physik. 9(3): 446-778. 

Zakaria, N.M.G. (2009). Effect of ship size, forward speed and wave direction on a relative

 wave height of container ships in rough seas. Journal-The Institution of Engineers, 

 Malaysia, 72: 3. 

 

 

 

 

 

 


