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ABSTRACT 

A category is defined as an algebraic structure that has objects that are linked by morphisms. 

Categories were created as a foundation of mathematics and as a way of relating algebraic 

structures and systems of topological spaces. Any foundation of mathematics must include 

algebra, topology, and analysis. Algebra and topology have been studied extensively in 

category theory but not the analysis. This is partly due to the algebraic nature of category theory 

and the fact that the axiom of choice is not used in category theory. However, with the 

introduction of infinitesimals, it has been possible to study synthetic differentiation that is 

consistent with categories. It has been pointed out that, in order to treat mathematically the 

decisive abstract general relations of physics, it is necessary that the mathematical world 

picture involves a Cartesian closed category of smooth morphisms between smooth spaces. 

Algebra and topology have been studied in Cartesian closed categories but optimization has 

not so far been considered. This study aimed at defining a cone, derivative, extremal object and 

then used these definitions to obtain optimization results using the Lagrange method of 

multipliers in Cartesian closed categories.  The study also provides a discussion of the various 

areas that the results can be applied such as building spreadsheet application, neuroscience, 

cognitive neural network architectures and program optimizations.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background Information 

In the context of category theory, a category is said to be Cartesian closed if any morphism 

defined on a product of two objects can be naturally identified with a morphism defined on one 

of the factors (Hirschowitz, 2013). Cartesian closed categories are very important in the study 

of mathematical logic and the theory of programming in that their internal language is the 

simply typed lambda calculus.   

Cartesian closed categories are sometimes generalized by closed monoidal categories. A closed 

monoidal category is a context where there is a possibility to form both tensor products and to 

form mapping objects. A classic example is the category of sets in which case the tensor 

products of the sets A and B is the usual Cartesian product A B  and the mapping object AB

is the set of functions from A  to B . 

Optimization is one of the key components of mathematical modelling of real world problems 

and the solution method should provide an accurate and essential description and validation of 

the mathematical model. It is important to note that optimization problems are always 

encountered frequently in engineering and in sciences and have widespread practical 

applications. For instance, it is possible to optimize an approximately chosen cost functional 

subject to some constraints in economics. The constraints are always either in the form of 

equality constraints or inequality constraints. 

The study of optimization in categories seem problematic due to the fact that it is algebraic and 

yet most optimization problems are studied using classical analysis. Since Lawvere (1963) and 

Kock(1981) innovated the use of infinitesimals, it has been possible  to study some parts of 

analysis in such toposes. Extrema properties of a complex variable do not exist since most of 

the extrema problems involve the order properties of the real line. Sukhinin (1982) introduced 

the concept of extrema in spaces without norm that is applicable even to functions of complex 

variables. The idea has been adopted to obtain optimization results in topological spaces 

without norm. Otieno et al (2013) also adopted the idea and obtained optimization results in 

ordered topological modules. This study also seeks to adopt the idea to obtain optimization 

results in Cartesian closed categories. 

The use of ordered vector spaces and cones in mathematics is very important and began around 

1950 through the efforts of Dutch, Russian, German and Japanese mathematicians (Otieno et 

al, 2013). The importance of cones in the areas of optimization and fixed point theory cannot 
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go unnoticed as it is through cones that optimization results are obtained. Cones are usially 

employed to solve various optimization problems and it is for this reason that the theory of 

ordered vector spaces is a tool for solving various applied problems in areas such as physical 

science, engineering, social science and econometrics. 

Cones are vital in the study of optimization in category theory. If V  is a pre-ordered vector 

space, the subset { : 0}C x V x    is a convex cone also known as a positive cone. In a 

nutshell, a cone is said to be a convex cone if a straight line can be drawn inside the cone. This 

concept is useful for any vector space that allows the use of positive scalars such as spaces over 

real numbers, rational numbers or even algebraic numbers. By the definition of a convex cone, 

it follows that any linear subspace of V including the empty set, the trivial subspace { }  and 

the set V itself are convex cones. In the same vector space, the intersection of two convex 

cones is a convex cone but the union of two convex cones need not be a convex cone (De et al, 

2012). Under arbitrary linear maps, the family of convex cones is closed. Moreover, if C is a 

convex cone its opposite -C is also convex and C C  is the largest linear subspace contained 

in the convex cone. 

The study of category theory and especially Cartesian closed category can be very useful and 

it is not used in the same manner some aspects of mathematics are used (Voevodsky, 2010). 

For instance, optimization theory can be applied by noticing that a particular problem has a 

certain form and therefore a certain algorithm will converge to a solution. Applications of 

category theory are usually more subtle and it has been seen that category theory can be used 

in various applications. Category theory have been used to model some applications such as 

LINQ(Language Integrated Query) as well as being used to guide mathematical modelling and 

software development (Wachsmuth, 2013). It is possible to spot inconsistencies and errors in 

category theory similar to the way dimensional analysis does in engineering, or type checking 

in software development. 

1.2 Statement of the Problem 

Problems involving optimization have not been studied in Cartesian closed categories. This 

study aimed at defining a cone, derivative, extremal object and then used these definitions to 

obtain optimization results using the Lagrange method of multipliers in Cartesian closed 

categories. The study also provides a discussion of the various areas that the results can be 

applied such as building spreadsheet application, neuroscience, cognitive neutral network 

architectures and program optimizations. The results obtained in this study are vital as they aid 

in computerization of mathematics. 
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1.3 Objectives 

1.3.1 General Objective 

The study aimed at defining a cone, a derivative and then used these definitions to obtain 

optimization results in Cartesian closed categories by lagrange’s method of multipliers. 

1.3.2 Specific Objectives 

1. To define and study the properties of a derivative in a Cartesian closed category. 

2. To define and study the properties of a cone in a Cartesian closed category. 

3. To prove the Lagrange method of multipliers in the Cartesian closed categories. 

4. To give some application of optimization. 

1.4 Justification 

The methods of optimization are always designed in such a way that they can provide the best 

values for system design. There are many approaches to optimization depending on the space 

that is being used. This study seeks to prove optimization in Cartesian closed categories as to 

unite the different approaches in various spaces. This study is vital since, for foundations of 

mathematics to encompass physics, it always must have “the principle of least action” or 

optimization in ordinary mathematical language. This is because Physics is the cornerstone in 

the study of self-organisation. The results of this study are vital since they will aid in various 

applications such as building spreadsheet application, neuroscience, cognitive neutral network 

architectures and program optimizations. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

A category is defined to be an algebraic structure that has objects that are linked by morphisms 

(Marquis, 2010). There are two basic properties that are associated with a category, the ability 

to compose the morphisms associatively and the existence of an identity morphism for each 

object in the category. Category theory has in the past represented a huge change in the way 

most mathematicians thought about mathematics, leaving the set theoretic nature of 

mathematics behind and bringing up the importance of arrows between the objects rather than 

the objects themselves (Nel, 1976). Generally, category theory brought up the aspect of 

diagrammatic mathematics in which case proofs are constructed in a diagrammatic manner. 

Almost all the branches of modern mathematics can be represented using categories and in 

doing so deep insights and similarities are revealed between different areas of mathematics 

(Awodey, 2010).  The disciplines of applied mathematics and computer science have advanced 

from the applications of constrained optimization; and specifically the lagrange’s multiplier 

technique. This approach as indicated by Nesterov (2018) focuses on the refinements in the use 

of the Lagrange’s method of multiplier which entails application in partial differential 

equations and other mathematical theories. The method is applied in three forms for the 

inequality, equality and non-distinguishable optimization problems. Nesterov (2018) suggests 

that the discussions emphasize on the procedures of approximation for ill-conditioned and non-

differentiable optimization issues. The problems include the duality framework, exact 

minimization in the multiplier methods; and the method of quadratic penalty functions. The 

penalty approach was further examined inclusive of the non-distinguishable penalty functions 

and algorithm linearization as well as differentiable penalty functions and global and local 

lagrange methods of convergence. 

Category theory was first introduced by Eilenberg and MacLane (1945) in their article titled 

“General theory of natural equivalences.” It was in the 1950’s that various mathematicians 

including Grothendiek utilized category theory quite successfully in the field of algebraic 

geometry (Vistoli, 2004). In particular, Grothendiek utilized category theory to develop 

Grothendiek toposes. It was applied to logic by Lawvere (1960) by creating categorical logic 

and further introduced Lawvere theories as a category-theoretic way to describe finitary 

algebraic theories. It is believed that the radical change in category theory originated in 

philosophy and was later absorbed in mathematics and this is the reason it is widely used in 
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logic. In the recent past, category theory has been widely used to help computerise mathematics 

by trying to develop programs to proof mathematical theorems. Various mathematicians have 

been doing research so as to develop programs to prove the theorems in mathematics. Category 

theory has been widely used in the development of such programs. Computer science applies 

the concept of Cartesian closed categories by a process known as currying, which has led to 

the realization of the lambda calculus that is interpreted in various categories. It is clear from 

past research that there is a strong isomorphism among Cartesian closed categories, typed 

lambda calculus, and intuitionist logic. 

2.2 Cartesian Closed Categories 

In category theory, a category is said to be Cartesian closed if any morphism that is defined on 

a product of two objects can be naturally identified on one of the factors (Escardó, Lawson, & 

Simpson, 2004). These categories are seen to be very important in the theory of programming 

and in mathematical logic, in that their internal language is basically the typed lambda calculus. 

The Cartesian closed categories are generalised by closed monoidal categories whose internal 

language, linear type systems, are suitable for both classical and quantum computation (Höhle, 

1991). A closed monoidal category is defined as a closed category M if it is equipped by finite 

product results with respect to the monoidal structure of its Cartesian. Its internal hom[ , ]S X  

in Cartesian closed categories is normally referred to as exponentiation which is represented 

by SX . The functor of the cartesian closed categories between the Cartesian closed categories 

C and D is product-preserving as well as exponential preserving which forms a canonical 

diagram that corresponds to its composite thus implying isomorphism. 

Some of the examples of cartesian closed categories include the category set of all sets with 

morphisms being the functions. The Cartesian product of X and Y is the product X Y , and

{ : }YZ f Y Z  . The following fact provides an expression for the adjointness: the curried 

function : Yg X Z  which is defined by ( )( ) ( , )g x y f x y ,x X y Y   is used to naturally 

identify the function :f X Y Z  . Another category that is Cartesian closed for a similar 

reason is the category of finite sets with morphisms being the functions. In this sense it is 

possible to model the typed lambda calculus by use of the Cartesian closed categories. Since it 

has finite products there is an analysis map that corresponds to the map of identity undergoing 

bijection and with application of naturality, the map is translated to its composite. 

Cartesian closed categories (CCC) are generally easy to work with in algebraic topology. 

Neither the category of smooth manifolds containing smooth maps nor the category of 
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topological spaces with continuous maps is Cartesian closed. For this reason, there are 

substitute categories that have been considered. The category of Hausdorff spaces that have 

been completely generated is Cartesian closed as is the category of Frolicher spaces 

(Nishimura, 2010). In order theory, complete partial orders have a natural topology that is 

known as the Scott topology whose continuous maps do form a Cartesian closed category. The 

objects in this category are the complete partial orders while the morphisms are the Scott 

continuous maps. In the Scott topology, both currying and apply are continuous functions and 

currying together with apply provide the right adjoints. A category that has a zero object is also 

said to be Cartesian closed if and only if it is equivalent to a category with one object and one 

identity morphism. This concept implies that it preserves all the co-limits; specifically, a CCC 

is known as a distributive category if it results in finite co-products. Another important factor 

to consider is the fact that CCCs’ internallogic is the typed λ-calculus. 

Cartesian closed categories have a lot of applications especially in computer science (Curry et. 

al., 1972). A function of two variables (a morphism :f X Y Z  ) can always be represented 

as a function of one variable (the morphism : Yf X Z  ). In computer science applications, 

this is known as currying and it has led to the realization that the interpretation of simply-typed 

lambda calculus can be done in any Cartesian closed category (Mitchelle, 1996; Simpson, 

1995). The Curry-Howard-Lambek correspondence provides a deep isomorphism between 

simply-typed lambda calculus, intuitionistic logic and Cartesian closed categories ( 

Chakraborty,  2011). It is important to note that there has been a proposal that the Cartesian 

closed category, the topoi be a general setting for mathematics instead of the traditional set 

theory. 

It is important to note that there is a tendency to distinguish between data and methods in 

imperative programming whereas in functional programming for example, they are identical. 

A Cartesian closed category makes this identification of hom-sets (methods) correspond to 

certain objects (data). In particular, the category is closed if it has a binary operation on objects 

( , ) XX Y Y such that it is actually the data version of methods: 

, , ( ) ( )XX Y Z Z X Y Z Y      natural , .Z Y  from the Cartesian part, any finite record can 

be formed in the programming sense. That is, if there are n records of interest 1,..., nR R , they 

can be amalgamated into one record 
1..

i

i n

R


 and that this is their product means that any 

function/method to it is precisely n methods to the individual factors.  
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Theorem 1 presents the necessary conditions that a category must fulfil in order to be Cartesian 

closed: 

2.2.1 Theorem 1 

The category C is said to be Cartesian closed if and only if it satisfies the following three 

properties: 

i) It has a terminal object. 

ii) Any two objects ,X Y C have a product X Y C  . 

iii) Any two objects ,Y Z C have an exponential YZ C . 

Because of the natural associativity of the categorical product and also since the empty product 

in a category is the terminal object, properties (i) and (ii) can be combined to a single 

requirement that any family of objects of C admit a product in C. The finite family of objects 

can be empty. The property (iii) is equivalent to the fact that the functor Y denoted Y , 

Y C  (Escardó, Lawson, & Simpson, 2004). 

2.3 Boundary and extrema 

Given two real axes X and Y and a function :f X Y that takes a closed bounded set A X

to a closed bounded set B X then the problems of maxima and minima involves obtaining 

points in the set A which are mapped by f to either the maximum or the minimum points of 

B . If for instance, the closed bounded set is not the real line then there will be no maximum 

or minimum. However, it is possible to introduce the concept of extremal point as a point that 

is in A that is mapped by the function f to the boundary of .B This is done using locally convex 

topological vector spaces with bounded topology. This is done because classical calculus 

operation works up well upto the abstraction of the Banach spaces but not beyond. Further, 

developments have shown that classical calculus can still work well in topological vector 

spaces more general than Banach spaces provided the topology used is bounded. Another good 

reason for this topological space is that it is amendable to category theoretic approach of study 

(Andreas and Peter, 1997). In cartesian closed category the concept of boundary and extrema 

can be defined using the concept of locally convex topological vector spaces. Although there 

are calculation tests used to determine the values that satisfy the lagrange’s multiplier for the 

local maxima and minima as well as the points of inflection. The most appropriate way is to 

undertake examination of the function’s contour plots. 

2.4 Lagrange method of multipliers 

The Lagrange method of multipliers is vital while dealing with optimization problems that are 

constrained and is also related to many other results which are important.  There are many 
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different ways in which the fundamental result can be obtained. One of the ways in which the 

fundamental result can be obtain is through the use of the variational approach which provides 

a deep understanding on the nature of the rule of Lagrange multiplier (Borwein and Zhu, 2005). 

Gale (1967), provides a penetrating explanation on the economic meaning of the Lagrange 

multiplier in the convex case. It is important to note that the Lagrange method of multiplier is 

mainly applicable in the convex case (Nesterov, 2018).  

Consider maximizing the output of an economy with resource constraints. Then the optimal 

output is a function of the level of resources. It turn out that if the derivative of this function 

exists, it is exactly the Lagrange multiplier for the constrained optimization problem. A 

Lagrange multiplier then reflects the marginal gain of the output function with respect to the 

vector of resource constraints. Following this observation, if the resource utilization is 

penalized with a (vector) Lagrange multiplier the the optimization problem that has been 

constrained can be converted to an optimization problem that is unconstrained. One cannot 

emphasize enough the importance of this insight.  

In general, however, an optimal value function for a contrained optimization problem is neither 

convex nor smooth. This explains the reason behind the fact that this view was not prevalent 

before the systematic development of nonsmooth and variational analysis. This systematic 

development of convex and nonsmooth analysis during the 1950s through 1970s, respectively, 

provided tools that are suitable for the proper analysis of the Lagrange multiplier (Nesterov, 

2018). Gale (1989) himself provided a rigorous proof of the fact that for convex problems that 

are well behaved the subdifferential of the optimal value function exactly characterizes the set 

of all Lagrange multipliers.  

Subsequently, many researchers have derived versions of the Lagrange multiplier theorems 

with different ranges of applicability using other generalized derivative concepts (Maugeri & 

Puglisi, 2014). It is a methodology that aids in deriving the values of the maxima and minima 

of a particular function subject to constraints of equality. In short, it is a powerful tool utilized 

in the providing solution to such class of mathematical problems without the necessity of 

explicitly resolving the conditions of constraint as well as uses them in elimination of extra 

variables. According to Almeida and Torres (2009), the function provides a description for the 

dynamic system state in form of time derivatives and position coordinates, which is equivalent 

to the distinction between kinetic and potential energy. 

Despite the extensive literature on the various Lagrange multiplier rules, there are some finer 

points which are worth mentioning. First, the Lagrange multipliers are intrinsically related to 
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the derivative or to derivative like properties of the optimal value function.  This is already well 

explained from the economic explanation of the Lagrange multiplier rule in Gale’s (1989) 

paper. Gale (1989) focuses on the convex case but the essential relationship extends to the 

Lagrange multiplier rules that rely on other generalized derivatives. Second, in a Lagrange 

multiplier rule a complementary slackness condition holds when the optimal solution exists. 

Nonetheless, without a prior existence of an optimal solution, a Lagrange multiplier rule 

involving only the optimal value function still holds and is often useful (Benoist, Borwein and 

Popovici, 2002). Third, the form of a Lagrange multiplier rule is always dictated by the 

properties of the optimal value function and by the choice of the generalized derivative. In 

many developments, sufficient conditions for ensuring the existence of such generalized 

derivatives are not always clearly disentangled from what was necessary to derive the Lagrange 

multiplier rule itself. Finally, computing the Lagrange multiplier often relies on the decoupling 

information in terms of each individual constraint. Sufficient conditions are often needed for 

this purpose and they are not always clearly limned. 

The Lagrange method of multiplier used to be viewed as auxiliary variables introduced in a 

problem of constrained minimization in order to write first-order optimality conditions 

formally as a system of equations (Shapiro, 1997). Modern applications which have put more 

emphasis on numerical methods and more complicated side conditions than equations have 

demanded a deeper understanding of the concept and how it fits into a larger theoretical picture 

(Bertsekas, 2014).  

Finding maxima and minima is among the most common problems in Calculus, but it is always 

difficult to obtain a closed form of the function that is being extremized. Consider the 

optimization problem: maximize ( , )f x y  subject to ( , )g x y . We introduce a new variable 

called the Lagrange function and is defined by: 

( , , ) ( , ) { ( , ) }x y f x y g x y c      Where  term may be added or subtracted. It is important 

to note that not all stationary points yield a solution to the original problem. As stated by 

Vapnyarskii (2001), this method yields a necessary condition for optimality in constrained 

problems. The rule of Lagrange multipliers in locally convex spaces and the concept of extrema 

can be extended to Cartesian closed categories by modifying the Sukhinin’s (1982) method to 

rings (Cartesian closed categories). Sukhinin (1982) studied Lagrange multipliers in vector 

spaces with bounded topology and it is this idea that we intend to generalize to rings (Cartesian 

closed categories). Sukhinin used the idea of cones in linear topological spaces without norms 

in order to obtain results similar to those obtained in classical analysis. 
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The problem of optimization has been studied using the concept of infinitesimals in spaces 

without norm. Otieno et al, (2013) used this concept and obtained the results shown in Theorem 

2. It is these results that we use in this study to obtain optimization results in Cartesian closed 

categories. 

2.4.1 Theorem 2 

Let xoЅ  X, let K1 be a cone in X with vertex at zero, and suppose that the  

map f: Ѕ →Y is such that hK1,UBt(0,)xt(UB):[xo+ th + xS][f(xo+ th + 

x) = f(xo)] and f (xo) = 0.Further, let Z be an ordered topological vector space, suppose that 

the map F: S → Z is β differentiable relative to K1 at the point xo. If xo is a point of conditional 

 minimum of the map F relative to K1 and under the condition f (xo) = 0 then F(xo)(h)0 for 

hK1.  

Sometimes, the theorem above can be given the form of the rule of Lagrange multipliers, as 

shown below;  

Let Z be an ordered topological vector space, g be a continuous linear operator from X into Z, 

let A be a linear (not necessary continuous) operator from X into Y, K be a cone in X, and 

suppose thath (Ker A) K: g (h) ≥0 (Otieno, Sogomo, &Gichuki, 2013) 

2.4.2 Proposition   

Suppose h (Ker A) K: g (h) ≥0 holds, g is linear, A  is open ( )AX Y , and that K X  

then   an operator ( , )Y Z   such that ( ) 0g A x  for some x X .# 

Indeed to optimize g subject to A , we introduce a new variable  and define the lagrangian 

function g A   , then the first order necessary conditions for a feasible point 0x  to be a 

locally optimal solution to the Lagrangian function   becomes; 

0

0
x




 and 0[ , ( )] 0g x   for some 0x X  

2.5 Typed lambda calculus and its relationship to computer foundations of mathematics 

This calculus refers to the typed formalization that involves the use of the symbol (lambda) 

that stands for an unknown function abstraction. The calculus in consideration determines the 

actual nature of syntactic objects; mostly these are types regarding lambda terms. From an 

individual perspective, these calculi can be viewed as an improvement of the untyped calculus 

that was also lamda based. They are foundational theories that are contextually programming 

language hence forming the basis for functional coding like Haskell and ML (Li et al., 2017). 

These calculi play a vital role in the development of programming languages' type systems; in 



11 

 

this case the aspect of typability normally focuses on desirability of the program properties for 

instance to prevent violation of memory access.   

The typed calculus closely correlates to proof theory and mathematical logic through the 

concept of Curry-Howard of isomorphism and could be regarded as a specified language to a 

class in a category like for example the CCCs' (Cartesian closed categories) language is the 

simply-TLC. The concept of Lambda Calculus was first introduced in the year 1932 in a church 

system as the origin of logic. It is precisely the approach of studying philosophy centered 

computation regarding mathematical theories and logical formula. Lamda calculus depicts the 

deep connection between recursion and computing as well as the relation to mathematical 

induction (Kanzow & Steck, 2017). 

The key roles of λ-calculus evident from past review according to CH correspondence include 

the basic mathematical foundation of functional, sequential, and high-order computational 

tendency and the fact that it is proofed' representation in constructive logic. 

From the dual perspective of lambda calculus both as a programming language and proof in 

conjunction with the algebraic nature of the concept, it has been possible to perform a massive 

shift in technology between programming, the foundation of mathematics and logic. Majority 

of coding languages as well as typing fields cannot experience development without λ-calculus. 

It has contributed a great deal to the discipline of computational mathematics.  

The concurrency theory is also one of the disciplines in computer science that has significantly 

affected the constitutional perspective according to Martin Burger. λ-calculus on its own is a 

non-concurrent language but has the spirit of algebra which permeates the development and 

definition of the prevailing process calculus. In short, the process algebras are λ-calculus 

descendants rather than being Turing machines or automata; hence the importance of importing 

λ-calculus to the concurrence theory. Besides this theory, the ICC (inherent computational 

complexity) is useless in CS outside use of coding languages as well as verification of software. 

λ-calculus is applied in partial differential equations since the unit forms part of mathematical 

formalism, relational algebra, type theory, and the higher order dimensional logic. The church 

had reasons for building the λ-calculus which vary according to the practitioner as follows: A 

convenient computing notation, unlike the typical Turing Machines; Provides a solid basis for 

mathematical manipulations to create a more complex programming language. 

It is also rigorous equipment used to give natural semantics and coding languages.Functional 

programming technique is base its application in differential equations; a good example is the 

Lisp language (Bendkowski et al., 2017). The reduction systems are primarily designed to 
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execute such functional languages. Since these programs have an expression denoted as E that 

represents both the input and algorithm. Certain rewrite principles guide the expression; the 

reduction procedure entails replacement of part N of E with N' subject to the rewrite rules as 

shown by the following schematic equation: 

 E|N|→ E|N'|, given that N →N' is by the rules. 

In this sense the reduction process shall be redone until no parts are available for rewriting; the 

standard form of the expression constitutes of the provided functional program's output. These 

systems usually satisfy the property of Church-Rosser; it states that the expression's standard 

form realized is not dependent on the sub-terms by evaluation order. The basic operation of λ-

calculus includes abstraction and application.  

The application operation is whereby expressions L.W and LW imply that data L regarded as 

an algorithm implemented on data W assumed to be the input (Kanzow & Steck, 2017). This 

process can be viewed from two perspectives that include as an output or as a computation 

procedure. The computation view gets captured in the conversion notion (reduction) while the 

output part is featured in semantics notion. The other operation, abstraction, is whereby if forms 

the expression that contains, then the function →denoted by λ... These two operations work in 

conjunction according to the following intuitive expression (λ .)=  [:=]; I which [:=] implies 

that substitutes (Palomba et al. 2017). 

Church was precisely attempting to perform unification of the notations utilized in computing 

their mathematics. On realization that LC is equivalent to TM, they were used as a standard 

alternative to improve the accessibility of the programs. λ-calculus is treated like primitive 

instead of a dialect of TM since its semantics are termed as denotational for possessing intrinsic 

meanings. The meanings include the fact that they are church numbers, addition, recursion and 

multiplication functions. This aspect makes LC terms more aligned to the formal practice of 

mathematics hence the existence of several algorithms in LC form directly (Derpich & 

Sepulveda, 2017). The church's system utilized a logic that is type-free having unrestricted 

quantification but with no excluded middle law (Dershowitz, & Gurevich, 2008).  

2.6 Hilbert 6th Problem 

The sixth problem in the famous list of Hilbert's concepts that focus on physics formalization 

in the discipline of mathematics. The original version from Hilbert's statement is translated 

from German which states: mathematical consideration of physics axioms. It seeks to 

investigate the basis of geometry through treatment of the mathematically related physical 

sciences with the help of axioms. The good examples of this concept are captured in the theories 
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of mechanics and probabilities. This problem is the only one that has been progressively 

engaging; at the moment most concepts in physics have been wholly formalized while the rest 

are in the process of being comprehended in a manner that is systematic (Zhang, 2017).  

Hilbert's initial instance of probability theory is regarded as axiomatized from the'30s through 

the ideologies of the measure theory. For instance, in mechanics, the formalization status 

critically relies on the manner in which one comprehends the term currently. The particular 

classical mechanics' case referred to by Hilbert has been formalized fully through variation 

calculus and symplectic geometry. In conjunction with Einstein, Hilbert contributed to gravity 

formalization and further developed the concept of quantum mechanics as a refinement 

formalization of classical mechanics (Bendkowski et. al., 2017). 

Although to date quantum mechanics' ontological status as physics theory is still unknown, its 

mechanics are captured by operator algebra and functional analysis theory. However, this 

circumstance varies drastically when one shifts to quantum field theory which has been 

understood since the ‘50s as a general and fundamental mechanics version in nature. From 

1960 the AQFT (Haag-Kastler axioms) have been suggested as a formalization of the field 

theory and essentially for the local-QFT. Whereas these axioms were somehow successful in 

building a foundation for the structural outcome like the PCT theorem, the challenge lies in 

their continuous lack of corresponding models in dimensions beyond two (Berger & Hou, 

2017).  

The current developments in higher geometry and algebra indicate that axioms refinement is 

natural and necessary to the homotopy theory context. In the ‘90s the problem involving 

limiting of processes that resulted from the atomistic perspective of the motion laws of continua 

was tackled by several mathematicians. Generally, it was a declaration of the axiomatic 

methodology of expansion outside the prevailing mathematical disciplines; in physical sciences 

and beyond (Castellan et. al., 2015). This type of expansion needs semantics development of 

physics with a formal evaluation of the physical reality notion that should be performed.  The 

two fundamental models aim at capturing most of the basic physics phenomena include the 

QFT which gives the standard model's mathematical framework (Bendkowski et. al., 2017). 

The other theory is that f general relativity that offers a description of gravity and space-time 

on a microscopic scale. However, the arguments are not in essence logically consistent; thus 

indicating the necessity of the anonymous quantum gravity theory. 

A content review on this problem suggests that it emphasizes in mathematical formulation that 

involves quantum mechanics (Slemrod, 2013). They allow for the rigorous description of the 
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mechanics and differ from the earlier aspect by the use of mathematical structures abstraction 

like the infinite dimensional operators and Hilbert spaces. Most of the structures are derived 

from a research field in pure mathematics known as functional analysis that was affected by 

the necessities of quantum mechanics (Castellan et al, 2015). It is clear from the study that 

natural morphisms like momentum and energy were regarded as eigenvalues rather than phase 

space function values; precisely Hilbert's space linear operators' of spectral values.  

Hilbert's idea was an introduction of a category of axioms that could provide an explanation 

for an extension of physical phenomena class and progressively add forms to bring it closer to 

the reality (Li et al., 2017). In every step of axiomatization, it is important to give scientific 

evidence that all the previous results are still valid and consistency of the resultant axioms with 

an impact of Godel's theories but no specified way to derive the axioms. 

Primarily deriving axioms is related to the particular relativity theory; it is done by taking the 

invariance of light speed and the principle of relativity which is formulated in mathematical 

terms. From the underlying geometry of the derived axioms, it is possible to determine special 

relativity. According to Hilbert, the primary focus was on statistical mechanics which evolved 

to quantum mechanics where thermodynamic limits and mean values were utilized to achieve 

results yet they lacked solid mathematical foundation (Zhao et.al., 2018). From past studies it 

is evident that Hilbert's sixth problem was entirely centered on physics that is mathematically 

rigorous; which implies that manipulations begin with some axioms and then everything 

progresses (Gorban, 2018). He explicitly stated that it would be necessary to axiomatize 

physical theories that are patently false since they might not be covariant or not quantum. 
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Introduction 

If the arrows in Cartesian product are reversed, one gets sum. It can be shown that in this 

manner, a Cartesian closed category can be converted to a ring. Kock (1981) showed that a 

derivative can be defined in a ring with infinitesimals. For the derivative to be useful in 

optimization theory, it should be defined in a ring (Cartesian closed category) with 

infinitesimals in a form that is similar to that of Sukhinin (1982). The idea of boundedness in 

Cartesian closed categories is necessary in order to come up with a criterion of obtaining 

extrema in Cartesian closed categories with infinitesimals. The next step will be to define an 

extremal point in a Cartesian closed category with infinitesimals and finally prove a result on 

the conditions for the existence of extrema. In this regard, the study intends to formulate and 

prove Theorem 2 in Cartesian closed category, then proceed to show that the theorem can be 

given in the form of the rule of Lagrange’s multipliers 

3.2 Important definitions and criteria used 

The method in which the study intends to use to get the optimization results in Cartesian closed 

categories hinges on the following definitions: 

3.2.1 Infinitesimals 

Infinitesimals are the collection of objects
2{ : 0}d D d  . Let R be a field, D the collection 

of infinitesimals in R. A map :r D D will be called a homomorphism of infinitesimals if 

1,d D d r D   . 

3.2.2 Small functor 

Let ,x K R S R   where R be a ring with ideal. A functor :r S R will be called D

small relative to the cone K at the point 0x if 0 0, : , ( )d K x x S r x x D         . D is 

an ideal. 

3.2.3 Differentiable functor 

A functor :f S Z is called D differentiable relative to the cone K at the point x if 

( ) ( )f x d f x Ad d    where A is the derivative of ( )f x and d ideal  of R. 
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3.2.4 Conditional extremum of a functor 

Let ,x S R  where R be a ring with ideals and let :f S Y be a functor satisfying 

0( ) 0.f x   We say that 
0x is a point of conditional extremum of the functor :F S R

relative to the cone K under the condition x K provided 0( ) ( )F x F SØ or 0( ) ( )F x F S  

3.2.5 Extremal Point 

Let X be a ring with ideal, f be a morphism in X , 
0x X is an extremal point of the morphism 

if 
0( )f x X   

Using te definitions, it should be possible to get a result similar to Lagrange’s method of 

multipliers in Cartesian closed categories by modifying Sukhinin’s method. 

 

 

 



17 

 

CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Introduction 

Sukhinin (1982) carried out a study on the Lagranges multipliers in vector spaces with bounded 

topology. Sukhinin (1982) used the idea of infinitesimals to obtain optimization results in 

vector spaces with bounded topology. It is this idea that this study genaralizes to Cartesian 

closed categories. In this study, a ring with ideals is taken to be a Cartesian closed category 

since it satisfies all the properties of a Cartesian closed category and as such it is a Cartesian 

closed category. To obtain the results similar to those obtained in classical analysis, Sukhinin 

(1982) used the idea of cones in linear topological spaces without norm. We follow Sukhinin 

(1982) to obtain the following important definitions; 

4.2 Cone in a ring with ideal 

4.2.1 Cones 

Let R be a ring with ideal. K R ,U a neighborhood of zero and B a bounded neighbourhood 

of zero in the ring R . Take a fixed 0x R , then 0{ : ( ) }K d R x t d U B R       and 

\K R K  are cones.  

4.2.2 Functor 

Let ,x K R S R   where R be a ring with ideal. A functor :r S R will be called D

small relative to the cone K at the point 0x if 0 0, : , ( )d K x x S r x x D         . D is 

an ideal. 

4.2.3 D differentiable functor 

A functor :f S Z is called D differentiable relative to the cone K at the point x if 

( ) ( )f x d f x Ad d    where A is the derivative of ( )f x and d ideal  of R. 

4.3 Synthetic Differential Geometry in Cartesian closed categories 

This section aims at creating differential structures that are in line with constructive 

mathematics. The main purpose of this approach is to get results that are related to optimization 

that avoid restrictions imposed by Godel’s Incompleteness Theorem. By Church’s thesis, this 

approach can be modelled by computer programs (Dershowitz & Gurevich, 2008). 

Constructive mathematics takes a proposition to be true if it can be constructed. This is why 

we define a derivative in an algebraic setting in this section. 

In this study, we discuss the synthetic differential geometry axioms in Cartesian closed 

category. The objects in Cartesian closed category according to synthetic differential geometry 
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axioms have a structure that is differentiable, each arrow has a derivative, and the basic rules 

of calculus are calculations of the rings with ideals. In this study, it is assumed that there is a 

ring with ideal that satisfies the synthetic differential geometry axioms. The objects are 

categories and the arrows are functors, and to global elements :1p R as points of the ring

.R  The axioms posit a ring R , with addition and multiplication making a kind of a number 

line. But R is unlike the standard reals in that the set of ideals D R of x R  with 2 0x   is 

not just{0} . D is called the set of ideals with square zero and every functor from the set of 

ideals to the ring R has a well-defined slope. 

4.3.1 Derivative of a ring with ideal 

If f is a ring homomorphism, and 

( ) ( )f x d f x Ad d     

Then A can be called a derivative. ,x d R Where d ideal of R. 

4.3.2 Proposition  

If g is a ring homomorphism then it maps ideal to ideal. 

Proof 

Since ring ideal ideal  and g is a ring homomorphism from X Y then 

( ) ( ) ( ) ( )g ring ideal g ring g ideal g ideal    

Therefore, ( )g ideal ideal  

Hence A is a derivative of f at x . 

For example, compare this with the usual Frechet derivative ( ) ( ) ( )f x h f x Ah r h    where 

Ah is an infinitesimal. In our case, ideal takes the place of infinitesimal. 

4.3.3 Consequence of the definition 

Suppose that f is a constant, that is, for some c R we have ( )f x c x   then, 

( ) ( ).f x d c f x    

Therefore, ( ) ( )f x d f x Ad d    implies that 0Ad d  or ( ) 0A id d  ,that is , 0d   

But 0Ad   since (0) ( ) 0A A d d Ad Ad      

4.4 Derivative properties 

4.4.1 Theorem 1 

If A  is a derivative then ( . ) . ( ) ( ).A f g f A g A f g   

Proof 

Following Mac Larty (1992)we show that  ( . ) . ( ) ( ).A f g f A g A f g   
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Indeed ( . ) ( ) ( ) ( ) ( )A f g f x d g x d f x g x     

                        ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f x d g x d f x d g x f x d g x f x g x         

                        ( )[ ( ) ( )] [ ( ) ( )] ( )f x d g x d g x f x d f x g x        

                        ( )[ ] [ ] ( )f x d Ad d Ad d g x      

                        ( ) ( ) ( ) ( ) ( ) ( )f x Ad f x d f d Ad f d d Adg x dg x       

                        0 0g ffA d d gA d d       

                         ( )g fd fA gA d    

                         g ffA gA                        

Hence the proof. 

4.4.2 Theorem 2 

If A is a derivative and suppose f  and g are ring homomorphisms which are differentiable 

then 

( )A f g Af Ag    

Proof 

Indeed,  

( ) [ ( ) ( )] [ ( ) ( )]A f g f x d g x d f x g x        

               

[ ( ) ( )] [ ( ) ( )]

[ ] [ ]f g

f x d f x g x d g x

A d d A d d

Af Ag

     

   

 

 

Hence the proof. 

4.4.3 Theorem 3 

If A  is a derivative and suppose that f is a homomorphism and c is a constant then, 

( )A cf cAf  

Proof 

( ) [ ( ) ( )]A cf c f x d f x    

           
[ ]fc A d d

cAf

 


 

Hence the proof. 
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4.4.4 Theorem 4 

If A is a derivative and ,f g are homomorphisms in a ring R, then 

2

f gAf fAg
A

g g

  
 

 
 

Proof 

( ) ( )

( ) ( )

f f x d f x
A

g g x d g x

  
  

 
 

           

2

2

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( )[ ( ) ( )] ( )[ ( ) ( )]

( ) ( )

( )[ ] ( )[ ]

( ) ( )

( ) ( )

f g

f g

g x f x d g x d f x

g x d g x

g x f x d g x f x g x f x g x d f x

g x d g x

g x f x d f x f x g x d g x

g x d g x

g x A d d f x A d d

g x d g x

gA d fA d

g

gAf fAg

g

  




    




    




  










 

Hence the proof. 

4.5 Proposition 1 

Let f be a differentiable functor in a cone K with the vertex at 0x , then ( )f K is a cone with 

vertex at 0( )f x . 

Proof 

0 0{ ( )} ( ) { ( )} ( )f x t d U B f x A t d U B d U B           

But since ( )t d U B K   and A is linear then { ( )}A t d U B  is an open cone. Hence the 

R.H.S is a cone. 

L.H.S is a cone with vertex at 0( )f x  

Hence the collection of cones with differentiable maps as morphisms form a Cartesian closed 

category. 

4.6 Proposition 2 

Let :f K K be differentiable, if x K and 0Ax  then 0( ) ( )f x K f x  . 

Proof 
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0 0{ ( )} ( ) { ( )} ( )f x t d U B f x A t d U B d U B          , then 

0 0{ ( )} ( ) ( )f x t d U B f x d U B        

0 0{ ( )} ( )f x t d U B f x      

By proposition 1, 
0( )f x is a vertex and hence 

0: ( ) ( )f x f x f K   

4.7 Optimization in Cartesian Closed Categories 

Adjoint in categories has been suggested by Lawvere (1981) as an optimization in categories. 

Although it is thought that the interpretation of this optimization should not be taken to be 

similar to the one in analysis, this thesis shows that it is a generalization of the usual 

optimization. 

4.7.1 Adjoint 

Let ,X Y be categories and : , :F X Y G Y X  . If 1 , 1Y XF G G F  then F and G are 

adjoints of one another. 

4.7.2 Sukhinin on Extremum 

Let X be a topological category and X be a category of boundaries. If 

: , :F X X G X X   and 1 , 1X XF G G F  then F and G are said to be the 

optimizations of the categories. 

From the definition, it can be noted that retract is an optimization and derivatives and 

antiderivatives are optimizations of each other. 

4.7.3 Conditional extremum of a functor 

Let ,x S R  where R be a ring with ideals and let :f S Y be a functor satisfying 

0( ) 0.f x   We say that 0x is a point of conditional extremum of the functor :F S R

relative to the cone K under the condition x K provided 0( ) ( )F x F SØ or 0( ) ( )F x F S  

4.7.4 Theorem 5 

Let X and Y be rings with ideals, 1',S S K  a cone with vertex at zero. :f S Y satisfies 

the condition 0 0 0[ ] [ ( ) ( )]x dh x f x dh x f x       and 0( ) 0f x  . Further, let Z be a ring 

with ideal, :F S Z  be '

DS differentiable relative to 1K  at 0x . If 0x is a point of conditional 

minimum of F relative to the cone 1K  under the condition 0( ) 0f x  , then 

0'( ) ( )F x h t h U B   for 1h K . 
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Proof 

Assume 
0 0, (0) 0.x F  Let 

1h K and V D in , ( ) ( ) (0).( )Z r x F x F x  and 

' : ' 'V D V V V   . Then 
1U and 

1: '(0)( ) 'D F U V B d D     . 

Let 
1' [ ( )] ' , ( ') 0Dx d h U B S f x      then [ ( ') '] [ ( ') ( )]r x dV F x t h U B     . 

Further, 
1( )x d U B   for which ( ) ,dh x C  where C is a positive cone in Z . Further, 

'(0)( ) ( ) '(0) '(0) ( )F dh x r dh x dF h F x r dh x        then 

1 1'(0) '(0)( ) ( ) [ '(0)( ) ' '] [ '(0)( ) ]F h F d x d r dh x F h V V C F h V C          , that is, 

[ '(0) ] ,F h V C   since C is closed and V is arbitrary, '(0)( )F h C , that is 

'(0) ( ).F h t h U B    

Sometimes 0'( ) ( )F x h t h U B   can be given in the form of the rule of Lagrange 

multipliers. Let Z be a ring with ideal, g be a ring homomorphism from X into Z , A be a 

functor from X  into Y , K  be cone in X and suppose that; 

: ( ) ( )h KerA K g h d h U B      , AX Y and A X  then there exists a functor 

( , )Y Z such that 
0( ) 0g A X  for some 

0 .X X Where ( , )Y Z is a class of all 

functors from Y into .Z  

4.8 Applications 

4.8.1 Building Spreadsheet Application 

The excel spreadsheet application lacks specific features that aid in generating modular 

designs. If it had these specifications like the majority of programming languages, it would be 

time-saving as well as minimize mistakes, facilitate organization style, and ease code control. 

There are two critical approaches utilized in software development, where one involves 

ensuring the design is too simple to have deficiencies while the other entails the use of a 

complicated procedure to eliminate inadequacies. Since the former methodology is a relatively 

more difficult, the only strategy to construct complex applications that have no limitations is 

through a combination of simple modules by proper interfaces (Sadaphule & Shaikh, 2016). 

This concept would make most of the emerging issues local therefore creating the hope of 

optimizing or fixing a specific part with no breaks in the entire program. Modularity increases 

the alternatives for system modification and is the primary outcome of the options theory, 

which claims that it is better to have a group of only options rather than a single choice within 

a given portfolio. Generally, it is possible to model the modularity value in a manner that is 

decision-theoretic as seen in the Blak-Scoles equation. 
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Intuitively, applications whose constituents can get upgraded selectively are relatively more 

important than a program that is a monolith. For this selective approach to be possible it is 

necessary to ensure that the program modules have a modular design; hence the need for a 

semantic property referred to an abstraction. Increased modularity would also give an assurance 

of useful bug identification to avert affecting an arbitrarily significant system proportion 

through a process known as compartmentalization. The well-defined interfaces are used to 

enforce the compartmental boundaries efficiently. These separation mechanisms would enable 

reliable prevention of the missed bug for executing errors in a more significant proportion of 

the whole system.  

Spreadsheets lack an essential feature utilized in controlling system complexity regarding 

defining the abstractions that are reusable which is very crucial for end-user coders. The excel 

sheet applications are designed through mathematical treatment of the spreadsheets using the 

Excelsior programming language to create modularity. The language develops by the 

modularity principles by implementing the mathematical functions and arithmetic operators; it 

is an imitation of python as a useful technique that is concise and dynamic typing (Sadaphule 

& Shaikh, 2016). Building spreadsheet applications is made possible by applying the design 

principles and its user-interaction as well as facilitates trial an error placement of results 

produced in the process of structure discovery. 

4.8.2 Neuroscience 

The art of neuroscience is facing a challenge of identifying the suitable language to provide a 

proper description of the brain's activity in a manner that results in theory evaluation, 

deduction, and also a calculation. There is need to bridge the gap between neuroscience and 

literature as thoughts, concepts, percepts, emotions, and ideas; hence it is necessary to develop 

a mathematics concept that attempt to resolve these problems from the neuroscientists and 

mathematicians’ perspectives (Ashby & Valentin, 2017).  

The contribution of mathematics in this field is in the manner in which math works on process 

description like concept refinement and abstraction. The category theory is among the most 

influential mathematics developments that have made significant advancements in the manner 

in which it describes mathematics processes. It is also helpful in the unification of various 

topics, new logics development and revelation of the general procedures that have translated 

to broader uses as well as implications. Abstraction enables the use of analogies through 

correlation of encoding as well as relations between relations. 
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It may be presumed that abstraction power, in mapping ought to get deeply encoded in the 

history of evolution as a survival technique, since maps result in an environment model that is 

small and can be manipulated. In the mathematical manipulation of representations entails 

typically rewriting, for instance, the application of the commutative law which is complicated 

formulae replacement (Ashby & Valentin, 2017). This study of the manner in which 

mathematics operates is crucial in model development to support neurological functions 

involving environment maps.  

The principles of mathematics could potentially offer a case study that is comprehensible 

regarding complicated interacting structures evolution and can result in useful analogies in 

development and analysis of brain activity models. The concept of category theory is relevant 

to biological studies; specifically, the colimit notion in any category in describing structures 

that consist of interrelated components (Sadaphule & Shaikh, 2016).  

Therefore, a category that evolves with time can then enable structures undergoing evolution; 

and the compositions are provided as the Ct at the time, t. The aspect of colimits provides an 

overall setting whereby it describes the amalgamation process of complex models. The 

category notion developed from helpful function notation which shifts from the vague 

definition of ( )y f x  to a more clear function :f X Y , which makes the equation more of 

a process than a mere function. The category is composed of a class of objects, arrows, and 

composition and in addition to it also has position structure defined by its object's class. The 

applicable rules are associativity and presence of identities; in short, the colimit notion in every 

category generalizes the union formation perception of overlapping objects with a defined 

intersection. This approach is applied in the human brain whereby information from various 

sensory organs is reintegrated in mind to be geometrically sensible. 

4.8.3 Cognitive neural network architectures 

 The category theory is applicable in mathematical modeling of the cognitive neural networks 

semantics with the help of functors, colimits, as well as natural transformations to support 

structural mapping of the theory. In this case, the functors map the colimits concept onto a 

neural components category; natural transformation approach among the functors amalgamates 

the idea of single-sensor symbolism in a joined, multi-mode cognitive neural network design. 

These mathematical schemes address the underlying semantics in an organization's neural 

systems.  

When a neural network coupled to the sensor(s) gets stimulated by actions that require simple 

representation of the component concept (Ashby & Valentin, 2017). The anode in the network 
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receives activated on reception of adequate input through a specific subset of the excitatory 

connections of the information to prevent data from inhibitory connections. Once it has been 

activated, the node sends a signal, output, to the others or an endpoint device as a signal 

function. The activation process is based on the input connection weights both the inhibitory 

and excitatory and is dependent on the node's activation potential as well as the threshold. 

The category theory has primitive quantities that include morphisms and objects; whereby 

morphism consists of an object that is the domain, and the other is referred to as the co-domain. 

In a given category, each of the arrows :g c a and :f a b poses an arrow of composition 

:g f c b with a domain a and codomain c ; thus satisfying the associative law. The 

fundamental concept in the analysis of the category theory is the commutative diagram, which 

provides a categorical equivalent of the equations used in the system (Ashby & Valentin, 2017).  

The layouts are of great significance to the argument since they play the role of specifying the 

structures' constraints. One of the major applications is in the definition of colimits used 

structural mapping of the category concepts in neural components (Sadaphule & Shaikh, 2016). 

 The category concepts have morphisms and objects as concepts that define specifically the 

way the real part represents a subconcept while the imaginary for the logical part.  

In addition to mapping operations and sorts, the category theory structure has the property of 

axiom refection. These morphisms' compositions in a concept are a combined relationship of 

sub-concepts; is a commutative representation of colimits in assembling formalization.  A 

neural system is composed of several helpful commutative diagrams with the reciprocal 

network (Ashby & Valentin, 2017). The feature implies that each connection has similar 

polarity; that is the inhibitory and the excitatory for any given node in the neural system. The 

structure allows for functional mapping of the neural concept structure 

4.8.4 Program Optimizations 

In the world of computer science, software optimization refers to the modification process of 

the program to improve the efficiency in performance of a particular aspect of the software as 

well as utilizing the use of computer resources. Generally, computer software could get 

optimized to ensure it executes rapidly or minimize storage and power consumption as well as 

other resources. This process involves identifying the aspects of a program that could be 

discarded and those that are important.  

The category theory applies to the generalization of both the original and the changed codes 

into widely used optimization rules (Elliott, 2017). The category formalization is a necessary 

abstraction technique used in learning program optimization for correcting typing bugs using 
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a relational database to help programmers in code compiling. Most program optimization 

techniques entail direct style transformation to a similar program through continuation passing 

approach. However, the most convenient way to achieve such computation is through a set of 

changes that preserve meaning being added to the available optimization rules for instance use 

of GHC in Haskell programming.  Optimization is a desirable functionality in software 

development but is usually antagonistic to the goals of portability, maintainability, and stability 

(Elliott, 2017). 

In these functional programming languages, such as implementation illustrated in the various 

interpretations such as the automatic differentiation, hardware circuits, interval analysis as well 

as the incremental computation. From a category-theoretic perspective, it is evident that the 

optimization capacity offers a reasonable option for the domain-particular languages that are 

deeply embedded. The initial phase of compiling to the category theory involves performing 

syntactic transformation which changes language from simple calculus to the form of Cartesian 

closed categories without a change in meaning (Elliott, 2017). The point of this transformation 

is to facilitate easy conversion from the parent category to the other classes, which are the 

interpretation options of the directly typed calculus and therefore the Haskell programs. The 

aspect of changing vocabulary without varying the intended meaning through the use of 

homomorphism equations is fundamental to compiling optional categories; hence giving a non-

standard and sound interpretation to the functional codes. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

The rule of Lagrange’s method of multipliers has been appied to topological spaces without 

norm by Sukhinin (1982). Otieno et al (2013) generalized the theorem to ordered topological 

modules. In this work, the theorem has been applied to Cartesian closed categories for the first 

time.  

Within the same space it may be possible to study optimization using the Lagrange’s method 

of multipliers. Once the cones were defined, the derivative from which the extrema was 

obtained was realized. It was hence possible to define a differential structure in Cartesian closed 

category. To induce a global differential structure on the space induced by homeomorphisms, 

their compositions on chart intersections in the atlas must be differentiable functions on the 

corresponding space.  

Further, the ability to induce a differential structure on a Cartesian closed category allows for 

an extension of the definition of differentiability to spaces without the global coordinate 

systems. A differential structure would allow one to define the globally differential tangent 

space, differentiable functions, differentiable tensor and even vector fields.  

Optimization is very important in physics and optimization in cartesian closed categories by 

Lagrange’s method of multipliers is vital since it ensures that optimization problems are easily 

solved. The optimization results obtained in this study were applied to nonlinear differential 

equations using algebraic geometry techniques. 

5.2 Recommendation 

Differential equations are central to all areas of physics and this study has made an attempt to 

apply optimization results to non-linear partial differential equations. Further research is 

recommended to study on how category theory can help solve differential equations by 

mapping diagrams of equations to other categories similar to how problems of topology are 

often solved by mapping topological spaces to algebraic ones in algebraic topology. Further 

research should also be done on the use of Cartesian closed categories in the formulation of 

programs that will aid in proving mathematical theorems. 
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