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ABSTRACT 

Testing for homogeneity of proportions in handling over-dispersion is employed in toxicology, 

teratology, consumers purchasing behavior, alcohol drinking behavior, in studies of dental caries 

in children and other similar fields. An important inference problem of interest is to compare 

proportions of certain characteristic in several groups. However, these proportions often exhibit 

variation greater than predicted by a simple binomial model. In real world applications, the 

binomial outcome data are widely encountered and the binomial distribution often fails to test 

homogeneity of proportions due to over-dispersion. The binomial proportion is assigned a 

continuous distribution defined on the standard unit interval as one way of handling over-

dispersion in the test for homogeneity of proportions. The new McDonald Generalized Beta-

Binomial distribution (McGBB) with three shape parameters has been shown to give better fit to 

binomial outcome data than the Kumaraswamy-Binomial (KB) distribution and Beta-Binomial 

(BB) distribution based on both simulated data and real data sets and hence considered in this 

work. This thesis considered derivation of  the ( )C   tests based on Quasi-likelihood (QL) and 

Extended Quasi-likelihood (EQL) estimating functions using the new McGBB distribution which 

have not been done in testing homogeneity of the proportions. Simulation was done by using R 

package and also real data was used to calculate p-values for both ( )C  tests and LR test. The 

size and power of a test was compared for the simulated data and showed that ( )C  tests 

maintained nominal level well and had higher power than LR test. The comparison of p-values 

for real data showed that ( )C  tests had smaller p-values than LR test hence ( )C  tests were 

preffered since they require estimates only under the null hypothesis. Thus, this thesis has 

provided a better tests ( ( )C  tests) based on Quasi-likelihood and Extended Quasi-likelihood 

estimating functions for testing homogeneity of proportions in presence of  overdispersion using 

the new McGBB distribution.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background information 

A number of parametric (BB model, the correlated binomial model, the new McGBB 

model, the additive and multiplicative binomial models) and non-parametric (Quasi-likelihood, 

extended quasi-likelihood, pseudo-likelihood and those based on optimal quadratic equations) 

procedures are available for testing homogeneity of the proportions. Of these, the LR test based 

on the BB model has found prominence in literature. In a recent study conducted (Chandrabose, 

M., Pushpa, W., and Roshan D) it was evident that the new McGBB distribution is superior to 

the BB distribution in handling over-dispersion. 

This study developed ( )C  tests for testing homogeneity of the proportions in presence 

of over-dispersion. ( )C  test is based on the residual of a regression of the score function for the 

parameter(s) of interest on the nuisance parameters and it has been shown to be asymptotically 

equivalent to the likelihood ratio test and to test using maximum likelihood estimates (Moran, 

1970; Cox and Hinkley, 1974). ( )C  test has been widely used as a test statistic (Neyman and 

Scott, 1966; Moran, 1973; Paul, 1982; Tarone, 1985; Barnwal and Paul, 1988; Boos, 1992; Paul 

and Islam, 1992; Islam,1994). The advantages of ( )C  test are; it require estimates only under 

the null hypothesis, it often produces a statistic which is simple to calculate, it has been found 

useful for detecting over-dispersion in binomial and poisson data (Paul et al., 1989; Dean and 

Lawless, 1990). It also often maintains at least approximately, a pre-assigned level of 

significance (Bartoo and Puri, 1967). It is locally asymptotically most powerful test (Bϋhler and 

Puri, 1966; Moran, 1970). 

Two versions of ( )C  tests have been developed for testing the significance of added 

variables in over-dispersed poisson regression and quasi-likelihood model. One version was 

calculated from the usual model based on covariance matrix and the other version was based on 

the empirical covariance matrix that has asymptotic justification. ( )C  tests developed which 

were applicable to more general semi-parametric models were robust to misspecification of mean 
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and variance relation. When the sample size was sufficiently large, the empirical one performed 

well and in small samples, the performance was not good as the model-based test. 

Wald test and likelihood ratio test have potential drawbacks in that wald test required 

estimates of the parameters only under the alternative hypothesis and LR test required estimates 

of the parameters under both null and alternative hypothesis. Thus, this study derived ( )C  tests, 

and computed size and power of ( )C  test statistics and LR test using the simulated data and p-

value using real data. Finally, the performance of ( )C  tests and LR test in terms of p-value, size 

and power of the tests was compared in testing homogeneity of proportions. 

1.2 Statement of the problem 

( )C  test is based on the residual of a regression of the score function for the 

parameter(s) of interest on the nuisance parameters. ( )C  tests are preferred to LR test because

( )C  test has been found to be useful for detecting over-dispersion in binomial and poisson data.

( )C   test derived based on the extended Beta-Binomial model hold nominal level well, but do 

not produce simple forms and also may not be robust when data is from a different distribution. 

( )C  tests derived based on a quasi-likelihood and Extended quasi-likelihood, required estimates 

only under the null hypothesis and it often maintains, at least approximately, a pre-assigned level 

of significance. It is locally asymptotically most powerful and it often produces a statistic which 

is simple to calculate. Therefore, due to this merits the aim of this study was to derive  C  tests 

for testing homogeneity of proportions based on the QL and EQL using the McGBB distribution 

which had not been done and are consistent interms of size and power. 

1.3 Objectives 

1.3.1 General objective 

To test homogeneity of the proportions in presence of over-dispersion based on the new 

Mcdonald Generalized Beta-Binomial Distribution.  
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1.3.2 Specific objectives 

(i) To derive ( )C   tests for testing homogeneity of proportions in presence of over 

dispersion based on the quasi-likelihood and Extended quasi-likelihood using the new 

McGBB distribution. 

(ii) To compare the performance in terms of p-values of the ( )C  tests and LR test for 

testing the homogeneity of proportions in presence of over-dispersion using real data 

based on the new McGBB distribution. 

(iii) To compare the performance in terms of size and power of the LR test and ( )C  tests 

for testing the homogeneity of proportions in presence of over-dispersion through 

simulation using the new McGBB distribution.  

1.4 Assumptions 

(i) The first two moments of the binomial response with some unknown dispersion of the 

semi-parametric procedure is assumed in deriving ( )C  test. 

(ii) This study assumed that the data is binomial over-dispersed. 

(iii) The study assumed that the proportions are homogeneous. 

1.5 Justification 

There has been considerable interest in the derivation of a test statistic that is effective for testing 

the homogeneity of the proportions in presence of over dispersion. In the studies conducted 

previously, researchers have found that ( )C  tests are more efficient than likelihood ratio test and 

wald test in the testing the homogeneity of the proportions. ( )C  tests derived based on a quasi-

likelihood and Extended quasi-likelihood, requires estimates only under the null hypothesis and 

it often maintains, at least approximately, a pre-assigned level of significance. It is locally 

asymptotically most powerful test and it often produces a statistic which is simple to calculate. 

The potential  drawbacks of the LR and Wald tests is that the LR test requires estimates of the 

parameters under both the null and alternative hypothesis and the Wald test requires estimates of 

the parameters only under the alternative hypothesis. The new McGBB distribution has proved to 

perform better than Beta-Binomial distribution in modeling over-dispersed data. Thus, this study 

provided the researchers with a better tests based on the quasi-likelihood and Extended quasi-



4 

 

likelihood using the new McGBB distribution for testing homogeneity of the proportions in 

handling over-dispersion which has not been done. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.2 Overview of testing homogeneity of proportions 

Comparison of homogeneity of proportions of a certain characteristic in several groups is 

an important problem that arise in toxicology, teratology, consumers purchasing behavior, 

alcohol drinking behavior, in studies of dental caries in children and other similar fields. Data 

can be described as follows. Suppose that there are T treatment groups and that the i-th group 

has 
i

k  litters. The proportion responding in the j-th litter of i-th group is

, 1, ... , ; 1, ...,
i j

i

i j

y
j k i T

n
  . where 

i j
n  is the number of trials and 

i j
y  is the number of successes 

in 
i j

n  binary trials. A data set with T  groups can be represented as in Table 1: 

        Table 1: Data set with T  groups 

Groups Proportions 

 

1 

 

2 

. 

. 

. 

i 

. 

. 

. 

T 

1

1

2

2

111 11 2

111 11 2

221 22 2

221 22 2

1 2

1 2

1 2

1 2

. . .. . .

. . .. . .

.. ..

.. ..

.. ..

. . .. . .

. . ..

. . . . . .. . . .

. . ..

. . .. . .

i

i

T

T

kj

kj

kj

kj

i ki i ji

i i j i ki

T T j T kT

T T j T kT

yy yy

nn nn

yy yy

nn nn

yy yy

n n nn

y y yy

n n nn
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These proportions often exhibit extra variation that cannot be explained by a simple 

binomial distribution. In the analysis of these proportions, interest is generally in the estimation 

of the mean or the regression parameters. Therefore, a special case is to compare the proportion 

in a control group with that in a treatment group. The LR test and some non-parametric 

procedures have been developed for testing homogeneity of the proportions. 

( )C  test have been widely used (Neyman and Scott, 1966; Moran, 1973; Paul, 1982; 

Tarone, 1985; Barnwal and Paul, 1988; Boos, 1992; Paul and Islam, 199; Islam, 1994) because 

of its merits compared to LR test and wald test which have potential drawbacks as discussed 

previously in section (1.1).  

Accordind to Neyman and Scott(1966),  C  test was used for testing for an unusual 

distribution of Rare Variants. ( )C  test statistic as a novel approach for testing for the presence 

of mixture of effects across a set of rare variants. Unlike existing LR and Wald test, ( )C  , by 

testing the variance rather than the mean, maintains consistent power when the target set contains 

both risk and protective variants. Through simulations and analysis of case/control data, Neyman 

and Scott(1966) demonstrated that ( )C  test maintains good power relative to existing LR and 

Wald test methods that assess the burden of rare variants in individuals.  

Bartoo and Puri (1967) developed a ( )C  test and showed that, it  maintains at least 

approximately, a pre-assigned level of significance and it is locally asymptotically most powerful 

test for composite hypothesis under the null hypothesis for the case where observable random 

variable  , 1, ...,
n k

Y k n are independently but not necessary identically distributed. 

  Paul and Islam (1992) discussed on LR test and  C  tests based on QL and EQL 

estimating functions using BB distribution in testing homogeneity of proportios in presence of 

overdispersion. Through simulation and use of real data, the results showed that  C  test based 

on quasi-likelihood and Extended quasi-likelihood using BB distribution proved to perform 

better than LR test in that it holds nominal level quite well and had higher empirical powers 

(Paul and Islam, 1992).  C  test also showed that it maintains nominal level most effectively 

and had higher power than LR test when data came from a different distribution. LR test showed 

liberal behaviour when data was from a different distributon. i.e LR test could not maintain the 
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nominal level. Chandbrose et al.( 2013) proved that the new McGBB distribution is superior to 

the BB distribution in handling over-dispersion. Hence, the new McGBB distribution was 

considered in this study.  

The new McGBB distribution is a parametric model obtained by mixing McDonald 

Generalized Beta-Binomial of the first kind and binomial success probability p of binomial 

distribution (Chandbrose et al., 2013). The new McGBB distribution has three shape parameters 

which makes it flexible in handling over-dispersion than the BB distribution. Thus, this study 

considered derivation of the  C  tests based on QL and EQL  using the new McGBB 

distribution which had not been done. This study showed that, the derived ( )C  tests performs 

better than LR test ( i.e hold nominal level well and have higher power) for testing homogeneity 

of the proportions in presence of over-dispersion using McGBB distribution which had not been 

done. 

2.2 m consistent estimators 

Definition: Let  m
 , 1, 2, ...m  be a sequence of estimators of  . If the quantity

m
m  remains 

bounded in probability as m   , then the sequence of estimates 
m

 is called m consistent estimators. 

By using Chebyshev’s inequality, for given 0,   
 

2

var
1

m

m

m
P m


  


    . Then by 

asymptotic properties of  mle and  var
m

 tends to zero as m   , i.e.  
1

var
m

o
m


 

  
 

. Thus, mle is 

m - consistent. 

2.3 Beta distribution 

Let P be a random variable following a Beta distribution with two shape parameters a and

b denoted by ( , ).B a b The probability density of P is given by 

1 1
(1 )

( ; , ) ; 0 1
( , )

a b
P P

f p a b P
B a b

 


    and , 0a b                     

where
 

( , )
a b

B a b
a b

 

 

 denotes a beta function.                                                                    (1) 
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2.4 Beta-Binomial distribution 

The BB distribution is obtained from mixing the binomial probability of success P over a 

Beta distribution defined in (2.3). If ~ ( , )Y P Bin n p and ~ ( , ) ,P Beta a b then the PMF of BB 

distribution is given by 

( , )
( ) ; 0,1, ... ,

( , )

n B y a n y b
P y y n

y B a b

    
  
 

 and , 0 .a b                                                     (2) 

2.5 McDonald Generalized Beta-Binomial Distribution of the first kind 

Let P be a random variable following the McDonald’s Generalized Beta-Binomial 

distribution of the first kind (GB1) with three shape parameters ,  and   (McDonald, 1984; 

McDonald and Xu, 1995). The probability density function of P  is then given by 

1 1
( ; , , ) (1 ) ; 0 1

( , )
f p p p p

B

   
  

 

 
      and , , 0 .                                              (3) 

The t h
s  moment of the McDonald Generalized Beta-Binomial distribution of the first kind is 

given by 

 

,

.

,

s

s
B

E P
s

B

 





 
 

 


 
 
 

                                                                                                               (4) 

The McGBB distribution of the first kind reduces to BB distribution when 1  (Chandrabose et 

al., 2013) 

2.6 The new McDonald Generalized Beta-Binomial distribution 

Generally, a Binomial mixture distribution is obtained through an integration approach. 

Conditional on p, suppose Y follows a Binomial distribution given by Bin (n, P), which is 

denoted by Y/p ∼ Bin (n, P). Unconditional probability mass function of the Y can be obtained by 

evaluating the integral 

 ( ) .
Y Y p P

P y P f p dp                                      (5) 

A random variable Y is said to have the new McGBB distribution with parameters n, α, β and γ if 

and only if it satisfies the following stochastic representation  

Y|p ∼ Bin (n, p) and P ∼ GB1 (α, β, γ)  
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where α, β and γ and are positive real numbers. We denote this distribution as Y ∼ McGBB(n, α, 

β, γ). Some basic properties of McGBB(n, α, β, γ) are given below. 

2.6.1 Properties of the new McDonald Generalized Beta-Binomial distribution 

Let 𝑌 be a discrete random variable that follows the new McGBB distribution then the following 

basic properties of the new  , ,M cG BB    distribution holds (Chandrabose et al., 2013): 

1. The probability mass function of  the new  , ,M cG BB    distribution is given by, 

0

1
( ; , , ) ( 1) ( , 1)

( , )

i

i

n
P y B y i n y

y iB


    

 





   
        
   

            (6) 

where 0,1, ... ,y n  and , , 0.     

2. A rearranged probability mass function of the new  , ,M cG BB    distribution is given 

by, 

0

( ; , , ) ( 1) ,
( , )

n y

j

j

n n y y j
P y B

y jB


    

   





     
        

    
          (7)                                                                                             

where 0, ... ,y n  and , , 0.     

3. The th
S  moment of  the new ( , , )M cGBB    distribution is given by, 

 

,

.

,

s

s
B

E Y n
s

B

 





 
 

 


 
 
 

 

Then the mean and variance of the new  , ,M cG BB    distribution are given by, 

( )E Y n and  var ( ) (1 ) 1 ( 1) ,Y n n      respectively where 
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1
,

1
,

B

B

 







 
 

 


 
 
 

 and 

2

2

2 1
, ,

2 1
, ,

1 1
, ,

1 1
, ,

B B

B B

B B

B B

   
 

 
 



   
 

 
 

      
       

      
      
      

      


      
       

      
      
      

      

                            (8)   

where  is the overdispersion parameter of the new McGBB distribution. 

The new McGBB distribution has been shown to be more flexible than BB distribution 

(Alexander et al., 2012). 

2.7 Likelihood Ratio Test 

Suppose 
 1

, ...,
m

Y Y Y
is a random sample of size m taken from a disribution with pdf 

 ; ,f y 

where 
   1 1

, , ..., , , ...,
k s

       
is a k s component vector. Then the likelihood can be 

given as 
 1

, ..., ,
m

L Y Y 
. It is of interest to test the null hypothesis 

 0 0 10 0
: , ...,

k
H      

treating 
 1

, ...,
s

   
as a nuisance parameter. The likelihood ratio for testing 0

H
 is defined as 

 

 

1 0

1

, ..., , ,

, ..., , ,

m

m

L Y Y

L Y Y

 

 
 

 

Then the log likelihood ratio test is given by  
 1 0

2 2LR n l l    
where 0

l
 is the maximum 

log-likelihood function under 0
H

 and 1
l

 is the maximum log-likelihood function under 

alternative hypothesis. Under the null hypothesis 0
H

, for large m, the statistic LR is distributed 

approximately as a chi-square with k degrees of freedom. 
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2.8 
 C 

 Test 

Suppose  1 2
, , ...,

n
X X X X  is a random sample of size n  taken from a distribution with pdf 

 ; .f X   It is of interest to test 
0 0

:H    verses 
1 1

: .H    Let l  be the log-likelihood of the 

data. The partial derivatives evaluated at 
 0 10 0

, ...,
k

     
are 

 0 01

, ...,

k

l l l


     


   

   
     and 

0 01

, ...,

s

l l l


     


   

   
      

Cramer (1946) has shown that under the null hypothesis and mild regularity conditions,

,
l l

 

  
 
    follows a multivariate normal distribution with mean vector 0 and variance 

covariance matrix 
1

I


, where 

11 12

21 22

I I
I

I I

 
  
  is the Expected Fisher information with elements 

2

11

0

l
I E

  

 
  

    , 

2

12

0

l
I E

  

 
  

    and 

2

22

0

l
I E

  

 
  

    . 

Define 

,
l l

S B
 

 
 
  where B is the partial regression coefficient matrix obtained by 

regressing 

l





 on 

l





 . From Bartlett (1953), 
1

12 22
B I I




 and the variance-covariance matrix of S

is 11.2
I

 where 
1

11.2 11 12 22 21
I I I I I


 

. Thus S is multivariate normal with mean vector 0 and 

variance-covariance matrix 11.2
I

, i.e. 
 11.2

~ 0,S M N I
. Hence following Neyman (1959) 

 

1 2

11.2
~

k
S I S 




. Moran (1970) suggested that when   and unknown nuisance parameter  is 

replaced by m consistent estimator obtained from the data. Following the Neyman (1959) 
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procedure,  

2 1

11.2C
S I S







which is asymptotically distributed with k  degrees of freedom. If the 

nuisance parameter   is replaced by its maximum likelihood estimate (mle)  , then the score 

function S  reduces to  . The 
 C 

 statistic reduces to 
1

11.2
I 




 
(Rao, 1947). The null 

hypothesis 
0

H  is rejected if the computed value of  
2

, r
C


  . where r  is the degrees of 

freedom. 

CHAPTER THREE 

METHODS 

3.1 Data collection 

This study is conducted on the real data (Alanko and Lemmens, 1996). The data is based 

on the numbers of alcohol consumption days in two reference weeks which are separately self-

reported by a randomly selected sample of 399 respondents in the Netherlands in 1983. The 

number of days an individual consumes alcohol Y, out of 7n  days in a reference week can be 

treated as a binomial variable. The probability ,P to consume alcohol on a randomly chosen day 

in a reference week for an individual cannot be treated as a constant in this setup since there is a 

person-to-person variation in the drinking behavior and to drink. This leads to analyzing this data 

using a Binomial mixture distribution by testing homogeneity of proportions for the random 

variable 𝑃 using a continuous distribution bounded in the standard unit interval. This data have 

also been previously used by (Rodrίguez-Avi et al., 2007; Li et al., 2011; Chandrabose et al., 

2013). 

3.2 Simulation 

Simulation study is conducted to investigate the performance of LR test and  C  test 

statistics in terms of size and power for testing homogeneity of the proportions in handling over-

dispersion. The simulated data was generated based on the new McGBB distribution. The 

developed algorithm was used to generate overdispersed Binomial variables (Ahn and Chen, 

1995). In the simulation study, empirical levels were calculated based on 1000 replications for 

each combination of varying values of 
1 2

   0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 
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0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95 and 1.00 and for values

1 2
0.30     and 

1 2
1      parameters were chosen. For power, varying values of

2
  0.22, 0.24, 0.26, 0.28, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.61, 0.62, 0.63, 0.64, 0.65, 

0.66, 0.67, 0.68, 0.69, 0.70, 0.71, 0.72, 0.73, 0.74 and 0.75 was considered. For each value of
2
,

empirical powers were calculated for
1 2

0.70     and
1 2

1.      The open source 

statistical software R (version 3.1.1) was used in this study to simulate data. 

3.3 Data analysis 

The size and power of both LR test and  C  tests were obtained using simulated data 

and p-values using real data. Since this study intended to determine better based on QL and EQL 

using the new McGBB distribution, the performance of LR test and  C  tests was analysed 

using both real data and the simulated data. Analysis for both the real data and simulated data 

was done using a R statistical package. Analysis was such that, programs for computation of 

both size and power for LR test and  C  tests were developed. Comparison was done based on 

the p-values, size and power computed for both the LR test and  C  tests. Based on the results, 

recommendations was given on the better test that was appropriate for testing homogeneity of the 

proportions in presence of over dispersion parameter. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Introduction 

        This chapter displays the derivation and findings for LR test and  C  tests interms of p-

value for real data and size and power for the simulated data. A detailed discussion of the results 

is given based on observation on the tables displayed. The results are given  interms of p-value 

for real data and size and power for the simulated data. Tables 2, 3 and 4 display results for p-

value, size and power respectively. Results for p-values were obtained using the Rodrίguez-Avi 

et al. (2007) real data set and are displayed in table 2. The displayed figure 1 and 2 display the 

size and power respectively for both LR and  C  tests for the simulated data. The procedures 

for the displayed results can be replicated by running the subroutines displayed in the 

appendices. 

4.2 Derivation of  C  tests for testing the homogeneity of the proportions 

4.2.1 The  C   test statistic based on the quasi-likelihood(
Q L

C ) 

          The Quasi-likelihood (Wedderburn, 1974) is based on the knowledge of the first two 

moments of the random variable 
y

z
n

  where y is the number of successes in n binary trials, n  

is the number of trials and   is the over-dispersion parameter. 

 
(1 )

( ) , var ( ) 1 ( 1) , 0 1E z z n
n

 
  


        and  

1
1.

1n


 
  

 
 

This specification of mean and variance coincides with those based on the new McGBB model. 

The Quasi-likelihood for an observation z with the above mean and variance is given by 

   

( )
( , , ) ,

1 1 ( 1)z

z t n
Q z dt

t t n



 





  
  integration by partial fraction becomes 
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 
 

0

1 (1 )
( , , ) log ( ) log 9

1 ( 1) (1 )

n

i

Q z y n y
n z z

 
 



   
      

      


 

where 

1
,

1
,

B

B

 







 
 

 


 
 
 

 and 
 

var( )
1

1

1

y

y
y

n

n


 
 

 
  

  
  




              

Define    1 2 3
, , , , .        Then let , 1, ..., 1,

i

Q
i T




   


 

and , 1, 2, 3.
k

k

Q
k




 


 

To make things simple we assume homogeneity of proportions and under this assumption 

we wish to test the hypothesis
0 1

: ...
T

H    against 
1

:H  
1

...
T

   . Now, let  be some 

m  consistent estimator of  under the null hypothesis. Then the  C  test is based on 

         1 1 2 2 3 3
, 1, ..., 1

i i i i i
S i T                 where 

1 2
,

i i
  and 

3 i
 are the 

partial regression coefficients of 
i

 and
1

 , 
i

 and
2

 and 
i

 and
3

 respectively. The variance-

covariance matrix of       1 1
, ...,

T
S S S  




 is 1

D AB A


  and the regression coefficients

 
1

1 2 3
, , AB   


  where  1 11 1 1

, ..., ,
T

  


  2 21 2 1
, ..., ,

T
  


  3 31 3 1

, ...,
T

  


 . 

, , 1, ..., 1.
i t

i t

Q
D E i t T

 

 
   

  

 

1, ..., 1,

1, 2, 3.
i k

i k

i TQ
A E

k 

   
  

   
 

 

, , 1, 2, 3.
k s

k s

Q
B E k s

 

 
  

  
 
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Using  in , ,S A B and ,D  the  C  test is given by  
1

1
,S D AB A S




  which is approximately 

distributed as chi-square with 1T  degrees of freedom.    

Using the Quasi log-likelihood (9) and taking partial derivatives, we obtain 

  

 
   

0

1 1 1

11 1

n

y

n yQ
y

n


         

   

       
               

           
       (10) 

  

 
 

0

1 1

11 1

n

y

n yQ
y

n


     

  

     
          

         
          (11) 

  

 
2 2

0

1 1 1

(1 )1 1

n

y

n yQ y

n


    

     

       
            

           
                                       (12) 

Maximum quasi-likelihood estimates of  , , .    are obtained by equating (10), (11) and 

(12) to zero and solving simultaneously. Denote the estimates by ˆ .
QL

 The second derivatives of 

Q  are given below 

  

 
 

 

 
   

2

2

0

2

2

1 1 1 1

11 1

1 1

1

n

y

n yQ
y

n

n y


         

    


         

 



         
                     

            

       
                     



 

                     (13) 

  

 
 

 

 

 

2

22

0

2

1 1

11 1 1

1

n

y

n y n yQ
y

n

 
     

   

     




       
                         

  
     
   



      (14) 

  

 

 

 

 

 

 

2

22 4 4 4
0

2

3 3

1 1 1

11 1 1

21 1 2 1 1

1

n

y

n y n yQ y

n

n yny

 
    

       


           

      



         
                             

           
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where  .  and  .  are digamma and trigamma functions respectively. 

Expectations of the minus the second derivatives are given below, 
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 Denote the Quasi-likelihood estimates of  , ,    by
QL

 . If 
QL

 is used in , ,S A B and ,D  

which is m consistent estimates of  under the null hypothesis, then    Q L Q L
S    . Then 

the quasi-likelihood score or the  C  test is 
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4.2.2  The  C   test statistic based on the Extended quasi-likelihood(
EQ L

C ) 

The extended quasi-likelihood( Nelder and Pregibon, 1987) can be used for the 

simultaneous estimation of the  , , .     The extended quasi-log-likelihood for an 

observation z with mean and variance specified is 
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The Extended quasi-log-likelihood for the data under consideration, then is 
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     (27)

 

where C is term not involving the parameters. Define    1 2 3
, , , , .        Then let 

, 1, ..., 1
i

Q
i T






   


 and , 1, 2, 3.
k

k

Q
k
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


 
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Using  in , ,S A B and ,D the  C  test is given by  
1

1
,S D AB A S




  which is approximately 

distributed as chi-square with 1T   degrees of freedom.
 

The unbiased estimating equations for  , , .    obtained from Q
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       (30) 

Maximum extended quasi-likelihood estimates of  , , .    are obtained by solving (28), (29) 

and (30) simultaneously. Denote the estimates by ˆ
EQL

 The second derivatives of Q


are given 

below 
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Expectations of the minus the second derivatives are given below, 
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Denote the Extended Quasi-likelihood estimates of  , ,    by
EQ L

 . If 
EQL

 is used 

in , ,S A B and ,D which is m consistent estimates of  under the null hypothesis, then

   EQ L EQ L
S    . Then the quasi-likelihood score or the  C  test is 

 
1

1
.

EQL
C D AB A




                  (43) 

Note that under the null hypothesis the parameters ,   and   are common across 

groups. In this study we consider 2T   groups. So the estimation of ,   and   from the T 

groups can be considered to be estimation from a single group consisting of the combined data in 
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the T groups. The critical region (Rejection region) is obtained if the null hypothesis 
0

H  is 

rejected if the computed value of ,
Q L

LR C and 
2

,E Q L r
C


 . where r  is the degrees of freedom. 

4.3 Likelihood Ratio test 
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The new McGBB log-likelihood is given by;
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The likelihood ratio test is defined as 

 1 0
2LR l l                  (45) 

where 
0

l  is the maximum log-likelihood function under the null hypothesis and 
1

l  is the maximum log-

likelihood function under the alternative hypothesis. The LR statistics under the null hypothesis is 

distributed asymptotically chi-square with  1T  degrees of freedom. 

4.4 Summary 

The new McGBB distribution proved to perform better than BB distribution in modeling 

over-dispersed binomial data and also gave a better fit to model over-dispersed data. Therefore, 

the aim of this study was to derive better test statistics (  C  test) for testing homogeneity of 

proportions based on the QL and EQL using the McGBB distribution which had not been done. 

Size and power of  C  test statistics and LR test was computed using the simulated data and p-

values using real data set, i.e. alcohol consumption data. Finally, the performance of  C  tests 

and LR test in terms of p-values, size and power of the tests in testing homogeneity of 
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proportions were compared to determine a better test which had not been done using the McGBB 

distribution. 

4.5 Real Data Results 

The computation of  p-values for  LR and  C  tests of alcohol data is given in table 2 below. 

Table 2: Testing homogeneity of proportions results of alcohol consumption data 

Number of Drinking Days  0 1 2 3 4 5 6 7 Total 

Observed frequency(Week 1) 47  54  43  40  40 41  39 95   399 

Observed frequency(Week 2) 42  47  54  40  49 40  43  84   399 

LR test                       1.59581 

DF     3 

P-value     0.33966 

Q L
C test    0.25335 

DF     3 

P-value     0.03145 

EQ L
C test    0.25435 

DF     3 

P-value  0.03163   

       

          The data set in Table 2 was used by Alanko and Lemmens (1996), Rodriguez-Avil et al 

(2007) and Chandrabose et al.( 2013) in the study of handling over-dispersion. It shows the 

number of days an individual consumes alcohol in two reference weeks which are separately 

self-reported by a randomly selected sample of 399 respondents in the Netherlands in 1983. The 

number of days an individual consumes alcohol Y, out of 7n  days. For this data sets, the p-

values for LR test,
 Q L
C test and 

EQ L
C test are given in Table 2. As summarized in table 2, the 

results for LR test value is 1.59581 and  C   tests values are 0.25335
QL

C   and 0.25435
QL

C 

of alcohol consumption data. The p-value in the LR test (0.33966) is noticeably larger than those 
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for both 
Q L

C test (0.03145) and 
EQ L

C test (0.03163). This indicates that for any good test should 

have the smallest p-value. Therefore, based on these results, this study concludes that the 

proposed  C  tests provide better test to test for homogeneity of proportions in presence of 

over-dispersion than LR test. The 
Q L

C test is the best having the smallest p-value (0.03145). 

4.3 Empirical levels (Size) 

The computation of  Empirical levels results and graph comparison for LR test and  C  tests 

for the simulated data sets is represented in table 3 and figure 1. Empirical level is the probability 

of rejecting the null hypothesis when the null hypothesis is true. 
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Table 3: Empirical levels ; 0.05   ; based on 1000 simulated data sets for
1 2

0.3       , 

1 2
1       and  

1 2
   varied 

Estimated Empirical levels  

    
1 2

  varied                LR Test                   
EQ L

C Test              
Q L

C  Test 

        0.10          0.044         0.046    0.048 

        0.15          0.046        0.044   0.046 

        0.20          0.042        0.042   0.046 

        0.25          0.029        0.048   0.048 

        0.30          0.038        0.045   0.041 

        0.35          0.027               0.039   0.044 

        0.40          0.022        0.048   0.049 

        0.45          0.023        0.046   0.050 

        0.50          0.038        0.057   0.052 

       0.55          0.099        0.043   0.049 

       0.60          0.129        0.046   0.049 

       0.65          0.085        0.054       0.045 

       0.70          0.101        0.038   0.044 

       0.75          0.076        0.047   0.050 

       0.80          0.058        0.049   0.049 

       0.85          0.073        0.052   0.050 

       0.90          0.058        0.042   0.041 

       0.95          0.051        0.056   0.049 

       1.00          0.065        0.054   0.048 

 

           Generally, the results given in table 3 show that, for all varying values of 
1 2

  the 

 C  tests 
Q L

C and 
EQ L

C  show conservative behaviour i.e the empirical levels are closer to 0.05 

unlike the LR test. For small 
1 2

  (
1 2

   0.10, 0.15 and 0.20) the LR and the  C  tests 

show some conservative behavior which is near 0.05, otherwise all the test statistic produce 
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consistent empirical levels close to the nominal level (0.05). At 
1 2

   (
1 2

   0.55, 0.60, 

0.65, 0.70 and 0.75), the LR test is not consistent and hence it show nonconservative behavior 

and produce empirical levels(0.099, 0.129, 0.085, 0.101 and 0.076) that are far away to the 

nominal level, this is because LR test require estimates on both the null and alternative 

hypothesis. The  C  tests 
Q L

C and 
EQ L

C are consistent and produce empirical levels very close 

to the nominal level while LR test show nonconservative behavior hence the  C  tests are 

preferred since they require estimates only under the null hypothesis. The performance of the 

 C  test is better than LR test in that it is consistent, holds nominal level quite well and also 

has a simple form. Hence, a good test should have empirical levels being 0.05 or very close to 

0.05. 

Figure 1 below represent the  graph comparison on empirical level for LR, 
Q L

C and 
EQ L

C  test for 

1 2
  varied 
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From figure1, is evident that the 
Q L

C and 
EQ L

C test are consistent and tries to maintain the 

nominal level (0.05) well for all varying values of 
1 2

  and show conservative behavior. In 

general, LR test fails to maintain the empirical level near 0.05. 

4.4 Empirical Power 

This subsection represents the  computation of  Empirical Power results and graph comparison for  

LR test and  C  tests for the simulated data sets as given in table 4 and figure 2 respectively. 

Empirical power is the probability of correctly rejecting the null hypothesis. 

Figure 1: Plot of empirical level  comparison for 
Q L

C  test, 
EQ L

C  test and LR test under McGBB 

model for varied
1 2

    and for  values of 
1 2

0.30     and
1 2

1      for all 

procedures. 

 



28 

 

Table 4: Empirical Power; 0.05  ; based on 1000 simulated data sets for
1

0.20  , 

1 2
0.70      , 

1 2
1     and 

2
  varied 

Estimated Empirical Power  

       2
 varied           LR Test         

EQ L
C Test     

Q L
C  Test 

            0.22          0.058        0.156      0.165 

            0.24          0.071        0.189      0.247 

            0.26          0.108        0.231      0.340 

            0.28          0.125        0.285      0.381 

            0.30          0.147        0.341      0.452 

            0.35          0.270        0.505      0.554 

            0.40                                  0.350        0.581           0.672 

            0.45          0.522        0.662      0.748 

            0.50          0.664        0.716      0.803 

            0.55          0.698        0.775      0.856 

            0.60          0.857        0.824      0.886 

            0.61          0.879        0.919      0.895 

            0.62          0.910        0.932      0.966 

            0.63          0.925        0.952      0.974 

            0.64          0.942        0.953      0.975 

            0.65          0.956        0.964         0.975 

            0.66          0.968        0.967      0.977 

            0.67          0.970        0.972      0.979 

            0.68          0.981        0.977      0.986 

            0.69          0.982        0.983      0.989 

            0.70          0.987        0.992      0.992 

            0.71          0.989        0.992      0.993 

            0.72          0.990        0.994      0.995 

            0.73          0.992        0.998      0.996 

            0.74                                  0.996        0.998      0.998 

            0.75          0.998        0.999      0.999 
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         Generally, for the results given in table 4, for
2

 (
2

  0.22, 0.24, 0.26, 0.28, 0.30, 0.35, 

0.40, 0.45 and 0.50), the power of the LR test is to some extent smaller than those of the other 

two tests 
Q L

C and 
EQ L

C .
 

 C  tests show higher power than LR test hence they are consistent 

and better tests preferable, as they require estimates of the parameters only under the null 

hypothesis. 
Q L

C
 
is the best for all varying values of 

2
 with the highest empirical power. The 

studies carried out on  C   test for example the study by Paul and Islam (1992) proved the 

superiority of  C   test in testing for homogeneity of proportions in presence of over-dispersion 

than LR test using BB distribution. They showed that,  C   tests based on QL and EQL 

estimating function were consistent and had higher power than LR test but 
Q L

C  test was the best. 

Thus, this study echo this findings and show that  C   tests based on QL and EQL estimating 

functions are superior than LR test since they hold the nominal level well have higher empirical 

power. 

Figure 2 represent the  graph comparison on empirical power for LR, 
Q L

C and 
EQ L

C  test for 
2



varied. 
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           From figure 2, is evident that the 
Q L

C and 
EQ L

C test are consistent for all varying of 
2



with higher empirical power than LR test hence  C  tests are preffered. 
Q L

C test have highest 

empirical power and consistent for all varying value of 
2

 . As the varying value of 
2

 increases 

Figure 2: Plot of empirical power comparison for 
Q L

C  test, 
EQ L

C  test and LR test under 

McGBB model for varied  
2

  and for values of 
1 1 2

0.20, 0.70       and  

1 2
1     for all procedures. 

.  
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for fixed value of 
1

0.20,   the empirical power increases for all the test. 
Q L

C test shows to be 

consistent and having the highest power for varying values of
2

 hence the best test.  

          Maximum likelihood estimates (mle’s) of the parameters under the null and alternative 

hypothesis were obtained by maximizing log-likelihood of McGBB distribution (44) using the R 

package subroutine. The quasi-likelihood and Extended quasi-likelihood estimates of the 

parameters under the null hypothesis were obtained by maximizing the Quasi log-likelihood (9) 

and Extended Quasi log-likelihood (27) using the R package subroutine. 
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CHAPTER FIVE 

SUMMARY, CONCLUSION AND RECOMMENDATION 

5.1 Introduction 

This section gives the summary of the findings of research and conclusion of the study. 

The conclusion is given based on each specific objective given in this study. Recommendations 

for further study and areas of application of the study based on the results are also given. 

5.2 Summary and Conclusion 

In this work, the  C  tests based on Quasi-likelihood and Extended Quasi-likelihood 

estimating functions procedures have been derived for testing homogeneity of proportions. 

Performance evaluation measures empirical level (size) and the empirical power were obtained 

for the simulated data. The comparison of the tests based on empirical level and empirical power 

is as given in table 3 and 4 respectively. Based on the results from the table 3 and 4 and figure 1 

and 2,  C  tests performs better and are consitent than LR test since they holds nominal level 

quite well and have higher empirical power. The 
Q L

C test is the best since it shows the highest 

conservative behavior and the highest empirical power. As for the real data set i.e. alcohol 

consumption, it can be seen in Table 2, the p-value in the LR test is noticeably larger than those 

for both 
Q L

C  and 
EQ L

C tests. Hence  C  tests are consistent and preferable. 

5.3 Recommendation and Further Research 

This study has investigated the size and power of LR test and  C  tests based on quasi-

likelihood and Extended quasi-likelihood using the new McGBB distribution. The derived  C 

tests have proved to maintain the nominal level well and have higher power than the LR test. 

Hence,  C  tests are recommended for testing homogeneity of proportions in presence of over-

dispersion. 

Future research may consider  robustness study for the size and power of this three test. 

i.e. LR, 
Q L

C  and 
EQ L

C  test when data come from other over/under-dispersed binomial 

distribution such as Probit Normal Binomial (PNB) distribution and Logit Normal Binomial 
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(LNB) distribution. Secondly, the performance of  C  test for testing homogeneity of 

proportions under equal dispersion parameter was investigated using a simulation study for two 

groups. A simulation study is suggested to investigate the effect of unequal dispersion on 

inferences concerning the proportions for two groups. Thirdly, a simulation study is suggested to 

investigate the effect of equal or unequal dispersion on inferences concerning the proportions for 

more than two groups. 

5.4 Application 

This work has much application in family studies, where it can be used to measure the 

degree of intra-family resemblance with respect to blood group, weight, height and also in the 

investigation of hereditability traits that are either continuous or discontinuous between 

generations (e.g, prostate cancer patient and eye defects within family trees). In a medical setup, 

we may want to model the percentage of patients who have successfully undergone a particular 

medication procedure. We may want to assess whether the success proportions are equal among 

a number of hospitals. Given the existence of some un-predetermined excess variation among the 

different hospitals, the information obtained would have a lot on policy implications.  

This work may also be applied in surveys of consumption of a product or services for a 

small time frame, like one described in section 3.1; or any other types of behavior reporting in a 

short restrospective time period, such as the consumer purchasing behavior on products or 

services.   

This work may also be applied in the agricultural set-up. For example, in Kenya, bee 

farming can be improved based on the knowledge from this distribution. One may access forage 

preferences in the different kinds of bees (bees that live in hives, ant-holes and tree barks in 

forests). We may be interested in investigating the behavior of bees among different colour of 

flowers and modeling the pattern of visitation as a random movement. This will be a test that will 

be used to advise farmers on the colour of flowers to plant depending on the kinds of bees reared 

in their farms.  
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APPENDICES 

Appendix A: Size and Power of the LR test 

############### simulation of McGBB distribution ##############   

dMcGBB<-function(x){           

        j<-0:(n-x)    

              term<-sum(((-1)^j)*(choose(n-x,j))*(beta(((x/c)+a+(j/c)),b))) 

                  return(choose(n,x)*(1/beta(a,b))*term) 

  } 

G<-1000 

jj<-0 

for (ii in 1:G){   

matfre<-matrix(0,3,n+1) 

matpar<-matrix(c(0.8,0.5,1,0.4,0.3,1),2,byrow=TRUE) 

            for (l in 1:2){ 

    a<-matpar[l,1] 

    b<-matpar[l,2] 

    c<-matpar[l,3] 

            pj<-rep(0,7) 

  for (k in 1:8)  pj[k]<-dMcGBB(k-1) 

  qj<-c(1/8,1/8,1/8,1/8,1/8,1/8,1/8,1/8) 

  N<-500 

  Xobs<-rep(0,N) 

  for (i in 1:N){  

         u2<-4; d<-2 

         while(u2>d){         

                 u1<-runif(1); u2<-runif(1) 

                 y<-trunc(8*u1)+1 
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                 d<-pj[y]/0.22} 

                 Xobs[i]<-y-1             

       } 

    matfre[l,]<-table(Xobs)  

   } 

   matfre[3,]<-matfre[1,]+matfre[2,] 

f1<-matfre[1,] 

f2<-matfre[2,] 

f3<-matfre[3,] 

matfreq<-matrix(c(f1,f2,f3),3, byrow=TRUE)    

matest<-matrix(0,3,3) 

################ McGBB Negative Log Likelihood ##############    

library(bbmle) 

alpha<-0.05 

MGenBetaBinNLL<-function(a,b,c,fre,n){ 

    density<-c() 

    for( i in 0:n){ 

      j <- 0:(n-i) 

       term<-sum(((-1)**j)*(choose(n-i,j))*(beta(((i/c)+a+(j/c)),b))) 

       vector.density<-choose(n,i)*(1/beta(a,b))*term 

       density[i+1]<-vector.density 

     } 

 

    MGBBLL<-sum(fre*log(density)) 

    return(-MGBBLL) 

  } 

veclogs<-rep(0,3) 
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for (k in 1:3){ 

     frequency<-matfreq[k,] 

   #### Estimates of the parameters of McDonald Generalized BETA-BINOMIAL ######## 

     est<-mle2(MGenBetaBinNLL, start=list(a=0.7,b=0.5,c=1), data=list(fre=frequency, n=7))      

     a1<-summary(est)@coef["a","Estimate"] 

     b1<-summary(est)@coef["b","Estimate"] 

     c1<-summary(est)@coef["c","Estimate"] 

     matest[k,]<-c(a1,b1,c1) 

     veclogs[k]<-MGenBetaBinNLL(a1,b1,c1,frequency,n=7)} 

lambda<--2*(veclogs[1]+veclogs[2]-veclogs[3]) 

if (lambda>=qchisq(1-alpha,3)){R<-1}else{R<-0} 

if (R==0){jj<-jj}else{jj<-jj+1}  

print(ii)} 

jj/G 

Appendix B: Size and Power of   C  test based on Quasi-likelihood 

####simulation of McGBB distribution   

dMcGBB<-function(x){              

        j<-0:(n-x)   

                  term<-sum(((-1)^j)*(choose(n-x,j))*(beta(((x/c)+a+(j/c)),b))) 

                  return(choose(n,x)*(1/beta(a,b))*term) 

  } 

G<-1000 

jj<-0 

for (ii in 1:G){   

matfre<-matrix(0,3,n+1) 

matpar<-matrix(c(0.2,0.7,1,0.22,0.7,1),2,byrow=TRUE) 

            for (l in 1:2){ 

    a<-matpar[l,1] 
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    b<-matpar[l,2] 

    c<-matpar[l,3] 

            pj<-rep(0,7) 

  for (k in 1:8)  pj[k]<-dMcGBB(k-1) 

  qj<-c(1/8,1/8,1/8,1/8,1/8,1/8,1/8,1/8) 

  N<-200 

  Xobs<-rep(0,N) 

  for (i in 1:N){  

         u2<-4; d<-2 

         while(u2>d){ 

                 u1<-runif(1); u2<-runif(1) 

                 y<-trunc(8*u1)+1 

                 d<-pj[y]/0.22} 

                 Xobs[i]<-y-1 

       } 

    matfre[l,]<-table(Xobs)  

   } 

   matfre[3,]<-matfre[1,]+matfre[2,] 

f1<-matfre[1,] 

f2<-matfre[2,] 

f3<-matfre[3,] 

matfreq<-matrix(c(f1,f2,f3),3, byrow=TRUE)    

# Quasi Negative Log Likelihood     

library(bbmle) 

alpha<-0.05 

QLNLL<-function(a,b,c){ 

    n<-7 

  pii<-(beta(a+b,1/c))/(beta(a,1/c))           

  y0<-rep(0:7,f3) 

  ybar<-mean(y0) 

  aa<-which(y0==0 | y0==7) 
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  y<-y0[-aa] 

  phi<-(var(y0)/(ybar*(1-ybar/n))-1)/(n-1) 

    Z<-y/n 

           term<-y*log(pii/Z)+(n-y)*log((1-pii)/(1-Z)) 

       QL<-sum((1/(1+(n-1)*phi))*term)    

    return(-QL) 

  } 

#### Estimates of the par of Quasi-Likelihood 

     est<-mle2(QLNLL, start=list(a=0.037,b=0.195,c=5)) 

#### C-alpha test declarations 

     a2<-summary(est)@coef["a","Estimate"] 

     b2<-summary(est)@coef["b","Estimate"] 

     c2<-summary(est)@coef["c","Estimate"] 

## C(alpha) test based on Quasi-likelihood 

    n<-7 

  pii<-(beta(a+b,1/c))/(beta(a,1/c))           

  y<-rep(0:7,f3) 

  ybar<-mean(y) 

  phi<-(var(y0)/(ybar*(1-ybar/n))-1)/(n-1) 

    S<-  

  D<-B11 

  A<-matrix(c(A11, A12, A13), 1, byrow=”TRUE” ) 

 B<-matrix(c(B11, B12, B13, B21, B22, B23, B31, B32, B33), 3, byrow=”TRUE”) 

 lambda<-t(S)*solve(D-A*solve(B)*t(A))*(S) 

if (lambda>=qchisq(1-alpha,3)){R<-1}else{R<-0} 

if (R==0){jj<-jj}else{jj<-jj+1}   

print(ii)} 

jj/G 
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Appendix C: Size and Power of   C  test based on Extended Quasi-likelihood 

#### simulation of McGBB distribution   

dMcGBB<-function(x){              

        j<-0:(n-x)   

                  term<-sum(((-1)^j)*(choose(n-x,j))*(beta(((x/c)+a+(j/c)),b))) 

                  return(choose(n,x)*(1/beta(a,b))*term) 

  } 

G<-1000 

jj<-0 

for (ii in 1:G){   

matfre<-matrix(0,3,n+1) 

matpar<-matrix(c(0.2,0.7,1,0.22,0.7,1),2,byrow=TRUE) 

            for (l in 1:2){ 

    a<-matpar[l,1] 

    b<-matpar[l,2] 

    c<-matpar[l,3] 

            pj<-rep(0,7) 

  for (k in 1:8)  pj[k]<-dMcGBB(k-1) 

  qj<-c(1/8,1/8,1/8,1/8,1/8,1/8,1/8,1/8) 

  N<-200 

  Xobs<-rep(0,N) 

  for (i in 1:N){  

         u2<-4; d<-2 

         while(u2>d){ 

                 u1<-runif(1); u2<-runif(1) 

                 y<-trunc(8*u1)+1 

                 d<-pj[y]/0.22} 

                 Xobs[i]<-y-1 

       } 

    matfre[l,]<-table(Xobs)  

   } 
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   matfre[3,]<-matfre[1,]+matfre[2,] 

f1<-matfre[1,] 

f2<-matfre[2,] 

f3<-matfre[3,] 

matfreq<-matrix(c(f1,f2,f3),3, byrow=TRUE)    

# Extended Quasi Negative Log Likelihood 

    library(bbmle) 

alpha<-0.05 

EQLNLL<-function(a,b,c){ 

    n<-7 

  pii<-(beta(a+b,1/c))/(beta(a,1/c)) 

  y0<-rep(0:7,f3) 

  ybar<-mean(y0) 

  aa<-which(y0==0 | y0==7) 

  y<-y0[-aa] 

  phi<-(var(y0)/(ybar*(1-ybar/n))-1)/(n-1) 

    Z<-y/n 

           term<-(2/(1+(n-1)*phi))*(y*log(pii/Z)+(n-y)*log((1-pii)/(1-Z))) 

       EQL<-(1/2)*sum(log(1+(n-1)*phi)+term) 

    return(-EQL) 

  } 

   # Estimates of the par of Quasi-Likelihood 

     est<-mle2(EQLNLL, start=list(a=0.037,b=0.195,c=24))  

     a2<-summary(est)@coef["a","Estimate"] 

     b2<-summary(est)@coef["b","Estimate"] 

     c2<-summary(est)@coef["c","Estimate"] 

## C(alpha) test based on Extended Quasi-likelihood 

    n<-7 

  pii<-(beta(a+b,1/c))/(beta(a,1/c))           

  y<-rep(0:7,f3) 

  ybar<-mean(y) 
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  phi<-(var(y)/(ybar*(1-ybar/n))-1)/(n-1) 

    S<-  

  D<-B11 

  A<-matrix(c(A11, A12, A13), 1, byrow=”TRUE” ) 

 B<-matrix(c(B11, B12, B13, B21, B22, B23, B31, B32, B33), 3, byrow=”TRUE”) 

 lambda<-t(S)*solve(D-A*solve(B)*t(A))*(S) 

if (lambda>=qchisq(1-alpha,3)){R<-1}else{R<-0} 

if (R==0){jj<-jj}else{jj<-jj+1}   

print(ii)} 

jj/G 

 

## Graphs for Empirical levels comparison for  C  tests and LR test 

require(stats) 

xlab.names<-expression(alpha) 

main.names<-expression(paste("(a) Empirical Levels of C(QL) test, C(EQL) test and LR test 

based on 1000 simulated data sets")) 

win.graph() 

par(mfrow=c(1,2)) 

ylim1<-seq(0,0.2,0.05) 

values<-c(0.1, 0.15, 0.20, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 

0.95, 1) 

EMPIRICAL.LEVELS1<-c(0.048, 0.046, 0.046, 0.048, 0.041, 0.044, 0.049, 0.050, 0.052, 0.049, 

0.049, 0.045, 0.044, 0.050, 0.049, 0.050, 0.041, 0.049, 0.048) 

EMPIRICAL.LEVELS2<-c(0.044, 0.046, 0.042, 0.029, 0.038, 0.027, 0.022, 0.023, 0.038, 0.099, 

0.129, 0.085, 0.101, 0.076, 0.058, 0.073, 0.058, 0.051, 0.065) 

EMPIRICAL.LEVELS3<-c(0.046, 0.044, 0.042, 0.048, 0.045, 0.039, 0.048, 0.046, 0.057, 0.043, 

0.046, 0.054, 0.038, 0.047, 0.049, 0.052, 0.042, 0.056, 0.054) 

plot(values,EMPIRICAL.LEVELS1,col=4,lwd=2,lty=1,type="l",pch=15,xlim=c(0.1,1),ylim=c(0

,0.2),font.main=3, cex.main=0.9,xlab=xlab.names,ylab="Empirical Levels", main=main.names) 

lines(values,EMPIRICAL.LEVELS2,col=6,lwd=2,lty=2,type="l",pch=16,xlim=c(0.1,1),ylim=c(

0,0.2),xlab=xlab.names,ylab="Empirical Levels") 
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lines(values,EMPIRICAL.LEVELS3,col=11,lwd=2,lty=3,type="l",pch=17,xlim=c(0.1,1),ylim=c

(0,0.2),xlab=xlab.names,ylab="Empirical Levels") 

legend("topleft",inset=.05,col = c(4, 6, 11),lwd=2,pch=c(15,16,17),lty=c(1,2),cex=0.8, title="", 

c("C(QL) test","LR test","C(EQL) test"),horiz=F) 

 

## Graphs for Empirical powers comparison for  C   tests and LR test 

xlab.names<-expression(alpha) 

main.names<-expression(paste("(b) Empirical powers of C(QL) test, C(EQL) test and LR test 

based on 1000 simulated data sets")) 

values1<-c(0.22, 0.24, 0.26, 0.28, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.61, 0.62, 0.63, 0.64, 

0.65, 0.66, 0.67, 0.68, 0.69, 0.70, 0.71, 0.72, 0.73, 0.74, 0.75) 

EMPIRICAL.POWERS1<-c(0.165, 0.247, 0.34, 0.381, 0.452, 0.554, 0.622, 0.748, 0.803, 0.856, 

0.886, 0.895, 0.966, 0.974, 0.975, 0.975, 0.977, 0.979, 0.986, 0.989, 0.992, 0.993, 0.995, 0.996, 

0.998, 0.998) 

EMPIRICAL.POWERS2<-c(0.058, 0.071, 0.108, 0.125, 0.147, 0.270, 0.350, 0.522, 0.644, 

0.698, 0.857, 0.879, 0.910, 0.925, 0.942, 0.956, 0.968, 0.970, 0.981, 0.982, 0.987, 0.989, 0.990, 

0.992, 0.996, 0.998) 

EMPIRICAL.POWERS3<-c(0.126, 0.189, 0.231, 0.285, 0.341, 0.508, 0.581, 0.662, 0.716, 

0.775, 0.824, 0.919, 0.932, 0.952, 0.953, 0.964, 0.967, 0.972, 0.977, 0.983, 0.992, 0.992, 0.994, 

0.998, 0.998, 0.999) 

plot(values1,EMPIRICAL.POWERS1,col=4,lwd=2,lty=1,type="l",pch=17,xlim=c(0.22,0.75),yli

m=c(0,1),font.main=3,cex.main=0.9,xlab=xlab.names,ylab="EmpiricalPowers",main=main.nam

es) 

lines(values1,EMPIRICAL.POWERS2,col=6,lwd=2,lty=2,type="l",pch=18,xlim=c(0.3,0.75),yli

m=c(0.15,1),xlab=xlab.names,ylab="Empirical Powers") 

lines(values1,EMPIRICAL.POWERS3,col=11,lwd=2,lty=3,type="l",pch=19,xlim=c(0.3,0.75),yl

im=c(0.15,1),xlab=xlab.names,ylab="Empirical Powers") 

legend("topleft",inset=.05,col = c(4, 6, 11),lwd=2,pch=c(17,18, 19),lty=c(1,2),cex=0.8, title="", 

c("C(QL) test","LR test","C(EQL) test"),horiz=F) 


