POTENTIAL ASSOCIATION BETWEEN TSETSE FLY AND ITS ENDOSYMBIONTS IN B-VITAMINS BIOSYNTHESIS

KEVIN KAMAN YI MARUCHA SM14/3050/11

A Thesis Submitted to the Graduate School in Partial Fulfilment for the Requirements of the award of the Master of Science Degree in Biochemistry of Egerton University

> EGERTON UNIVERSITY AUGUST, 2014

DECLARATION AND RECOMMENDATION

DECLARATION

I hereby declare that this research thesis is my original work and has not been submitted wholly or in part to any institution for award of any degree.

Kevin Kamanyi Marucha Reg No. SM14/3050/11

Signature	
	_

Date _____

RECOMMENDATION

This thesis has been submitted with our approval as supervisors for examination according to Egerton University regulations.

Dr. Vincent A. Owino Egerton University

Signature _____

Date _____

Dr. Paul Mireji Yale University, School of Public Health

Signature	

Date _____

COPYRIGHT

This thesis is copyrighted, and should not be reproduced without the consent of the owner, or Egerton University.

©Kevin Kamanyi Marucha

DEDICATION

To Daniel Marucha

ACKNOWLEDGEMENT

I thank the almighty God for giving me health of body and mind to finish this research, I can barely complain. I thank Him for the ideas, corrections, inspirations, motivation etc.

I also thank my supervisors Dr. Vincent Owino Adung'a and Dr. Paul Mireji for their guidance. I thank Dr. Adung'a for sponsoring my laboratory work and showing me how to write well. Thank you all for recommending me for many training opportunities.

Many thanks also to all my fellow students at Egerton and *icipe*. You all helped me do my research with ease.

I thank Dr. Daniel Masiga of *icipe* for facilitating my work in his molecular biology and bioinformatics department. I would not have reached this far without your continued support throughout this period. Thank you for always being concern about my progress and for the many good recommendations.

I also thank the World Federation of Scientists (WFS) for awarding me the fellowship that enabled me to do this research comfortably. I thank ISCB and ASBCB for awarding me a travel fellowship to the ISCB Africa ASBCB Conference on Bioinformatics March, 2013 held in Morocco and short listing me to present part of this work in the conference.

Also important is the collaboration I got first, from Prof. Serap Aksoy, Dr. Brian Weiss and Dr. Jingwen Wang of Yale University School of Public health. I thank you for providing me with the transcriptomes I used in this study and for other resources that you made available at my disposal. Second, from Dr. Grace Murilla of Kenya Agricultural Research Institute – Trypanosoma Research Centre (KARI-TRC) for providing me with tsetse flies. God bless you all.

ABSTRACT

Tsetse flies are the cyclical vectors of African trypanosomes, flagellated protozoa parasites that cause sleeping sickness in man and nagana in cattle, diseases collectively known as African trypanosomiasis. Vector reduction and chemotherapy are the main strategies for controlling trypanosomiasis but their limitations necessitate improvement of current and/or development of novel methods. Tsetse has three maternally transmitted bacterial endosymbionts namely Wigglesworthia, Sodalis and Wolbachia which are potential targets in developing paratransgenesis control approaches. Wigglesworthia is thought to provide Bvitamins to its host, but its B-vitamins biosynthesis pathways are incomplete while those for tsetse remain unknown. Using the recently published Glossina morsitans morsitans genome, bioinformatics approach was applied to annotate tsetse B-vitamins and cofactors biosynthesis enzymes. Homology based searches, protein domain architecture interrogations, comparative and RNA seq analyses, polymerase chain reaction (PCR) amplification and sequencing were performed for annotation and interrogation of possible tsetse-endosymbiont interaction. Thirty four genes encode 26 enzymes involved in biosynthesis of B-vitamins namely thiamine, riboflavin, niacin, folate, pantothenate, pyridoxine and their resultant cofactors. Vitamins biosynthesis pathways are incomplete, a phenomenon also observed in insects and humans. However, cofactors biosynthesis pathways are complete in all the organisms analyzed. Notably, integration of tsetse-endosymbionts systems gives complete or near complete pathways suggesting potential association. Moreover, expression of these enzymes depends on availability of endosymbionts, and presence of vitamin transporters in both organisms support association at biochemical level. This association can be through integrated biosynthetic pathways that involve import/export transporters of metabolic intermediates and sharing of final products for cofactor biosynthesis. Therefore, one of the possible bases of the symbiotic association of tsetse and its endosymbinots is B-vitamins biosynthesis.

TABLE OF CONTENTS

DECLARATION AND RECOMMENDATION	ii
COPYRIGHT	iii
DEDICATION	iv
ACKNOWLEDGEMENT	v
ABSTRACT	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	X
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS AND ACRONYMS	xii
CHAPTER ONE	1
INTRODUCTION	1
1.1 Background information	1
1.2 Statement of the problem	3
1.3 Objectives	4
1.3.1 General objective	4
1.3.2 Specific objectives	4
1.4 Hypotheses	4
1.5 Justification	4
CHAPTER TWO	5
LITERATURE REVIEW	5
2.1 Trypanosomiasis and African trypanosomes	5
2.1.1 Human African trypanosomiasis (HAT)	6
2.1.2 Animal African trypanosomiasis (AAT)	7
2.2 Tsetse control	7
2.2.1 Insecticides	7
2.2.2 Traps and targets	8
2.2.3 Push-pull method	8
2.2.4 Sterile insect technique (SIT)	8
2.2.5 Paratransgenesis	9
2.3 Tsetse biology	9
2.3.1 Life cycle of tsetse fly	
2.3.2 Tsetse fly feeding	
2.4 The tsetse genome	

2.5 Tsetse fly endosymbionts	12
2.5.1 Wigglesworthia glossinidia	14
2.5.2 Sodalis glossinidius	15
2.5.3 Wolbachia pipientis	16
2.6 Vitamins and cofactors biosynthesis	16
2.6.1 Thiamine and thiamine pyrophosphate	16
2.6.2 Riboflavin, flavin adenine dinucleotide (FAD) and flavin mononucleotide	e (FMN)
	18
2.6.3 Nicotinamide adenine dinucleotide (NAD)	19
2.6.4 Pantothenate and coenzyme A	20
2.5.5 Pyridoxine and pyridoxal phosphate	21
2.5.6 Biotin	23
2.5.7 Folate and tetrahydrofolate	24
2.7 Vitamins and cofactors biosynthesis in tsetse symbionts	25
CHAPTER THREE	29
MATERIALS AND METHODS	29
3.1 The genome sequence of Glossina morsitans morsitans	29
3.2 Transcriptome data for annotation and gene expression	29
3.3 Identification of global ortholog genes	29
3.4 Homology search for Glossina B-vitamins and cofactors biosynthesis genes	30
3.5 Comparative analysis	30
3.6 Gene modelling	31
3.7 Assignment of enzyme commission numbers	31
3.8 Expression analyses	32
3.9 Gene validation	32
3.9.1 Extraction of DNA	33
3.9.2 Polymerase chain reaction	33
3.9.3 Gel extraction of PCR products	34
3.9.4 Gene cloning using pGEM [®] -T Easy vector	35
3.9.5 Recombinant plasmid purification, sequencing and analysis	35
CHAPTER FOUR	37
RESULTS	37
4.1 Global vitamin and cofactor biosynthesis pathways	37
4.2 Global domain organization in B-vitamins and cofactors biosynthesis enzymes	40

4.3 Glossina B-vitamins and cofactors biosynthesis pathway	
4.4 Domain structure of <i>Glossina</i> enzymes	
4.5 Gene validation	
4.6 Comparison between <i>Glossina</i> B-vitamins and cofactors biosynthesis enzyn	
their orthologs	
4.7 Vitamin transport proteins	
4.8 Differential expression of <i>Glossina</i> B-vitamins and cofactors biosynthesis enzy	
CHAPTER FIVE	
DISCUSSION	
5.1 Annotation of <i>Glossina</i> genes involved in B-vitamins and cofactors biosynthesi	
5.2 Insects exhibit incomplete B-vitamin biosynthesis pathways	60
5.3 Possible association between Glossina and its endosymbionts in B-	
biosynthesis	62
5.4 Hypothetical model for tsetse-endosymbiont interaction	64
5.5 Potential utilization of tsetse-endosymbiont biomolecular interaction	66
CHAPTER SIX	68
CONCLUSIONS AND RECOMMENDATIONS	68
6.1 Conclusions	68
6.2 Recommendations	68
REFERENCES	70
APPENDICES	80
Appendix 1: Grinding buffer	
Appendix 2: Transformation media and reagents	
Appendix 3: Figure A1	
Appendix 4: Table A1. Percentage identities between the sequenced and annotate	
	-
Appendix 5: Alignment of isoenzymes	
SUPPLEMENTAR Y DATA	
Table S1: Experimentally validated orthologs in B-vitamins and cofactors biosynth	
Table S1: Experimentary valuated of thologs in B-vitamins and coractors biosynth Table S2: Domain organization of orthologs	
Table S3: Physicochemical properties of orthologs	

LIST OF TABLES

Table 1. List of genes, primer sequences, annealing temperatures (Tm), extension	n time (X_t)
and target product size	
Table 2. List of Glossina genes and their respective enzymes involved in	B-vitamins
biosynthesis	46

LIST OF FIGURES

Figure 1. Tsetse fly distribution in Africa
Figure 2. Life cycle of a tsetse fly11
Figure 3. Association of tsetse fly and endosymbionts
Figure 4. Thiamine and thiamine pyrophosphate biosynthesis pathway
Figure 5. Riboflavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD)
biosynthesis
Figure 6. De novo and salvage biosynthesis of nicotinamide adenine dinucleotide (NAD)20
Figure 7. Coenzyme A biosynthesis in bacteria
Figure 8. De novo biosynthesis and salvage of pyridoxine and pyridoxal phosphate (PLP)22
Figure 9. Biotin biosynthesis
Figure 10. Folate and tetrahydrofolate biosynthesis
Figure 11. An overview of cofactors biosynthesis in Wigglesworthia
Figure 12. An overview of Sodalis glossinidia metabolic pathways including B-vitamins and
cofactors biosynthesis pathways27
Figure 13. Complementary DNA (cDNA) mapping on a gene model
Figure 14. Integrated pathways for vitamins and cofactors biosynthesis across insects,
bacteria, plants, yeast and man
Figure 15. Domain architecture for orthologs involved in B-vitamin and cofactor biosynthesis
pathways43
Figure 16. Domain architecture of Glossina enzymes for B-vitamins and cofactors
biosynthesis
Figure 17. Agarose gel image showing DNA bands of amplified genes
Figure 18. Comparison of B-vitamins and cofactors biosynthesis enzymes in insects, free-
living bacteria, endosymbionts, plants, yeast and humans
Figure 19. Domain architecture of Sodalis and Glossina transport proteins
Figure 20. Differential expression level of enzymes in Glossina
Figure 21. An illustration of the interaction between a Glossina cell and cytoplasmic
endosymbionts in biosynthesis of B-vitamins and cofactors

LIST OF ABBREVIATIONS AND ACRONYMS

AAT	Animal African trypanosomiasis
BLAST	Basic local alignment search tool
CoA	Coenzyme A
DDT	Dichlorodiphenyltrichloroethane
DNA	Deoxyribonucleic acid
EDTA	Ethylenediaminetetraacetic acid
FAD	Flavin adenosine dinucleotide
FMN	Flavin mononucleotide
НАТ	Human African trypanosomiasis
ICIPE	International centre of insect physiology and ecology
IPTG	Isopropyl β -D-1-thiogalactopyranoside
LB	Luria-Bertani
Mbp	Mega base pairs
NAD	Nicotinamide adenosine dinucleotide
NCBI	National center for biotechnology information
NGS	Next generation sequencing
ORF	Open reading frame
PCR	Polymerase chain reaction
PLP	Pyridoxal phosphate
RNA	Ribonucleic acid
RPKM	reads per kilobase pair per million reads
rpm	Revolutions per minute
SDS	Sodium dodecyl sulphate
THF	Tetrahydrofolate
TPP	Thiamine pyrophosphate
X-Gal	5-bromo-4-chloro-3-indolyl- β -D-galactopyranoside

CHAPTER ONE

INTRODUCTION

1.1 Background information

Tsetse flies (Diptera: Glossinidae) are vectors of African trypanosomes, flagellated parasites that cause diseases termed African trypanosomiasis. The disease is called sleeping sickness (human African trypanosomiasis, HAT) in man and Nagana (animal African trypanosomiasis, AAT) in cattle. The vector is found in 37 countries in Africa, where approximately 70 million people and 60 million cattle are at risk of the disease (FAO, 2013). About 30,000 actual cases of HAT are reported annually with a disability adjusted life years (DALY) of 1.35 million (Fèvre et al., 2008; Simarro et al., 2011). However, recent data reports only 7,139 new cases (Simarro et al., 2011) which is a decline from previous numbers. This is possibly an underestimation due to geopolitical instability, technical, infrastructural deficiencies in some affected regions and limitation in diagnosis (Odiit et al., 2005; Berrang, 2007). Nagana on the other hand causes over 3 million cattle deaths annually (FAO, 2013). Further, the disease reduces milk and meat production, animal for draught power and manure (Shaw, 2009). With the disease affecting both man and his livestock, it prevents both crop and livestock keeping resulting into total agricultural loss of approximately 4.75 billion US dollars annually (FAO, 2013). Despite such huge impact, the disease is among the most neglected tropical disease (NTDs), with the available drugs limited by chemotoxicity and resistance (Anene et al., 2001; Kennedy, 2006). Therefore, there is an urgent need for improvement of current and/or development of novel control and diagnostic strategies.

The main control strategies for African trypanosomiasis are chemotherapy and blocking of parasite transmission through tsetse fly vector control. In chemotherapy, the drugs applied include pentamidine, suramin, melasoprol and effornithine, and have been in use since 1950s and currently suffer from resistance (Balasegaram *et al.*, 2009). In addition, melasoprol is cytotoxic, causing 5% deaths in patients (Kennedy, 2006). No new drug is in the pipeline because it is an unattractive market for pharmaceuticals due to poor economic ability of the affected people. Vaccine development is not feasible due to the systematic and periodic change of surface coat by the parasite, a phenomenon termed antigenic variation.

Various vector control approaches have been applied with some success. These include sterile insect technology (SIT), traps and targets, insecticides and the push-pull method. In

1995 *Glossina austeni* was successfully eliminated from Unguja island of Zanzibar using sterile male tsetse flies (Vreysen *et al.*, 2000). However, this approach requires a geographically isolated population to prevent reinvasion of cleared lands, hence has limited application in mainland (Politi *et al.*, 1995). Use of insecticides such as dichlorodiphenyltrichloroethane (DDT) is labour intensive, affects non-target insects and is not environmentally friendly. In addition, resistance to insecticides have rendered methods like push-pull and targets ineffective. In general, all these methods require community participation, awareness and resources, which are seldom assured (Politi *et al.*, 1995). Together, there is urgent need for improvement of current and/or development of novel control strategies.

Tsetse flies harbour bacterial symbionts, a feature that can be exploited for development of novel symbiont-based control approaches (Aksoy, 2003). These symbionts are bacteria that have coevolved with the host to benefit each other. They include primary obligate symbiont of genus Wigglesworthia (Aksoy, 1995), secondary symbionts of genus Sodalis (Dale and Maudlin, 1999) and Wolbachia, which is not always found in all tsetse fly species (Doudoumis et al., 2012). Recent demonstration of importance of some of the endosymbiont in tsetse fly survival (Pais et al., 2008) and possibilities of generating transgenic endosymbionts expressing trypanocidal factors (Medlock et al., 2013) makes symbiont based vector control methods worth investigating further. Notably, transgenic Sodalis glossinidius can be used as a paratransgenesis model because of its ability to grow in culture (Beard et al., 1993). It can then be propagated into the tsetse population using the cytoplasmic incompatibility of Wolbachia (Medlock et al., 2013). This technique is promising but has not been implemented due to the challenge of obtaining paratransformed progeny of the fly and maintaining the paratransformed flies alive for long. In addition, insight into tsetseendosymbiont interactions at molecular and biochemical level remains unknown or limited. Improved knowledge on these interactions will permit development of endosymbionts as stable control method.

Tsetse flies are entirely blood feeders - hematophagous. Their restricted diet indicates alternative sources of components deficient in the blood such as vitamins (Edwards *et al.*, 1957). Vitamins are the building blocks of many cofactors, which are essential components of enzymes. In tsetse, vitamins and symbionts have been shown to have a role in fecundity, growth and digestion (Nogge, 1976). In another study, antibiotic treated tsetse flies become aposymbiotic and experience reduced fecundity, growth rate, immunity and digestion of

blood meal (Pais *et al.*, 2008). However, a blood meal supplemented with B vitamins (B1, B5, B6, folic acid and biotin) partially restores the fly's ability to reproduce indicating endosymbiont role in vitamin supply and/or metabolism (Pais *et al.*, 2008) hence a potential interaction. However, the molecular and biochemical aspect of this relationship remains poorly understood, and is the focus of this study.

Recent symbionts genome projects (Akman et al., 2002; Toh et al., 2006; Rita et al., 2012) have shown massive reduction in genes coding for enzymes involved in biosynthesis of vitamins and cofactors in endosymbionts. Various studies clearly demonstrate the importance of endosymbiont in survival of tsetse fly and other insects, with the gene reduction indicating high possibility of integration of insect-endosymbiont metabolic processes (Nogge, 1976; Shigenobu et al., 2000; Gil et al., 2003; van Ham et al., 2003; Pais et al., 2008). Snyder et al. (2010) suggested that *Wigglesworthia* synthesizes thiamine used by both tsetse fly and Sodalis. However, this remains speculative since vitamin metabolism genes in tsetse fly are unknown and some vitamins and cofactors biosynthesis pathways of endosymbionts lack essential enzymes as compared to the free-living bacteria E. coli. Therefore, using all possible orthologs from bacteria, plants and animals, and the recently available Glossina morsitans morsitans genome sequence, bioinformatics tools were applied in identification and annotation of B-vitamin and cofactor metabolism factors. In addition, tsetse-endosymbiont interaction in vitamin and cofactor metabolism was determined by applying transcriptomics techniques including RNA seq. This analysis suggests involvement of tsetse fly in B-vitamins and cofactors biosynthesis pathways by encoding biosynthesis enzymes including those missing in endosymbionts. In addition, general upregulation of these biosynthesis enzymes in the absence of the obligate endosymbiont Wigglesworthia collectively indicate potential molecular and biochemical interaction between tsetse fly and endosymbionts.

1.2 Statement of the problem

The knowledge in vector-endosymbiont interaction is poor, despite the potential application of this interaction in development of novel control strategies for African trypanosomiasis. This necessitates investigation of tsetse fly systems involved in vitamin and cofactor biosynthesis as well as the role of endosymbionts in metabolism and/or provision of these biomolecules. Currently the molecular and biochemical aspects of this association remain speculative since fly metabolic processes remain unknown and therefore the need to investigate it by utilizing the available *Glossina morsitans morsitans* and endosymbiont genomes.

1.3 Objectives

1.3.1 General objective

To determine the association between *Glossina morsitans morsitans* and its endosymbionts in vitamins and cofactors biosynthesis.

1.3.2 Specific objectives

- 1. To determine the genes that code for the enzymes involved in biosynthesis of vitamins and cofactors in *G. m. morsitans*.
- 2. To determine the role of endosymbionts in expression of genes involved in vitamins and cofactors biosynthesis in *G. m. morsitans*.

1.4 Hypotheses

- 1. There are no genes that code for enzymes that participate in biosynthesis of vitamins and cofactors in *G. m. morsitans*.
- 2. There is no role of endosymbionts in the expression of *G. m. morsitans* vitamins and cofactors biosynthesis genes.

1.5 Justification

Tseste-transmitted African trypanosomes are of major clinical and veterinary importance, hence investigation into biomolecular aspects of tsetse-endosymbiont interaction for development of transmission blockage tools with potential application in control and management of trypanosomiasis is important because of the following reasons. Firstly, chemotherapy is the only other available main line control strategy but is limited by chemoresistance and cytotoxicity, hence there is urgent need for improvement of available and/or development of novel vector control strategies. Secondly, transmission blockage will significantly eliminate the fundamental role of mammalian reservoir hosts including economically important livestock kept by man in epidemiology of the disease, specifically preventing re-infections. Finally, a strategy specific to vector that is environmentally friendly with limited interference with local ecosystem, which the endosymbiont paratransgenesis approach potentially provides, is much needed. In addition, this approach can be applied in other insect borne vector diseases affecting man, livestock and plants.

CHAPTER TWO

LITERATURE REVIEW

2.1 Trypanosomiasis and African trypanosomes

African trypanosomes (genus *Trypanosoma*) are flagellated parasites that cause sleeping sickness (human African trypanosomiasis, HAT) in man and Nagana (animal African trypanosomiasis, AAT) in cattle. The parasites are transmitted by tsetse flies (genus *Glossina*), the insect vector that facilitates the cyclical transmission of trypanosomes. Tsetse flies are restricted to 37 countries in sub-Saharan Africa, where the disease is also endemic (figure 1).

Figure 1. Tsetse fly distribution in Africa. A map of Africa showing the sub-Saharan regions infested by tsetse flies (red), in which African trypanosomiasis is endemic. The black line separates regions where *Trypanosoma brucei gambiense* and *Trypanosoma brucei rhodesiense*, the parasites responsible for Gambian and Rhodesian HAT respectively. The dots represent the approximate cattle distribution, and the whole region has about 70 million inhabitants. This image was adopted from 'International atomic energy agency (IAEA) website - http://www.iaea.org/newscenter/features/tsetse/index.shtml

2.1.1 Human African trypanosomiasis (HAT)

Sleeping sickness is caused by two subspecies of *Trypanosoma brucei*. *Trypanosoma b. rhodesiense* causes acute form of the disease in East and southern Africa – Rhodesian HAT, while *T. b. gambiense* causes chronic form of the disease in West and Central Africa – Gambian HAT (figure 1) (Holmes, 2013). About 70 million people live in the tsetse belt (figure 1), where there is an estimated 30,000 actual cases of HAT annually (Simarro *et al.*, 2011). New infections reported are on the decline from 9,878 in 2009 to 7,139 in 2010 (Simarro *et al.*, 2011), but this is possibly an underestimation due to geopolitical instability, technical and infrastructural deficiencies in some affected regions and limitation in diagnosis (Odiit *et al.*, 2005; Berrang, 2007). The countries experiencing geopolitical instability include Democratic Republic of Congo (DRC), Angola, Sudan, South Sudan and Uganda (Berrang, 2007).

The two forms of HAT have two clinically distinct stages namely stage 1/early and 2/late. The early stage is when the parasites are localized in the blood and lymph and is characterized by non-specific signs including skin lesions, chancre, pruritus, and cardiac, endocrine, and gastrointestinal problems. Subsequently, the parasites invade the central nervous system (CNS) (stage 2) and is characterized by more serious neurological problems such as tremors, motor weakness, walking difficulties, sensory disorders, visual impairments, headache and sleep disturbances that subsequently deteriorate into coma and eventually death if untreated (Fèvre *et al.*, 2008).

Treatment of both stages is distinct and is associated with cytotoxicity. Suramin is used in treatment of early stage disease; it may cause pyrexia and mild nephrotoxicity, kidney damage, nausea, vomiting, shock, exfoliative dermatitis, severe diarrhoea, and jaundice. Melarsoprol is used to treat late stage HAT because of its ability to cross the blood brain barrier, but it is associated with severe post-treatment reactive encephalitis (PTRE) in 10% of the treated patients of which 50% die due to toxicity (Kennedy, 2006). Side effects of melarsoprol include liver toxicity, severe enterocolitis, fatigue, arthralgia, myalgia and fever, pruritus, urticaria and gastrointestinal reactions, and heart failure. Effornithine also used for late stage treatment of Gambian HAT may cause convulsions, gastrointestinal reactions, bone marrow toxicity resulting in anaemia, leucopenia, thrombocytopenia and alopecia, fatigue, arthalgia, dizziness, insomnia, fever, headache, and anorexia. These treatment regimens are further limited by drug resistance (Anene *et al.*, 2001) and together with devastating side

effects, some resulting to death, there is need for improvement of current and/ or development of novel control strategies including vector control.

2.1.2 Animal African trypanosomiasis (AAT)

Nagana is caused by *T. vivax*, *T. congolense* and *T. brucei* species. *Trypanosoma simiae* is responsible for the disease in pig while *T. evansi* cause surra disease in camels. AAT causes reduced milk and meat production, poor growth rates, reduced calving rates, draught power and manure production (Shaw, 2009). In addition, approximately 50 million cattle are at risk of infection with 3 million deaths occurring annually (FAO, 2013). Since the disease makes the affected areas inhabitable and therefore no economic activities can be undertaken particularly agriculture, the total agricultural loss in terms of Gross Domestic Product is approximately 4.75 billion US dollars per year (FAO, 2013). However, with the disease affecting man hence limiting his other economic activities, in addition to underestimation of infected individuals due to infrastructural and technical limitations (Odiit *et al.*, 2005; Berrang, 2007), the approximated economic impact is most likely a huge underestimate.

2.2 Tsetse control

Because of the limitations of chemotherapy (drug resistance and toxicity) and impossibility to develop vaccines due to parasite antigenic variation, vector control has been a preferred alternative (Aksoy, 2003). The adult fly is an accessible target for control since the eggs and the larva are hidden in the female reproductive organs and the pupa development occurs entirely in the soil.

Old methods for controlling tsetse flies were based on elimination of game-reservoir hosts of the parasite, clearing of bush to destroy tsetse breeding sites and creation of fly barriers (Aksoy, 2000) but majority were dropped because of their detrimental effect on the environment (Dransfield *et al.*, 1991). Other methods include use of insecticides, traps and targets, sterile insect technique (SIT) and push-pull method.

2.2.1 Insecticides

This involves spraying of residual insecticides like DDT, dieldrin and endosulfan on tsetse infested fields (Wellde *et al.*, 1989) using helicopters. The insecticides kill the tsetse flies over a long period of time. Non-residual insecticides are also used because of their reduced negative effect on the environment as a result of their short half-lives. Aerosolized insecticide sprays mainly target adult flies. The spraying cycles are separated by 16-18 days depending on the temperature (Allsopp and Hursey, 2004) and since the droplets remain suspended in

the air long enough, they kill even emerging flies in subsequent cycles before they start reproducing. Although the method is successful (Kgori *et al.*, 2006), it is not suitable because of a number of reasons, such as it is labour intensive, vector resistance to insecticides, non-target killing of beneficial insects and environmentally unfriendly through pollution causing health risk to spraying workers and the general population (Vreysen *et al.*, 2013).

2.2.2 Traps and targets

Both traps and targets attract tsetse flies and eventually kill them. Traps have blue and black coloured cloths that attract tsetse flies. In addition, they have attractants including cattle urine and other chemical attractants such as chloroform. Once on the trap, the flies are directed to a non-return cage where they die of heat or starvation (Brightwell *et al.*, 1991). Targets on the other hand attract the flies and kill them by tarsal contact with insecticides impregnated on the surface of the target (Vale, 1993). These techniques are considered inexpensive and unsophisticated, but are not suitable for use in large areas and for long term (Kappmeier and Nevill, 1999).

2.2.3 Push-pull method

Push-pull method uses a chemical repellent (push) on cattle and an attractant (pull) in a trap thus directing the tsetse away from the cattle towards baited traps and targets where they are killed by insecticide, heat or starvation (Hassanali *et al.*, 2008). This method integrates the use of insecticides, chemical repellants and traps which are methods, as already seen, with individual limitations hence making push-pull method also limiting.

2.2.4 Sterile insect technique (SIT)

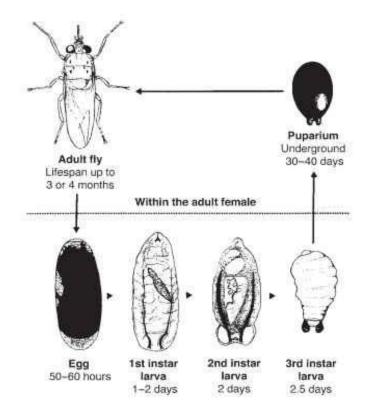
Sterile insect technique is a biological control method that uses irradiated male tsetse flies that are sterile and exploits the fact that females only mate once in their lifetime. Therefore if they mate with a sterile male, the female will not sire offspring thus reducing the tsetse population. This eventually clears their population and reduces transmission of trypanosomes. In 1995, *Glossina austeni* was successfully eliminated from Unguja island of Zanzibar using sterile male tsetse flies and resulted in complete elimination of trypanosomiasis in this geographically isolated area (Vreysen *et al.*, 2000). On the mainland, however, this approach requires area-wide participation in order to be effective, as well as geographically isolated populations to prevent reinvasion of cleared lands (Politi *et al.*, 1995). Importantly, the

success of this approach in Zanzibar increases the hope of successfully using biological control method in other endemic regions.

2.2.5 Paratransgenesis

Paratransgenesis is a technique that exploits transformed endosymbiont of tsetse fly for the control of trypanosomiasis. The availability of an *in vitro* culture system for *Sodalis glossinidius* has allowed the use of this commensal symbiont of *Glossina* for the development of a genetic transformation system to introduce and express foreign gene products in tsetse fly (Beard *et al.*, 1993). Its localization in the fly tissues such as the mid gut makes it suitable for use to deliver trypanocidal agents and vaccines (Hooper and Gordon, 2001) that directly target the trypanosomes.

In vitro transformed *S. glossinidius* are then microinjected into the hemolymph of the tsetse fly and are passed on to F1 generation as well as their offspring while successfully expressing the foreign gene product (Cheng and Aksoy, 1999). These paratransgenic females subsequently maintain infections with recombinant *Sodalis* that continuously express their transgene throughout the life of the fly. Current and future studies include developing methods to increase the stability of transgene expression over time, and identifying novel and effective trypanocidal effector molecules to use in the system (Medlock *et al.*, 2013). In addition, improved knowledge on tsetse-endosymbiont-parasite interactions is needed.


2.3 Tsetse biology

The tsetse flies belong to the superfamily *Hippoboscoidea* of Diptera which contains four families; *Glossinidae*, *Hippoboscidae*, *Streblidae* and *Nycteribiidae* (Petersen *et al.*, 2007). The family *Glossinidae* has only one member (*Glossina*) unlike the other three families in this clade. The genus *Glossina* has 23 species and 8 sub species. These are categorized into three groups named based on the ecological niche they occupy namely *fusca* for forest niche, *morsitans* for savannah niche and *palpalis* for river niche. Common members of *fusca* include *G. fusca fusca*, *G. schwetzi*, *G. brevipalpis* and *G. longipennis*. The *fusca* group inhabit the evergreen forests of west Congo and other than *G. brevipalpis*, other members of this group have no medical or veterinary significance (Leak, 1999). Those of *palpalis* group include *G. p. palpalis*, *G. fuscipes fuscipes* and *G. p. gambiensis*. This group is the vector of *T. b. gambiense* and *T. b. gambiense* that cause HAT. Lastly, those in *morsitans* group that occupy the savannah woodlands include *G. longipalpis*, *G. m. morsitans*, *G. swynnertoni* and *G. Austeni*, and are the major vectors of *T. b. brucei* which causes Nagana.

2.3.1 Life cycle of tsetse fly

Tsetse flies reproduce by adenotropic viviparity (they give birth to a live offspring) and they produce only 8-10 offspring in their 3-4 months lifespan (Attardo *et al.*, 2006a). Female flies usually mate only once in their lifetime then stores the sperms in their spermathecae whereas male flies are promiscuous and can mate many times.

In the female fly, eggs are released periodically from the ovaries and are fertilized. Following fertilization, the egg hatches into a larva which is then retained in utero and is nourished on milk secretion from the mother's modified accessory glands until the third instar stage (Attardo et al., 2012). During this feeding process, nutrients along with the tsetse symbionts are transmitted to progeny through the mother's milk gland secretions (Attardo et al., 2006b). The larva is then deposited on soft moist shaded soil approximately 16 days after fertilization (9 days after subsequent fertilizations). The larva never feeds but immediately burrows itself into the soil and pupates within 1-2 hours. This is in contrast to other insects' larvas that feed extensively and store plenty of food before pupating. Therefore, all the nutrients required from the embryo to adult tsetse are derived from the mother (Tobe and Langley, 1978). The adult fly emerges 22-60 days later in a temperature dependent fashion; the warmer the temperatures, the shorter the time it takes for the adult to emerge and the vice versa (Leak, 1999). The offspring female for most Glossina species becomes sexually mature 48-72 hour after eclosion (emerging of adult from puparium) while the males take several days (Leak, 1999). Oogenesis seems to be regulated by the presence of a developing larva in the uterus and it takes 6-7 days to complete (Leak, 1999; Attardo et al., 2006a). Upon ovulation, sperms from the spermathecae fertilize the egg and the cycle begins again. An overview of the life cycle is shown in figure 2.

Figure 2. Life cycle of a tsetse fly. The egg of mature female is fertilized and develops *in utero* into a 1st followed by a 2nd instar larva. The 3rd instar larva is deposited into the ground and develops into a pupa. Subsequently, the pupae mature into an adult fly and the cycle begins again. This image was obtained from "Tsetse flies (insects), http://what-when-how.com/insects/tsetse-fly-insects/"

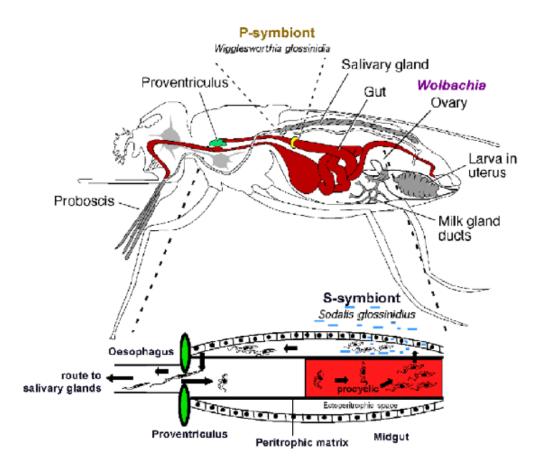
2.3.2 Tsetse fly feeding

The tsetse has a limited food variety with the young larva depending on the milk secretions only and the adult fly on blood only. The emerged fly usually has some food reserves from its previous stage, but it immediately looks for a blood meal before it can mate (Tobe and Langley, 1978). The exclusive tsetse fly blood diet is deficient in vitamins (Edwards *et al.*, 1957) and this necessitates the fly to supplement its diet possibly from its microbial endosymbionts (Aksoy and Rio, 2005).

The adult tsetse flies are pool feeders and the female can obtain a blood meal weighing several times its own weight. The flies repeatedly penetrate the mammalian host tissue with their proboscis forming a pool of blood on the skin sub-surface from where they suck. Saliva is usually channelled into the wound to prevent the host blood from coagulating on site and this enables the fly to feed longer and it is during this event that an infected fly transmits

(Lehane, 2005) and uninfected fly acquires trypanosomes from infected mammalian host. Unlike the malaria vector, both male and female tsetse flies are obligate hematophages.

Tsetse larva is solely dependent on the nutrients from the mother's milk. This milk is rich in lipids and proteins and is the route of transmission of the bacteria endosymbionts to the larva in the intrauterine stage (Attardo *et al.*, 2012). Since the larva feeds solely on this milk, it is possible that it obtains some of its nutrients from these microbes. Tsetse larva does not feed when it is deposited by the mother like other insects do, but pupates almost immediately implying that all the nutrients it gets from the milk secretions solely originates from the mother's blood meal and possibly the endosymbionts it harbours. Though a blood meal is deficient in nutrients that the tsetse fly requires for its normal physiology, it is possible that the fly supplements this deficiency from the endosymbiont is harbours.


2.4 The tsetse genome

Initial studies have shown that the genome size of *Glossina* species vary from 500-600 Mbp (Aksoy *et al.*, 2005a) which is approximately 4 times that of *Drosophila melanogaster* (116.8Mbp) (Misra *et al.*, 2002) and twice that of the malaria vector *Anopheles gambiae* (278Mbp) (Holt *et al.*, 2002). This comparison places *Glossina* at the top and this large genome may provide answers to its unique life cycle and phenotype; the peculiar features include its viviparous reproduction, milk secretion, free-living and obligate hematophagy lifestyle. Notably, tsetse fly is the only insect known to feed its young one on milk, a characteristic of mammalian lifestyle (Attardo *et al.*, 2012). These peculiar characteristics merit *Glossina* a different attention when comparing it to other insects.

2.5 Tsetse fly endosymbionts

Insects that rely on one type of meal (such as wood, plant sap or blood) throughout their life often obtain supplement nutrients absent in their core meals by biosynthesis or from microbial symbionts (Douglas, 1989). Symbionts are organisms that a host organism lives with so that the two benefit from each other. Endosymbionts are symbionts that live inside their host and in tsetse flies, the bacterial symbionts implicated are *Wigglesworthia glossinidia*, *Sodalis glossinidius* and *Wolbachia pipientis* (figure 3), and are thought to be the source of vitamins in the fly (Pais *et al.*, 2008).

Intracellular endosymbiont are described as primary (P) because they are required for survival and fecundity of the host. Secondary (S) endosymbionts are facultative bacterial endosymbionts of insects that are often located in syncytial cells near the bacteriocytes and in various other insect tissue types. They are not essential for host survival and transfer among host individuals and species (Wernegreen, 2002).

Figure 3. Association of tsetse fly and endosymbionts. Intracellular structure of female tsetse fly showing location of various endosymbionts. The primary (P)-symbiont *Wigglesworthia* is found in the bacteriome, an organ in the anterior mid gut. Secondary (S)-symbiont *Sodalis* is found in the gut and hemolymph while *Wolbachia* is in the reproductive tissues. Extracellular forms of *Wigglesworthia* and *Sodalis* are also found in the milk secretions from the milk gland. *Sodalis* associates very closely with trypanosomes in the gut as shown in the enlarged section of the midgut. The image was adopted from Aksoy *et al.* (2005).

Wigglesworthia glossinidia and *S. glossinidius* are members of *Enterobacteriaceae* family. *Wigglesworthia glossinidia* is a primary symbiont and it resides inside special epithelial cells called bacteriocytes that make up a U-shaped organ called bacteriome in the anterior gut. It is also found in an extracellular form in the milk secretion (Aksoy and Rio, 2005). *Sodalis glossinidius* is a secondary symbiont and it resides in the mid gut cells (Dale and Maudlin, 1999). The third organism is *Wolbachia pipientis* (O'Neill *et al.*, 1993) and it belongs to the *Rickettsiaceae* family (Doudoumis *et al.*, 2012). Unlike the first two, it is not found in all tsetse species and is found in many other insects like fruit fly, wasps and bees. *Wigglesworthia glossinidia* and *S. glossinidius* are transferred to the offspring via the milk-gland secretions where as *Wolbachia pipientis* is found in the ovaries and is transovarially transmitted through maternal lineages (Aksoy *et al.*, 1997). Generally, the three symbionts are maternally transmitted from one generation to the next.

The role of these symbionts can be studied individually by selectively removing them and determining the resultant effect on the fly. Antibiotics like tetracycline and ampicillin are used for removing the bacteria from the fly. Tetracycline removes all the three symbionts where as ampicillin has effect only on *Wigglesworthia* (Pais *et al.*, 2008). Although the fly does not die, its growth becomes retarded and the rate of fecundity decreases (Nogge, 1976). The ability to reproduce can be partially restored by giving the flies a vitamin B (thiamine, pantothenic acid, pyridoxine, folic acid and biotin) supplemented blood meal (Pais *et al.*, 2008) suggesting that these symbionts play a major role in providing these nutrients.

2.5.1 Wigglesworthia glossinidia

Wigglesworthia glossinidia is an obligate symbiont of tsetse flies that belongs to the gammaproteobacteria and is believed to have been in association with its host for about 80 million years (Chen and Aksoy, 1999). This endosymbiont resides intracellularly in the bacteriocytes cytoplasm (not surrounded by the host membranes) in the anterior midgut of the tsetse fly. It is located extracellular in the milk gland lumen of tsetse flies (Pais *et al.*, 2008) where it is transmitted between progeny through milk secretions (Attardo *et al.*, 2008). Administration of ampicillin-supplemented blood meal kills extracellular *Wigglesworthia* in the milk glands but does not affect the intracellular forms. However this assures that maternal transmission is not possible therefore the next progeny does not contain *Wigglesworthia* but maintains *Sodalis* (Pais *et al.*, 2008).

The genome of *Wigglesworthia* is 697 kbp in size with a small additional plasmid (pWgb), and has 621 coding sequences (CDS). Ten percent of these CDSs which represents a significant portion of the genome, is involved in the biosynthesis of cofactors, prosthetic groups and carriers (Akman *et al.*, 2002). Specifically, biotin, lipoic acid, riboflavin (FAD), folate, thiamine, pyridoxine, thiazole, pantothenic acid and protoheme metabolism are supported by its genome, supporting the possibility of a role of *Wigglesworthia* in host dietary supplementation (Nogge, 1976).

Wigglesworthia is the only tsetse endosymbiont capable of making thiamine based on its genome content *vis-a-vis* that of other endosymbionts (Snyder *et al.*, 2010). It is therefore suggested that it provides thiamine to both the fly and *Sodalis* as genomic evidence suggests that *Sodalis* does not have a thiamine biosynthesis pathway but instead possesses a salvage protein that facilitates acquisition of thiamine (Snyder *et al.*, 2010). This is a good example of metabolic convergence, supporting the hypothesis that microbial symbiont antagonism in the early establishment of dual symbiosis is prevented by functional complementation of symbiont genomes (Moran *et al.*, 2008) as in this case of *Wigglesworthia* and *Sodalis*. Thiamine may play an important role in fecundity of female tsetse since removal of *Wigglesworthia* results in reduced fecundity in the fly (Pais *et al.*, 2008). In addition to dietary supplementation with vitamins to the tsetse, *Wigglesworthia* is also important in the maturation of tsetse immune system (Pais *et al.*, 2008). These suggest that this endosymbiont is essential for the well being of both the fly and other endosymbionts.

2.5.2 Sodalis glossinidius

Sodalis is an enterobacteriaceae found in the mid gut and hemolymph of tsetse flies. In the mid gut it is found in both extracellular and intracellular forms (Aksoy, 2000). Evolutionary relationship studies suggest that its association with *Glossina* is recent unlike with *Wigglesworthia* (Aksoy, 1995; Chen and Aksoy, 1999). This is further supported by the ability to cultivate *Sodalis* on insect cells (Welburn *et al.*, 1987) and cell free media (Beard *et al.*, 1993). This is presumably due to its retained free living lifestyle as it contains most of the genes necessary for free living like other bacteria such as *Escherichia coli K-12, Salmonella*, and *Yersinia* (Toh *et al.*, 2006). In contrast, the other tsetse endosymbionts have not been cultivated outside their host. Another evidence suggesting the recent association is its genome size, which is significantly larger than the genomes of obligate endosymbionts of other insects (Wernegreen, 2002).

The *Sodalis* genome consist of one circular chromosome 4.17 Mbp and an additional three plasmids pSG1, pSG2 and pSG3 as well as a phage Φ SG1. Of the 2,432 putative protein CDSs annotated, an additional 972 are pseudogenes which are homologous to genes involved in defence, transport and metabolism (Toh *et al.*, 2006). This number of pseudogenes is quite high compared to other bacterial species indicating its metabolic adaptation to symbiotic association with its host and the other endosymbionts. All *Sodalis* orthologs are shared with *Wigglesworthia* except for those coding for thiamine, cobalamine, and molybdopterin biosynthesis pathways (Toh *et al.*, 2006). Based on its genome, it is likely that *Sodalis* relies

on its symbiotic association for a number of metabolic process whose ability it has lost through pseudogenization.

2.5.3 Wolbachia pipientis

Unlike Wigglesworthia and Sodalis, Wolbachia is highly diverse as it infects a wide range of arthropods including at least 65% of insect species (Hilgenboecker *et al.*, 2008). It is also an intracellular and maternally inherited endosymbiont belonging to the α -Proteobacteria. It is found in some tsetse species and therefore not an obligate symbiont of tsetse flies (Werren, 1997). Wolbachia infection in its hosts influences reproductive phenotypes in a fashion that enhances its rapid spread. Among these reproductive abnormalities is cytoplasmic incompatibility (CI) that often results in embryonic death because of disruptions in some fertilization events (Hilgenboecker *et al.*, 2008). There is a proposal to use Wolbachia-induced CI to suppress agricultural pests and disease vectors (Calvitti *et al.*, 2012). Infected females have a reproductive advantage over their uninfected counterparts as they can produce successful progeny with both the imprinted and normal sperm. This reproductive advantage allows the infected insects to spread into populations and hence transfer a genetic insert of interest competitively against uninfected ones (Sinkins and O'Neill, 2000).

2.6 Vitamins and cofactors biosynthesis

Vitamins are the building blocks of cofactors, which are essential in enzyme function. Recently, a variety of vitamins and cofactors biosynthesis mechanisms have been described (Begley *et al.*, 2008). These include thiamine and thiamine pyrophosphate (TPP), riboflavin and flavin adenine dinucleotide (FAD), niacin and nicotinamide adenine dinucleotide (NAD), pantothenate and coenzyme A (CoA), pyridoxine and pyridoxal phosphate (PLP), and folate and tetrahydrofolate (THF) biosynthesis pathways. These biosynthesis pathways in various organisms particularly bacteria and plants have been elucidated. However much remains to be described in insects.

2.6.1 Thiamine and thiamine pyrophosphate

Thiamine (vitamin B_1) is made up of a pyrimidine and a thiazole molecule joined by a methylene bridge. It is synthesized by most prokaryotes and eukaryotes like yeast and plants. In both prokaryotes and eukaryotes, the thiazole and pyrimidine moieties are made in separate pathways and later joined to form thiamine phosphate as shown in figure 4. A final phosphorylation step gives thiamine pyrophosphate, the active form of the cofactor from thiamine (Jurgenson *et al.*, 2009).

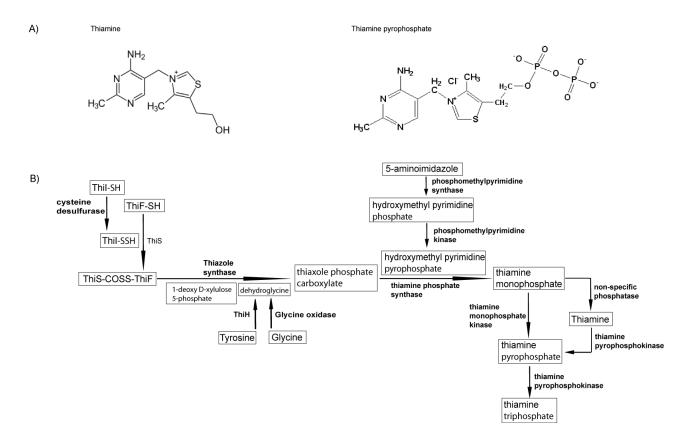


Figure 4. Thiamine and thiamine pyrophosphate biosynthesis pathway. Panel A shows the structure of thiamine and thiamine pyrophosphate while **B** is the biosynthesis pathway in bacteria. Thiamine's thiazole and pyrimidine rings are joined by a methylene ring. Biosynthesis of thiamine pyrophosphate involves the phosphorylation of thiamine. ThiI-SH, ThiF-SH, ThiH and ThiS represent thiamine biosynthesis proteins I, F, H and S. The figure is adopted from Jurgenson *et al.* (2009).

Bacterial thiamine metabolism is well studied in *E. coli* and in *Bacillus subtilis*; there are limited differences owing to the obligate aerobic nature of *B. subtilis* (Settembre *et al.*, 2004). The formation of the thiazole moiety requires six genes (ThiF, IscS, ThiI, ThiO, TenI and ThiG) where as the pyrimidine requires only two (ThiC and ThiD). The thiazole is made in four distinct steps (Figure 4). First, pyruvate and glyceraldehyde 3-phosphate are coupled together by 1-deoxy-d-xylulose 5-phosphate synthase (Dxs) to form 1-deoxy-dxylulose 5-phosphate (DXP). Second, a sulfur carrier protein called ThiS undergoes adenylylation by ThiF followed by sulfur transfer by ThiI and IscS to yield a thiocarboxy at its C terminus. This sulfur is incorporated into the thiazole ring of thiamine. Thirdly, glycine (*E. coli*) or tyrosine (*B. subtilis*) is converted to dehydroglycine by ThiH or ThiO respectively. Finally, the three products (Thiocarboxy C terminus of ThiS, DXP and dehydroglycine) are coupled together by thiazole synthase (ThiG) to give thiazole phosphate carboxylate tautomer. The

enzyme TenI in *B. subtilis* then aromatizes the tautomer to thiazole phosphate carboxylate (Begley *et al.*, 2008). The pyrimidine moiety of thiamine is formed by a rearrangement reaction of aminoimidazole ribotide catalysed by the gene product of the ThiC and ThiD gene (Lawhorn *et al.*, 2004).

2.6.2 Riboflavin, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN)

Riboflavin is the building block of two cofactors, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN). These cofactors are used in some dehydrogenation reactions e.g. FAD in the tricarboxylic acid (TCA) cycle for ATP production.

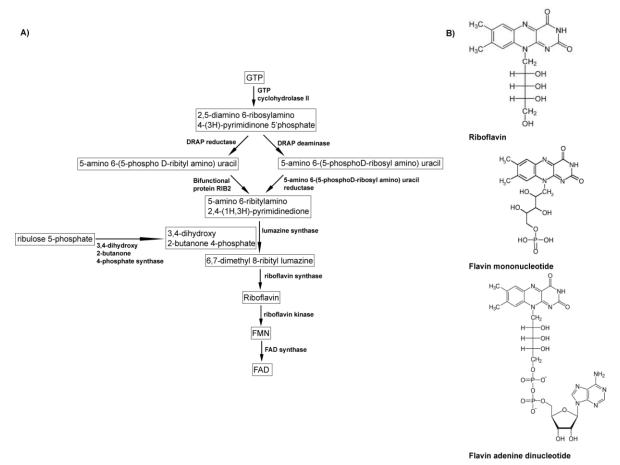
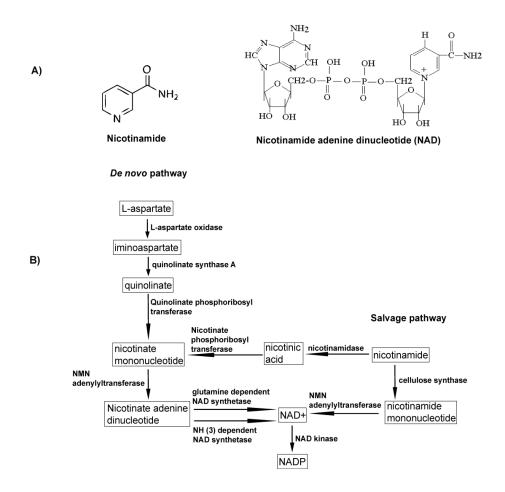
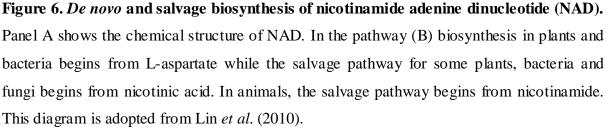


Figure 5. Riboflavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) biosynthesis. The pathway (A) begins from ATP and involves the synthesis of the lumazine molecule by lumazine synthase. The lumazine molecule is then converted to riboflavin from which FMN and FAD are generated. **B** shows chemical structures of riboflavin, FMN and FAD molecules. Abbreviations: GTP, guanosine triphosphate; DRAP, 2,5-diamino 6-ribosylamino 4-(3H)-pyrimidinone 5'phosphate. Pathway was adopted from Marx *et al.* (2008).


As shown in figure 5, its synthesis begins with opening of the guanosine triphosphate (GTP) imidazole ring by GTP cyclohydrolase II too yield 2,5-diamino-6ribosylamino-4-(3H)-pyrimidinone-5'-phosphate (Schramek *et al.*, 2001). This product is subsequently converted to 5-amino-6-ribitylamino-2,4-(1H,3H)-pyrimidinedione, which is condensed with 3,4-dihydroxy-2-butanone-4-phosphate by the enzyme 6,7-dimethyl-8-ribityllumazine synthase to form 6,7-dimethyl-8-ribityllumazine. Riboflavin is then formed from 6, 7-dimethyl-8-ribityllumazine by riboflavin synthase (Fischer *et al.*, 2002). FMN and FAD are then made by addition of nucleotides to riboflavin.


2.6.3 Nicotinamide adenine dinucleotide (NAD)

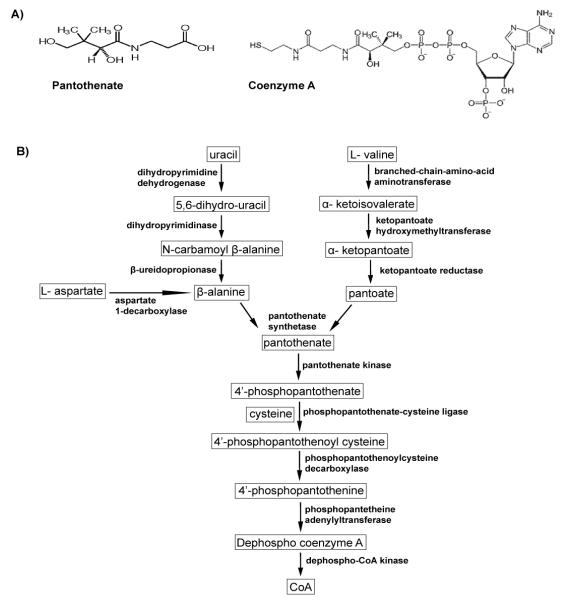
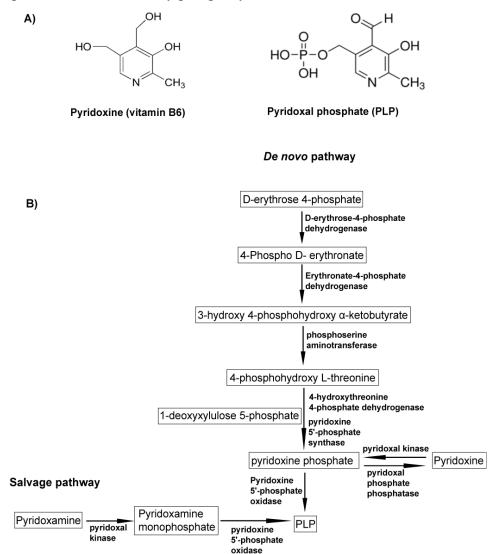
Nicotinamide adenine dinucleotide (NAD^+) is a cofactor required in all organisms most notably in glycolysis and TCA cycle where it is interchanged between NAD^+ and its reduced form (NADH) to generate ATP. It is also a substrate of some enzymes such as ADP-ribosyl transferase and ADP-ribosyl cyclases.

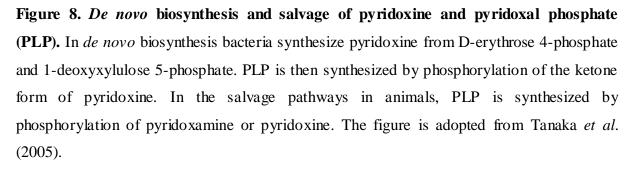
It is biosynthesized through two main pathways – first, *de novo* biosynthesis pathway by plants and some bacteria and second, the salvage pathway by animals and some plants, fungi and bacteria (Lin *et al.*, 2010). The *de novo* pathway involves five enzymes and it begins from the amino acid L-aspartate as shown in figure 6 below. This is converted to quinolinate in two steps by two enzymes, L-aspartate oxidase and quinolinate synthetase. Quinolinate is then converted to nicotinate mononucleotide and subsequently to nicotinate adenine dinucleotide by quinolate phosphoribosyltransferase and nicotinate/ nicotinamide mononucleotide adenylyltransferase respectively. Lastly nicotinate adenine dinucleotide is converted to NAD⁺ by NAD⁺ synthetase.

Salvage pathway can either be a two-step reaction that begins from nicotinamide as in mammals and some bacteria or a four-step reaction that also begins from nicotinate as in some bacteria, plants and fungi. In the two-step reaction, nicotinamide is converted to nicotinamide mononucleotide by nicotinamide phosphoribosyltransferase and eventually converted to NAD⁺ by nicotinate/ nicotinamide mononucleotide adenylyltransferase. In the four step reaction, nicotinamide is converted to nicotinate is converted to nicotinate mononucleotide by nicotinate by nicotinate. Nicotinate is then converted to nicotinate mononucleotide which joins the *de novo* pathway to proceed into a two-step reaction that generates NAD⁺.

2.6.4 Pantothenate and coenzyme A

Coenzyme A is synthesized from pantothenate (vitamin B5) and it functions as a cofactor in energy metabolism and metabolism of lipids where it acts as a carrier of acyl groups. In bacteria, its biosynthesis begins with synthesis of β -alanine from L-aspartate. On another branch of the pathway, α -ketoisovalerate is synthesized from L-valine then undergoes hydroxymethylation followed by decarboxylation to form pantoate. Pantothenate is then formed by a branched-chain-amino-acid transaminase from pantoate and β -alanine. Coenzyme A is then formed from the vitamin in the following steps. Phosphorylation followed by addition of cysteine to pantothenate and decarboxylation forms 4phosphopantothenine. This is subsequently adenylated to form dephospho coenzyme A and finally phosphorylation by dephopho coenzyme A kinase forms coenzyme A (Begley *et al.*, 2001). These steps are elaborated in the figure 7 below.

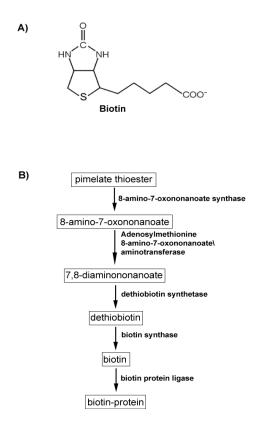




Figure 7. Coenzyme A biosynthesis in bacteria. Panel A shows the chemical structure of pantothenate and coenzyme A. In the pathway (B), bacteria derive β -alanine from L-aspartate while animals derive it from uracil. Pantothenate is then made by adding β -alanine to pantoate, and is subsequently used to generate coenzyme A. This pathway is adopted from Begley *et al.* (2001).

2.5.5 Pyridoxine and pyridoxal phosphate

Pyridoxine also known as vitamin B6 is the precursor for pyridoxal phosphate (PLP), a cofactor involved in transfer of amino group in a variety of enzymes involved in amino acid metabolism. Synthesis of this cofactor has two pathways, a *de novo* and a salvage pathway.

The precursor metabolites for the *de novo* pathway are D-erythrose-4-phosphate and the glycolysis intermediate glyceraldehyde-3-phosphate. D-erythrose-4-phosphate undergoes four enzymatic steps as shown in the figure 8, to form pyridoxine phosphate that is eventually condensed with glyceraldehyde-3-phosphate to form PLP. One of the salvage pathways involves the conversion of pyridoxine directly to PLP by pyridoxine kinase (2.7.1.35). Another involves conversion of pyridoxamine by pyridoxine kinase to form pyridoxamine monophosphate which is eventually phosphorylated to form PLP.



2.5.6 Biotin

Biotin is also known as vitamin B7 and is a key cofactor that carries carbon dioxide in carboxylation, decarboxylation and transcarboxylation reactions. Cellular processes such as amino acid metabolism, fatty acid synthesis and gluconeogenesis require biotin as a carrier of carboxyl group. The biosynthesis pathway can be divided into two stages with the first stage involving the synthesis of a pimelate moiety, which is used in the second stage to make the ring portion of biotin.

The first stage utilizes fatty acid synthetic enzymes to grow a malonate moiety into a pimelate. The second stage begins by conversion of pimelate thioester to 8-amino-7-oxononanoate using 8-amino-7-oxononanoate synthase. Then this undergoes transamination to form 7,8-diaminononanoate. Dethiobiotin is subsequently formed by dethiobiotin synthase and finally biotin is formed from dethiobiotin though the action of biotin synthase. The biotin is eventually ligated to a lysine residue of a biotin dependent enzyme by biotin protein ligase.

Figure 9. Biotin biosynthesis. A shows the structure of biotin. **B.** Biotin biosynthesis involves the rearrangement of pimelate thioester from the fatty acid metabolism in a four step reaction. Biotin is then ligated to an enzyme where it acts as a cofactor. The pathway was adopted from Lin and Cronan, (2011).

2.5.7 Folate and tetrahydrofolate

Folate (vitamin B9) is important for making the cofactor tetrahydrofolate (THF). THF is used in enzymatic reaction as a one-carbon carrier in enzymes such as those involved in amino acid, nucleic acids and pantothenate synthesis (Cossins, 2000). It is synthesized from pterin, para-aminobenzoic acid (PABA) and glutamate as shown in figure 10.

Pterin synthesis begins with the conversion of GTP to dihydroneopterin triphosphate by GTP cyclohydrolase I, followed by two dephosphorylation steps, - the first carried out by dihydroneopterin triphosphate pyrophosphatase (Gabelli et al., 2007) and the second involves a non-specific phosphatase as in E. coli (Suzuki and Brown, 1974). However, according to KEGG pathways (Kanehisa et al., 2012), alkaline phosphatase is capable of dephosphorylating dihydroneopterin triphosphate directly to dihydroneopterin. The resulting dihydroneopterin is then broken down into glycolaldehyde and 6hydroxymethyldihydropterin by dihydroneopterin aldolase. The later is then phosphorylated 6-hydroxymethyldihydropterin pyrophosphate by 6-hydroxymethyldihydropterin into pyrophosphokinase.

PABA is synthesized from chorismate in two steps. Aminodeoxychorismate synthase converts chorismate to aminodeoxychorismate which is then converted to PABA by aminodeoxychorismate lyase. PABA and the pterin are conjugated by dihydropteroate synthase (EC: 2.5.1.15) to form dihydropteroate which forms dihydrofolate on addition of glutamate as shown in the figure 10.

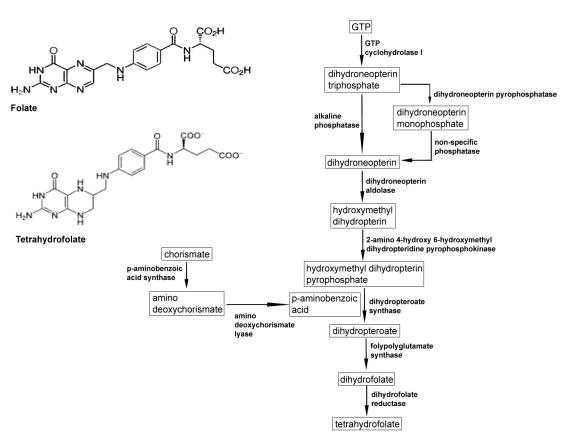


Figure 10. Folate and tetrahydrofolate biosynthesis. A shows the structure of folate and tetrahydrofolate (THF). B. Animals, plants and bacteria synthesize folate from paraaminobenzoic acid (PABA), glutamine and a pterin ring. Tetrahydrofolate (THF) is then generated from reduction of dihydrofolate. This pathway was adopted from Hanson and Gregory, (2011).

THF is lastly formed in a reduction reaction mediated by dihydrofolate reductase. Glutamates can be added to the THF by formylpolyglutamate synthase to form a polyglutamate tail and this is the preferred cofactor form while the monoglutamate form is preferred by transport proteins (Hanson and Gregory, 2011).

2.7 Vitamins and cofactors biosynthesis in tsetse symbionts

The small genome of *Wigglesworthia* has retained the ability to synthesize various vitamin metabolites including biotin, thiazole, lipoic acid, riboflavin, folate, pantothenate, thiamine, pyridoxine, protoheme, and nicotinamide (figure 11) (Akman *et al.*, 2002) which are known to be low in the single diet of tsetse - vertebrate blood. *Wigglesworthia* is thought to be the main source of thiamine in the tsetse-endosymbiont association given that *Sodalis* salvages (Snyder *et al.*, 2010).

A)

Figure 11. An overview of cofactors biosynthesis in *Wigglesworthia*. B-vitamins and cofactors synthesized by *Wigglesworthia* are biotin, thiamine, riboflavin, folate, pantothenate, pyridoxine and nicotinamide. However *Wigglesworthia* lacks some of the genes that encode enzymes (marked with "(?)") in biosynthesis pathways for pantothenate, thiamine and nicotinamide. This image was adopted from Akman *et al.* (2002).

In addition to thiamine, *Sodalis* also lacks biosynthetic pathways for cobalamine, and molybdopterin biosynthesis pathways which are present in *Wigglesworthia* (Toh *et al.*, 2006). Sodalis however appears to have the potential to biosynthesize folate, riboflavin, pantothenate, biotin and nicotinamide. The initial reactions of pyridoxine biosynthesis pathway appear incomplete (figure 12).

Wolbachia is not an obligate mutualist in tsetse flies and is not found in all populations of flies (Werren, 1997). It is actually considered as a parasite more than a symbiont. Its genome shows a loss of most vitamin biosynthesis pathways and therefore its role in provision of these nutrients may not be significant.

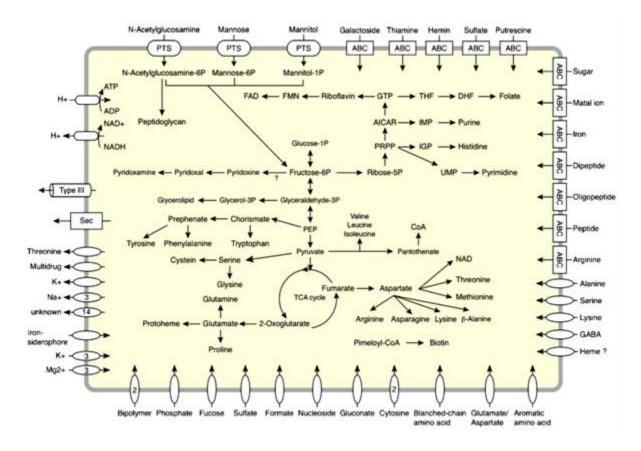


Figure 12. An overview of *Sodalis glossinidia* metabolic pathways including B-vitamins and cofactors biosynthesis pathways. *Sodalis glossinidia* does not synthesize thiamine and instead salvages using an ABC transporter. Its pyridoxine biosynthesis pathway also appears to be incomplete. The image was adopted from Toh *et al.* (2006).

Summary

African trypanosomes transmitted by tsetse flies cause the deadly disease called African trypanosomiasis in both man and his animals leading to a huge economic loss. Control of trypanosomiasis is mainly by chemotherapy and vector control. The drugs used in human treatment include pentamidine, suramine, effornithine and melarsoprol. Most of these drugs are old, dating back to 1950 and are limited by chemoresistance and drug toxicity. In addition, diagnosis suffers various limitations including low sensitivity and specificity, inapplicability in field environment and high cost. (Odiit *et al.*, 2005; Kennedy, 2006; Berrang, 2007; Fèvre *et al.*, 2008).

Vector control involves use of insecticides, traps and targets and sterile insect technique but these methods have their individual limitation therefore necessitating improvement and/ or development of novel strategies (Vale, 1993; Politi *et al.*, 1995; Kappmeier and Nevill, 1999; Kgori *et al.*, 2006). One potential strategy is paratransgenesis that exploits the endosymbionts

in tsetse fly to either control tsetse populations or prevent the fly from transmitting trypanosomes (Beard *et al.*, 1993). In this strategy, transgenic endosymbionts can be propagated in trypanosomes infected tsetse flies where they express a trypanocidal agent that kills trypanosomes and thus preventing transmission. This method is under development but the process is hindered mainly by the limited knowledge available on the tsetse-endosymbiont interaction (Medlock *et al.*, 2013). The method is favourable since it only targets the trypanosomes and does not affect the fly and is thus environmentally friendly.

One major interaction between tsetse and its endosymbionts is in provision of nutrients deficient in tsetse blood meal i.e. vitamins and cofactors (Snyder *et al.*, 2010). This is however speculative since some biosynthesis pathways for vitamins and cofactors in endosymbionts are incomplete because of absence of some enzymes due to loss of their respective genes i.e. genome reduction (Akman *et al.*, 2002; Toh *et al.*, 2006; Nikoh *et al.*, 2011). In addition, the biosynthesis pathways in tsetse fly are unknown and therefore this study sought to determine the fly's biosynthesis pathways and the nature of interaction with endosymbionts in biosynthesis of vitamins and cofactors.

As revealed by bioinformatics analysis, the genome of *G. m morsitans* has enzymes that are missing in the endosymbionts B-vitamins biosynthesis pathways and further encodes full cofactor biosynthesis machinery. A select number of genes in the pathways examined were confirmed to be authentic by polymerase chain reaction (PCR) amplification and sequencing. In addition, potential interaction at molecular and biochemical level is suspected due to differential gene expression in presence and absence of endosymbionts, specifically *Wigglesworthia*. Upregulation of expression in absence of endosymbiont indicates compensation for deficit in some metabolites shared with endosymbiont, implying interaction.

CHAPTER THREE

MATERIALS AND METHODS

3.1 The genome sequence of Glossina morsitans morsitans

The genome sequence of *G. m. morsitans* Yale strain 1 used in this study was sequenced and assembled at the Wellcome Trust Sanger Institute, UK (IGGI, 2014). DNA was extracted from female flies and their female progenies. The mother fly was pre-treated with tetracycline to remove all bacteria symbionts following the method developed by Pais *et al.* (2008). This genome assembly consisted of 366 Mega base pairs (Mbps) with 12,308 predicted proteins and is available for public access at VectorBase (http://www.vectorbase.org/). In this repository, the genome is referred to as Glossina-morsitans-Yale_SCAFFOLDS_GmorY1.fa and it contains 13,807 sequences and a total of 366,195,856 letters.

3.2 Transcriptome data for annotation and gene expression

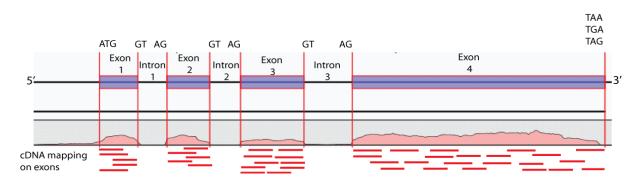
Three transcriptome data used in this study were a kind gift from Prof. Serap Aksoy of Yale University, USA; total RNA was used to prepare complementary DNA (cDNA) which represented the total expressed genes i.e. mature RNA. The first data consisted of a mixture of reads generated using RNA from the midgut, salivary glands, fat body and reproductive tissues and this was used for manual annotation of genes. The second and third data were obtained using RNA from the midgut of ampicillin treated and untreated adult female flies respectively. These were used to determine differential gene expression.

3.3 Identification of global ortholog genes

For accurate identification of tsetse B-vitamin and cofactor biosynthesis enzymes, experimentally validated orthologs were first identified in eukaryotes and prokaryotes. This was carried out through extensive literature searches at PubMed (http://www.ncbi.nlm.nih.gov/pmc/) to identify experimentally validated enzymes and interrogation of organism specific databases. The targeted organisms and their respective (http://www.ecogene.org/), databases include Escherichia coli Bacillus subtilis (http://bsubcyc.org/), Drosophila melanogaster (http://flybase.org/), Arabidopsis thaliana (http://www.arabidopsis.org/), Saccharomyces cerevisiae (http://www.yeastgenome.org/), and Homo sapiens (http://www.genenames.org/). Subsequently, the panel of experimentally validated orthologs were analysed for domain organization at public protein databases namely pfam (Punta et al., 2012), prosite (Sigrist et al., 2013) and interpro (Hunter et al., 2012), and polypeptide physicochemical properties i.e. protein lengths, isoelectric points (pI) and molecular weight (MW) at expasy http://web.expasy.org/compute_pi/ (Wilkins *et al.*, 1999). After robust analysis, the identified proteins were used to identify orthologs in other organisms namely *Anopheles gambiae* (http://vectorbase.org/), *Tribolium castenum* (http://beetlebase.org/), *Wigglesworthia glossinidia, Sodalis glossinidius, Wolbachia pipientis* (http://www.ncbi.nlm.nih.gov/genbank/) and *Sorghum bicolour* (http://www.plantgdb.org/SbGDB/). The proteins identified were analysed as above. Together, this provided a global outlook of all the possible enzymes, their physicochemical properties and domain architectures, and pathways involved in vitamin B family and cofactor biosynthesis. These enzymes were used to search the *Glossina* genome.

3.4 Homology search for Glossina B-vitamins and cofactors biosynthesis genes

To identify the respective orthologs in *G. m. morsitans*, BLAST searches were carried out using the identified experimentally and computationally validated enzymes as query sequences at VectorBase. To ensure robust analysis and prevent bias, a criterion was set for subsequent analysis. First, all identified enzymes from various organisms were used to search the *Glossina* genome. Second, all the low e-value hits were interrogated before rejection as orthologs. Third, all the hits were analysed for protein domain organization and physicochemical properties as described earlier. Fourth, *Glossina* proteins identified multiple times, and have conserved domain architecture were considered true orthologs. Fifth, the identified *Glossina* proteins. Finally, to prevent reporting an endosymbiont ortholog as tsetse genes, the *G. m. morsitans* yale strain 1 genome was from tsetse treated with tetracycline to remove all endosymbionts. In addition, vitamins and cofactor biosynthesis for endosymbionts were also determined hence known. These ensured robust analysis to identify tsetse orthologs involved in vitamins and cofactors biosynthesis.


3.5 Comparative analysis

Tsetse fly is a hematophagous parasite-transmitting insect. For comparative analysis, orthologs from a similar hematophagous parasite-transmitting insect, namely *Plasmodium* transmitting *Anopheles gambiae* (feeds on blood and plant sap) and non-hematophagous feeders namely *D. melanogaster* (ripe fruits) and *T. castanum* (flour) were used. In addition, since endosymbionts have been suggested to be involved in vitamin metabolism (Pais *et al.*, 2008), bacterial endosymbionts namely *Wigglesworthia glossinidia*, *Sodalis glossinidius*, *Wolbachia pipientis*, as well as free-living bacteria *E. coli* and *B. subtilis* were included.

These enabled integration of possible molecular and biochemical interactions between tsetse fly and its endosymbionts, and a comparative analysis with other systems.

3.6 Gene modelling

The results obtained from the homology search were structurally annotated using Artemis genome browser (Carver *et al.*, 2008) and CLC genomics workbench 4.8. Artemis was used to determine the genes start (ATG) and stop (TAA, TAG and TGA) codons and also correct splice boundaries (GT-AG) as illustrated in figure 13. Further, to assure that the gene coding regions (exons) have the same sequence as their respective mRNA and the computationally identified genes are accurate, validation by mapping illumina RNA sequences (cDNA) using CLC genomics workbench was carried out.

Figure 13. Complementary DNA (cDNA) mapping on a gene model. From the 5' end, the coding sequence begins with a start codon, ATG, and ends with a stop codon TAA, TGA or TAG at the 3' end. The exons shown in purple fill are separated by introns (uncoloured black lines between exons). The exon-intron boundaries have consensus sequences GT-AG. The RNAs - shown as short red lines - from RNAseq data do not map on introns since they are generated from mature mRNA.

3.7 Assignment of enzyme commission numbers

The *Glossina* protein sequences were assigned enzyme commission (EC) numbers based on homology (Lee *et al.*, 2007) and domain similarity to experimentally validated protein sequences from swissprot as follows. First, EC numbers were assigned to sequences based on identity of $\geq 60\%$ (Tian and Skolnick, 2003) to their best blastp hit in the nr database and subsequently annotated using blast2GO (B2G) annotation tool (Conesa *et al.*, 2005) at an evalue of 1.0e-6. This tool assigns EC numbers by blasting protein sequences against the gene ontology (GO) database. Since the database used was made up of swissprot proteins, the sequences that were assigned EC numbers were orthologous to experimentally validated and manually curated protein sequences.

Secondly, the domain potentially representing the active site of the enzyme had to be present to validly assign a specific EC number. Orthologous sequences that lacked any domain were regarded as pseudo genes while those that could not be assigned EC numbers using B2G but had the required domain were assigned putative function using phylogeny (Pellegrini *et al.*, 1999). Phylogenetic analyses were done using phylomeDB tool available at http://phylomedb.org/. This is a collection of maximum likelihood phylograms created using genes from *Glossina*, other dipterans and outgroups. The sequence was assigned the EC number of the proteins that cluster with it in the phylograms.

3.8 Expression analyses

To determine the expression of particular genes, RNA was mapped on these gene models using CLC genomics workbench (see figure 13). The two transcriptome datasets obtained from the midgut of ampicillin treated flies were analyzed using the RNA-seq (Mortazavi *et al.*, 2008) analysis tool in CLC genomics workbench. The analysis parameters were made more stringent by not allowing non specific mapping of reads to genes. Subsequently, differential gene expression was determined by comparing expression (RNA levels of selected genes) from ampicillin treated and untreated flies. The expression of vitamin transport proteins in *Glossina* was also determined in a similar way. Gene expression values were calculated in terms of reads per kilobase pair per million reads (RPKM).

$$RPKM = \frac{Total exon reads}{mapped reads (millions) X exon length (Kb)}$$

Total exon reads is the number of cDNA fragment mapped on a gene that fall entirely within an exon or in exon-exon or exon-intron junctions. Mapped reads is the total number of all the reads that have mapped to all the individual genes.

3.9 Gene validation

To demonstrate that the genes identified *in silico* using bioinformatics tools actually exist, polymerase chain reaction (PCR) amplification of selected genes from *G. m. morsitans* whole DNA extract was performed. The *G. m. morsitans* used here was a kind gift from Dr. Grace Murilla of Kenya Agricultural Research Institute – Trypanosome Research Centre (KARI-TRC) and different from the Yale strain sequenced. The PCR products were purified, cloned,

sequenced and compared to those in the database. In addition, the genes were translated and protein sequences compared to predicted proteins in the *Glossina* database.

3.9.1 Extraction of DNA

Whole DNA was extracted using alcohol precipitation method. The *G. m. morsitans* flies used were a kind gift from Dr. Grace Murilla of Kenya Agricultural Research Institute – Trypanosoma Research Centre (KARI-TRC). A single fly was homogenized in 50 μ l of grinding buffer (Appendix 1) in a 1.5 ml microcentrifuge tube using a pestle then incubated at 68 °C for 30 min. Seven microlitres of 8M potassium acetate was added to the homogenate and incubated in ice for 30 min. Subsequently, the mixture was centrifuged at 20,000×g for 15 min, the supernatant transferred to a clean 1.5 ml microcentrifuge tube and mixed with 80 μ l of isopropanol. This was incubated at room temperature for 5 min then centrifuged at 20,000×g for 15 min and the supernatant discarded. The pellet was finally washed with 200 μ l of 70 % ethanol, air dried for 10 min and resuspended in 100 μ l of nuclease free water.

3.9.2 Polymerase chain reaction

Polymerase chain reaction (PCR) was done using One Taq® Hot Start DNA polymerase (New England Biolabs, Inc. Massachusetts, USA) which has 3' to 5' exonuclease activity that increases the fidelity of amplification. The reaction mix consisted of 10 µl of 5X buffer, 1 µl of 10 mM dNTPs, 1 µl of 10 mM of each primer, 0.25 µl of DNA polymerase, 2 µl of DNA and 34.75 µl of nuclease free water to give a total of 50 µl. Amplification was done using an AB biosystems 9700 thermal cycler and a reaction condition of 30 sec hot start at 94 °C, followed by 35 cycles at 94 °C for 30 sec (denaturation), Tm °C for 1 min (annealing), and 68 °C for X_t min (extension) and a final extension at 68 °C for 5 min. Tm and X_t values varied as shown in table 1.

Table 1. List of genes, primer sequences, annealing temperatures (Tm), extension time (X_t) and target product size. 'For' refers to the forward primer sequence, 'Rev' refers to the reverse primer sequence.

Gene	Primer Sequence (5' to 3')	Annealing Temperature, Tm (°C)	X _t (min)	Product Size (bp)
GMOY009051	For: ATGAAACCTTTTAAGCAG	47	1:20	1055
	Rev: TTAATCATCATCCGAAAA	· · · /	1.20	1055
GMOY009056	For: ATGCTTAACTATTTACCG	53	1.00	1602
	Rev: TTAAGTGCCTCCGTTAGA	55	1:20	1602
GMOY005148	For: ATGAGCAAGTTAAGCATTT	50	1.00	1025
	Rev: TTAAGGTGCCAGACGTTCA	52	1:20	1035
GMOY002354	For: ATGACGCACTGGGAGGAC	1.0	1.00	001
	Rev: CTAAATAAATTCGCTGTG	46	1:00	921
GMOYdhfr2	For: ATGTTGAAATTTAATTTAAT	16	1.00	())
	Rev: TTATTCTCGTTTTTCTAGTA	46	1:00	624

Following amplification, the PCR products were gel electrophoresed on 1% agarose gel and products gel purified (see section 3.9.2 below).

3.9.3 Gel extraction of PCR products

After gel electrophoresis, the gel was viewed under UV-light and amplified DNA products were individually excised using sterile blades. Gel extraction was carried out using QuickClean II gel extraction kit (GeneScript, New Jersey, USA) as follows. The excised bands were weighed and excess gel cut out so as not to exceed 400 mg per test. One volume of gel slices were dissolved in three volumes of binding buffer in 1.5 ml microcentrifuge tube and dissolved by incubation at 50 °C in a water bath for about 10 min with occasional vortexing. One volume of isopropanol to 1 volume of gel was added to the dissolved gel. The mixture was transferred to a spin column and centrifuged at $6000 \times \text{g}$ for 1 min. Five hundred microlitres of binding buffer was added to the column and centrifuged again at $6000 \times \text{g}$ for 1 min. The column was centrifuged again at $12000 \times \text{g}$ for 1 min. The column was then centrifuge tube and 25 µl of elution buffer added and left to stand for 5 min. The column was then centrifuged at $12000 \times \text{g}$ for 2 min and

the flow through which contain the amplification product retained for cloning. Before cloning, the success of the extraction was verified by gel electrophoresis of 3 μ l of the eluted PCR product on a 1% ethidium bromide stained agarose gel.

3.9.4 Gene cloning using pGEM[®]-T Easy vector

The purified products of amplification were clouded into pGEM-T[®] easy expression system (Promega, Madison, USA) using manufacturer's instructions. Ligation mix of 5 µl of 2X rapid ligation buffer, 1 µl of 50 ng pGEM-T[®] easy vector, 3 µl of gel purified PCR product, 1 µl of T4 DNA ligase (3 weiss units/µl) was prepared and incubated overnight at 4 °C. Subsequently, high efficiency competent JM109 cells (> 1×10^8 cfu/µg DNA) were transformed using the ligation mix as follows. For each reaction, a sterile 1.5 ml microcentrifuge tube was pre-chilled on ice and 50 µl of competent cells added. Two microlitres of ligation reaction mix were added and mixed gently by flicking before incubating in ice for 20 min. Transformation was carried out by heatshocking at 42 °C for 45 seconds in a water bath and immediately returned in ice for 2 min. 950 µl of SOC medium (appendix 2) was added and cells incubated for 1.5 hours at 37 °C with shaking (~150rpm). Afterwards, the cells were concentrated by centrifuging at $3000 \times g$ for 5 min and 100 µl of transformation culture retained for resuspension. The resuspended cells were plated on LB (Luria-Bertani) agar plates (appendix 2) containing ampicillin, Isopropyl β -D-1thiogalactopyranoside (IPTG) and 5-bromo-4-chloro-3-indolyl- β -D-galactopyranoside (x-Gal) (appendix 2) and incubated overnight at 37°C.

Single white colonies were subsequently picked from the LB agar plates and inoculated into 5 ml LB broth (appendix 2) at 37°C overnight in an incubator with shaking (~150rpm). These were used for plasmid purification.

3.9.5 Recombinant plasmid purification, sequencing and analysis

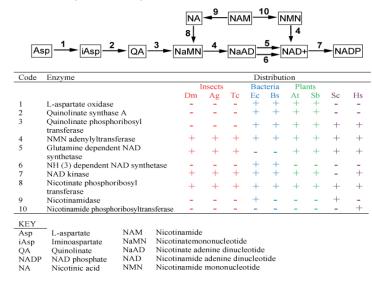
Plasmids from the transformed cells were purified using Quick Clean 5M miniprep kit (GeneScript, New Jersey, USA) using manufacturer's instructions. 1.5 ml of LB broth cultured cells were pelleted by centrifuging at $12000 \times g$ for 3 min. The pelleted cells were resuspended in 100 µl resuspension buffer by flicking the tube. 200 µl lysis buffer was added to the resuspended cells and gently mixed by inverting the tube 4-6 times. Subsequently, 300 µl of neutralization buffer was added and mixed by inverting the tube 4-6 times. The mixture was then centrifuged at $12000 \times g$ for 7 min and the supernatants transferred to spin columns. The spin columns were centrifuged at $12000 \times g$ for 1 min and the flow through discarded. 500 µl wash buffer was added to each column and centrifuged at $12000 \times g$ for 1 min. This wash

step was repeated. To completely remove the wash buffer, the spin column was centrifuged at the same condition for 1 min. Thereafter, the column was transferred to new sterile 1.5 ml microcentrifuge tubes, 25 μ l of nuclease free water added and left to stand for 5 min before elution by centrifugation at 12000×g for 2 min. The recovered plasmids were electrophoresed and respective inserts amplified using their respective primers as in 3.9.1.

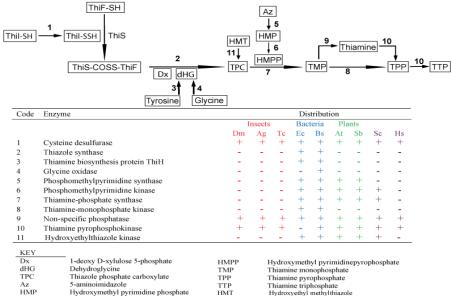
Sequencing of the insert was outsourced from Macrogen (Korea, Seoul, South Korea). Eventually, the sequence obtained from the PCR amplification was translated, then aligned with the sequence of the respective predicted gene models using ClustaIW (Thompson *et al.*, 1994).

CHAPTER FOUR

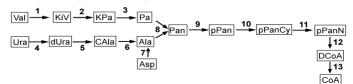
RESULTS


4.1 Global vitamin and cofactor biosynthesis pathways

To enable accurate determination of *Glossina* B-vitamin and cofactor biosynthesis enzymes, all experimentally validated and computationally annotated enzymes involved in these processes were identified across the three kingdoms. A total of 144 experimentally validated orthologs that participate in B-vitamins and cofactors biosynthesis pathways were identified in eukaryotes and prokaryotes and used to search orthologs in *Glossina*. A table of these genes is provided in the supplementary material (Table S1). Subsequently, their physicochemical properties namely protein lengths, molecular weights (MW) and isoelectric points (pI), and the domain organization were determined (see Table S2 and Table S3 in the supplementary material). To have a global outlook of all the possible enzymes and pathways, the experimentally validated orthologs identified. This data together with documented biochemical pathways for various organisms were used to generate integrated pathways for biosynthesis of B-vitamins and cofactors (Figure 14). The pathways generally reveal that bacteria encode the highest number of enzymes for biosynthesis of most B-vitamins and cofactors while insects have the lowest number.


In thiamine biosynthesis pathway, only bacteria, plants and yeast have the full pathway. Insects and human do not synthesize thiamine but may acquire it from other sources, possibly diet in order to synthesize the cofactor thiamine pyrophosphate (TPP).

Bacteria, yeast and plants have a full riboflavin biosynthesis pathway. Insects and humans on the other hand do not biosynthesize riboflavin but synthesize the cofactor flavin adenine dinucleotide (FAD) from outsourced riboflavin. In nicotinamide adenine dinucleotide (NAD) biosynthesis pathway, plants and bacteria utilize the aspartate (*de novo*) or the nicotinate pathway while animals utilize the nicotinamide pathway (Lin *et al.*, 2010).


A) Nicotinamide (vitamin B3)

C) Thiamine (vitamin B1)

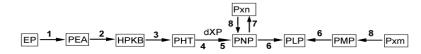
B) Pantothenate (vitamin B5)

Pantothenate

α- ketoisovalerate

Pan

KiV


Enzyme	Distribution								
	Ir	sects		Bac	teria	Pla	ints		
	Dm	Ag	Tc	Ec	Bs	At	Sb	Sc	Hs
Branched-chain-amino-acid aminotransferase	+	+	+	+	+	+	+	+	+
Ketopantoate hydroxymethyltransferase	-	-	-	+	+	+	+	+	-
Ketopantoate reductase	-	-	-	+	+		-	+	-
Dihydropyrimidine dehydrogenase	+	+	+		-	+	+	-	+
Dihydropyrimidinase	+	+	+	+	-	+	+	-	+
Beta-ureidopropionase	+	+	+			+	+	-	+
Aspartate 1-decarboxylase	-	-	-	+	+		-	-	-
Pantothenate synthetase	-	-	-	+	+	+	+	+	-
Pantothenate kinase	+	+	+	+	+	+	+	+	+
Phosphopantothenate-cysteine ligase	+	+	+	+	+	+	+	+	+
Phosphopantothenoylcysteine decarboxylase	+	+	+	+	+	+	+	+	+
Phosphopantetheine adenylyltransferase	+	+	+	+	+	+	+	+	+
Dephospho-CoA kinase	+	+	+	+	+	+	+	+	+
· · · ·									
riop is usparate									
Uracil dUra 5,6-dihydro-uracil β-alanine CoA Coenzyme A	pPan pPanCy		phosph phosph						
	Branched-chain-amino-acid aminotransferase Ketopantoate hydroxymethyltransferase Ketopantoate reductase Dihydropyrimidinase Beta-ureidopropionase Aspartate 1-decarboxylase Pantothenate synthetase Pantothenate synthetase Phosphopantothenate-cysteine ligase Phosphopantothenate-cysteine decarboxylase Dephosphopantetheine adenylyltransferase Dephospho-CoA kinase	Ir Branched-chain-amino-acid aminotransferase Ketopantoate hydroxymethyltransferase Cetopantoate reductase Dihydropyrimidinase Beta-ureidopropionase Aspartate 1-decarboxylase Pantothenate synthetase Pantothenate synthetase Phosphopantothenate-cysteine ligase Phosphopantothenate-cysteine ligase Phosphopantetheine adenylyltransferase Dephospho-CoA kinase L-valine Urrael dUra 5-6-dihydro-uraeil Phan	Insects Dm Ag Tranched-chain-amino-acid aminotransferase Branched-chain-amino-acid aminotransferase F (etopantoate hydroxy methyltransferase C (etopantoate reductase Dihydropyrimidinase Dihydropyrimidinase H + Beta-ureidopropionase H + Beta-ureidopropionase H + Beta-ureidopropionase H + Phosphopantothenate-cysteine ligase H + Phosphopantothenate-cysteine ligase H + Phosphopantothenate-cysteine decarboxylase Double H + Dophopantothenate-cysteine decarboxylase H + Dophopantothenate-cysteine decarboxylase H + Dophopantothenate-cysteine decarboxylase H + Dophopantothenate adenylyltransferase H + Dephospho-CoA kinase L- valine Uracil dUra 5,6-dhydro-uracil DPan 4-7	Insects Branched-chain-amino-acid aminotransferase Dm Ag Tc Branched-chain-amino-acid aminotransferase + + + Ketopantoate reductase - - - Dihydropyrimidinase + + + Dihydropyrimidinase + + + Beta-ureidopropionase + + + Pantothenate synthetase - - - Pantothenate synthetase - - - Phosphopantothenate-cysteine ligase + + + Phosphopantothenate-cysteine ligase + + + Dephospho-CoA kinase + + + L- valine Asp L- aspartate CAla N-carbam Uracil dUra 5,6-dihydro-uracil PPan 4'-phospho	Insects Bac Branched-chain-amino-acid aminotransferase Dm Ag Tc Ec Branched-chain-amino-acid aminotransferase + + + + Ketopantoate hydroxymethyltransferase - - + Ketopantoate reductase - - + Dihydropyrimidinase + + + Beta-ureidopropionase + + + Aspartate 1-decarboxylase - - + Pantothenate synthetase - - + Phosphopantothenate-cysteine ligase + + + Phosphopantothenate-cysteine ligase + + + Phosphopantothenate-cysteine ligase + + + Urbosphopantothenoylcysteine decarboxylase + + + Uracil dUra 5.6-dihydro-uracil Plan N-carbamoyl β-	Insects Bacteria Branched-chain-amino-acid aminotransferase Dm Ag Tc Ec Bs Ketopantoate hydroxymethyltransferase - - + Dihydropyrimidinase + + 1 - - - + + + - - Dihydropyrimidinase + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + - - - + + + Pantothenate synthetase - - - + + + + + + + + + + + + + +	Insects Bacteria Ph Branched-chain-amino-acid aminotransferase Dm Ag Tc Ec Bacteria Ph Branched-chain-amino-acid aminotransferase +	Insects Bacteria Plants Branched-chain-amino-acid aminotransferase Dm Ag Tc Ec Bs At Sb Ketopantoate hydroxymethyltransferase - - + + + + + Ketopantoate reductase - - + + + + + Dihydropyrimidinase + + + - - + + Beta-ureidopropionase + + + - + + Pantothenate synthetase - - + + + Pantothenate synthetase - - + + + Phosphopantothenate-cysteine ligase + + + + PhosphopantothenavjCysteine decarboxylase + + + + Phosphopantothenaidenaylyltransferase + + + + Dephospho-CoA kinase + + + + + L- valine Asp L- aspartate CAla N-carbamoyl β-alanine Uracil dUra 5,6-dihydro-uracil PA 4'-phosphopantothenate	$\begin{tabular}{ c c c c c } \hline lnsects & Bacteria & Plants \\ \hline Dm & Ag & Tc & Ec & Bs & At & Sb & Sc \\ \hline bm & Ag & Tc & Ec & Bs & At & Sb & Sc \\ \hline t & + & + & + & + & + & + & + & + & + &$

Pantoate D) Pyridoxine (vitamin B6)

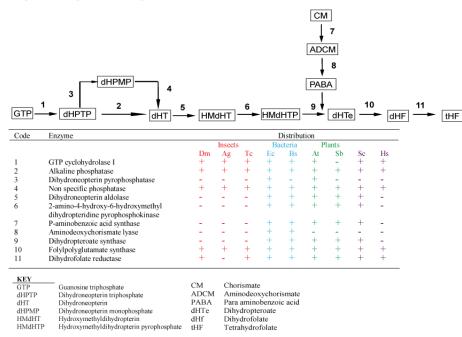
α- ketopantoate

KPa

Pa

pPanN

DCoA


4'-phosphopantothenine

Dephospho coenzyme A

Code	Enzyme	Distribution								
		Insects		isects		Bacteria		ints		
		Dm	Ag	Tc	Ec	Bs	At	Sb	Sc	Hs
1	D-erythrose-4-phosphate dehydrogenase	-	-	-	+	-	-	-	-	-
2	Erythronate-4-phosphate dehydrogenase	-	-	-	+	-	-	-	-	-
3	Phosphoserine aminotransferase	+	+	+	+	+	+	-	+	+
4	4-hydroxythreonine-4-phosphate dehydrogenase	-	-	-	+	-	-	-	-	-
5	Pyridoxine 5'-phosphate synthase	-	-	-	+	-	-	-	-	-
6	Pyridoxine-5'-phosphate oxidase	+	+	+	+	-	-	-	+	+
7	Pyridoxal phosphate phosphatase	+	+	+	-	-	-	-	-	+
8	Pyridoxal kinase	+	+	+	+	+	+	-	+	+

KEY	
100.00	

PEA 4-phospho D- erythronate PMP Py Pxm Pyridoxamine PHT 4- Pxn Pyridoxine dXP 1-	yridoxal phosphate yridoxamine monophosphate -phosphohydroxy L-threonine -deoxyxylulose 5-phosphate -hydroxy 4-phosphohydroxy α-ketobutyrate
---	--

G) Biotin (vitamin B7)

$$PT \xrightarrow{1} Aon \xrightarrow{2} Don \xrightarrow{3} dTB \xrightarrow{4} Biotin \xrightarrow{5} Biotin-P$$

			Distribution								
		Insects		Bacteria		Plants					
		Dm	Ag	Tc	Ec	Bs	At	Sb	Sc	Hs	
1 1	8-amino-7-oxononanoate synthase	-	-	-	+	+	+	+	-	-	
	Adenosylmethionine-8-amino-7-oxononanoate aminotransferase	-	-	-	+	+	+	+	+	-	
3 1	Dethiobiotin synthetase	-	-	-	+	+	-	-	+	-	
4 1	Biotin synthase	-		-	+	+	+	-	+	-	
5 1	Biotin protein ligase	+	+	+	+	+	-	-	+	+	

PT

Pimelate thioester Aon 8-amino-7-oxononanoate

Dethiobiotin dTB

F) Riboflavin (vitamin B2)

[GTP 1 DRAP A ASPAtyU		6 HBP 17 RP	dRI		³ ► F	RF -	9 - ⊦	-MN	<u>10</u> _⊦	FAD
Code	Enzyme					stribut					-
			nsects			teria		ants			
		Dm	Ag	Tc	Ec	Bs	At	Sb	Sc	Hs	
1	GTP cyclohydrolase-2	-	-	-	+	+	++	+	+	-	
2	DRAP deaminase	-	-	-	+	+	+		-	-	
3	APAsy uracil reductase	-	-	-	+	+	+	+	-	-	
4	DARP reductase	-		-				-	+	-	
5	Bifunctional protein RIB2	-		-		- 7			+	-	
6	Lumazine synthase	-	-	-	+	+	+	+	+	-	
7	DHBP synthase	-	-	-	+	+	+	+	+	-	
8	Riboflavin synthase	-	-	-	+	+	+	-	+	-	
9	Riboflavin kinase	+	-	+	+	+	+	+	+	+	
10	FAD synthase	+	+	+	+	+	- 7	-	+	+	
KEY GTP ARAP APAsyU APAtyU DRAP	Guanosine 5 ⁻ triphosphate 5-amino 6-ribitylamino 2,4-(1H,31 5-amino 6-(5-phosphoD-ribosyl at 5-amino 6-(5-phospho D-ribityl at 2,5-diamino 6-ribosylamino 4-(3H	mino) urac nino) urac	il il		sphate	RP DHI dRL RF FMI FAI	N	3,4-di 6,7-di Ribof Flavin	ihydro imethy lavin n mon	/1 8-ribi	itanone 4-phosphate ityl lumazine

Figure 14. Integrated pathways for vitamins and cofactor biosynthesis across insects, bacteria, plants, yeast and man. The substrates/ products are represented in boxes and their abbreviations are shown in the KEY. Arrows represent chemical reactions and numbers represent enzymes. In the tables, plus (+) and minus (-) signs indicate presence and absence of an enzyme respectively. Abbreviations: Dm, Drosophila melanogaster; Ag, Anopheles gambiae; Tc, Tribolium castenum; Ec, Escherichia coli; Bs, Bacillus subtilis; At, Arabidopsis thaliana; Sb, Sorghum bicolor; Sc, Saccharomyces cerevisiae; Hs, Homo sapien.

Don 7,8-diaminononanoate

Biotin-P Biotin Protein

In pantothenate biosynthesis pathway, insects and humans do not have the ability to synthesize pantoate and condense pantoate with alanine to make pantothenate (vitamins B5). All other organisms analyzed have enzymes for synthesizing coenzyme A (CoA) from vitamin B5.

Escherichia coli and plants are the only organisms that biosynthesize pyridoxine (vitamins B6) *de novo* (Tambasco-Studart *et al.*, 2005). Other organisms salvage pyridoxal phosphate (PLP) from vitamin B6 or from the ketone or amine forms of the vitamin i.e. pyridoxal and pyridoxamine respectively.

Bacteria, plants and yeast have a complete tetrahydrofolate (THF) biosynthesis pathway. Insects and humans on the other hand do not have the potential to biosynthesize para amino benzoic acid (PABA), a major component of THF, and therefore do not synthesize the cofactor *de novo*. In biotin biosynthesis pathway, only bacteria and yeast have the potential to synthesize biotin *de novo* but plants pathway is not well known (Pinon *et al.*, 2005). The other organisms only have biotin protein ligase, which is the enzyme that ligates biotin to the biotin dependent enzyme.

In summary, only bacteria, plants and yeast have the potential to biosynthesize B-vitamins while insects and humans lack the *de novo* biosynthesis pathways. Most organisms however have the potential to biosynthesize cofactors from the B-vitamins.

4.2 Global domain organization in B-vitamins and cofactors biosynthesis enzymes

The domain organization of enzymes involved in B-vitamins and cofactors biosynthesis is shown in figure 15. Generally the domain architecture for orthologous enzymes across insects, bacteria, plants, yeast and human varies. It is only in six enzymes namely, cysteine desulfurase, thiamine pyrophosphokinase, phosphoserine aminotransferase, nicotinamide mononucleotide adenyltransferase, NAD kinase and branched chain amino acid aminotransferase, that all the organisms have similar domain architecture.

Among insects, the architecture is similar for most enzymes except for nicotinate phosphoribosyltransferase (in *Tribolium* and *Anopheles*), dihydropyrimidine dehydrogenase in *Tribolium*) and phosphopantothenate cysteine ligase (in *Drosophila* and *Tribolium*). Most of the difference in bacteria domains was observed between the free living and the endosymbionts whereas in plants, *Arabidopsis* and *Sorghum* have similar domain organization in most instances.

Pathway	Enzyme	Domain variants
Thiamine pyrophosphate/ Vitamin B1	Cysteine desulfurase	All
	Sulfur carrier protein ThiS	Bacteria
	Thiazole biosynthesis adenylyltransferase ThiF	Bacteria —
	Thiamine biosynthesis protein ThiH	Bacteria — Sodalis — Sodalis
	Glycine oxidase	Bacillus —
	Hydroxyethylthiazole kinase	Plants, Bacteria Yeast
	Thiazole synthase	Bacteria —
	Hydroxymethylpyrimidine phosphate synthase	Bacteria, Plants —
	Phosphomethylpyrimidine kinase	Plants Bacteria
	Thiamine-phosphate synthase	Plants Bacteria -
	Thiamine-monophosphate kinase	Bacteria — (
	Thiamine pyrophosphokinase	
Flavin adenine dinucleotide/ /itamin B2	3,4-dihydroxy-2-butanone 4-phosphate synthase	Plants, Bacillus — Bacteria, Yeast -
	GTP cyclohydrolase-2	Plants, Bacillus — Bacteria, Yeast — — — — — — — — — — — — — — — — — — —
-	DARP reductase	Yeast
	Bifunctional protein RIB2	Yeast
	DRAP deaminase	Bacteria Plants
	HTP reductase	Bacteria —
	Lumazine synthase	Bacteria, Yeast, Plants -
	Riboflavin synthase	Bacteria, Yeast, Plants
	Riboflavin kinase	Drosophila, Tribolium, Human — Bacteria — — — — — — — — — — — — — — — — — — —
	FAD synthase	Drosophila, Anopheles, Yeast
Pyridoxal phosphate/ Vitamin B6	D-erythrose-4-phosphate dehydrogenase	Escherichia –
	Erythronate-4-phosphate dehydrogenase	Bacteria -
	Phosphoserine aminotransferase	All
	4-hydroxythreonine-4-phosphate dehydrogenase	Bacteria —
	Pyridoxine 5'-phosphate synthase	Bacteria —
	Pyridoxal kinase	Drosophila, Bacteria, Yeast — Construction of the Construction of
	PLP phosphatase	Insects, Human
	Pyridoxine-5'-phosphate oxidase	Insects,Bacteria, Human — (
	Aminotran_5 ThiG	AIRS PseudoU_synth_2 MoCF_biosynth 📄 PdxJ

Pathway	Enzyme	Domain variants						
licotinamide adenine linucleotide/ Vitamin B3	L-aspartate oxidase	Bacteria, Plants						
	Quinolinate synthase A	Bacteria, Sorghum — Arabidopsis — (
	Nicotinamide phosphoribosyltransferase	Human						
	Nicotinamidase	Insects -						
	Nicotinate phosphoribosyltransferase	Glossina, Drosophila, Bacteria, Yeast, Human Anopheles, Tribolium, Plants						
	Nicotinamide mononucleotide adenylyltransferase	All —						
	NAD synthetase	Insects, Human, Yeast, Plants						
	NAD kinase							
	Quinolinate phosphoribosyltransferase	Bacteria, Plants, Yeast, Human						
Co-enzyme A/ Vitamin B5	Branched chain amino acid aminotransferase							
	Ketopantoate hydroxymethyltransferase	Bacteria, Plants, Yeast —						
-	Ketopantoate reductase	Bacteria, Yeast						
	Dihydropyrimidine dehydrogenase	Glossina, Drosophila, Human						
	Dihydropyrimidinase	Insects, Human						
	Beta-ureidopropionase	Insects, Plants, Human						
	Aspartate 1-decarboxylase	Bacteria						
	Pantothenate synthetase	Bacteria, Plants						
	Pantothenate kinase	Insects Bacteria Bacillus						
	Phosphopantothenate-cysteine ligase	Glossina, Tribolium, Arabidopsis, Yeast						
	Phosphopantothenoylcysteine decarboxylase	Insects, Plants, Yeast, Human — Bacteria — Bacteria —						
	Phosphopantetheine adenylyltransferase	Insects, Human						
	Dephospho-CoA kinase	Insects, Human						
FAD_binding_2 Succ_DH_flav_0 NadA SufE		synthase Pantoate_transf NAD_binding_8 🔛 Asp_decarbox 🛄 Fumble DFP se_N 🔛 ApbA DHO_dh III Amidohydro_1 DUF89 Flavoprotein						

Pathway	Enzyme	Domain variants
Tetrahydrofolate/ Vitamin B9	GTP cyclohydrolase 1	Insects, Bacteria, Yeast, Human —
Vitamin B9		Arabidopsis —
	Alkaline phosphatase	Bacteria, Insects, Yeast, Human
		Bacillus, Plants —
	Dihydroneopterin triphosphate pyrophosphatase	Bacteria, Plants -
	Dihydroneopterin aldolase	Yeast
		Bacteria, Plants —
	7,8-dihydro-6-hydroxymethylpterin	Yeast
	pyrophosphokinase	Bacteria
		Sodalis, Escherichia, Bacillus — (
		Wigglesworthia, Sodalis, Escherichia, Bacillus
	Para-aminobenzoic acid synthase	Yeast
		Plants
	Aminodeoxychorismate lyase	Bacteria -
	Dihydropteroate synthase	Bacteria – Plants – – – Plants – – – – – – – – – – – – – – – – – – –
	Dinydropieroate synthase	Yeast
	Folylpolyglutamate synthase	Insects, Bacteria, Plants, Yeast, Man
		Escherichia, Bacillus — (
	Dihydrofolate reductase	Anopheles, Drosophila, Bacteria, Yeast, Human
		Plants
Biotin/ Vitamin B7	8-amino-7-oxononanoate synthase	Bacteria, Plants
	DAPA aminotransferase	Bacteria, Yeast
	Dethiobiotin synthetase	Bacteria, Yeast —
	Biotin synthase	Bacteria, Yeast, Plants — (
		Insects, Human
	Biotin protein ligase	Wigglesworthia, Wolbachia
		Sodalis, Bacillus, Escherichia –
GTP_	_cyclohydrol III HPPK	Pterin_bind III HSP70 III AAA_26 III BPL_LpIA_LipB 200 aa
_	phosphatase Anth_synt_I_N	🔛 Mur_ligase_M 📰 Thymidylat_synt 🎹 MFS_1 📑 BPL_C
PhoE		Image: Constraint of the second se

Figure 15. Domain architecture for orthologs involved in B-vitamins and cofactors biosynthesis pathways. The domain architecture of experimentally validated and computer predicted orthologs was determined at public protein databases namely interpro, pfam and prosite. The different colour codes represent different domains and their names are given below the figure. The enzyme names in blue are enzymes for cofactors biosynthesis while the rest in black are for B-vitamins biosynthesis

The variation in domain organization can be due to loss of and/or acquisition of domains. For example, thiamine biosynthesis protein H (*Sodalis*), DRAP deaminase (plants), riboflavin kinase (human and insects), dihydropyrimidine dehydrogenase (*Tribolium*), NAD synthetase

(bacteria) and biotin protein ligase (*Wiggleswothia* and *Wolbachia*) lack BATS, RibD_C, FAD_syn, NAD_binding_8, CN_hydrolase and HTH_11 and BPL_C domains respectively, domains that are present in orthologs. In addition, the domains for folylpolyglutamate synthase (*Escherichia* and *Bacillus*) and dethiobiotin synthetase (*Sodalis*) have been lost in the other organisms. Some organisms may have acquired extra domains like in FAD synthase (*Tribolium* and human), quinolinate synthase A (*Arabidopsis*) and nicotinamidase (insects), (Figure 15).

Another observation was presence of multiple domain proteins suggesting multifunctional enzymes. Examples are hydroxyethylthiazole kinase, phosphomethylpyrimidine kinase and thiamine phosphate synthase (vitamin B1 pathway), 3,4-dihydroxy 2-butanone 4-phosphate synthase, GTP cyclohydrolase-2, bifunctional protein RIB2, riboflavin kinase and FAD synthase (vitamin B2 pathway), dihydropyrimidine dehydrogenase (vitamin B5 pathway), all CoA biosynthesis enzymes, dihydroneopterin aldolase, 7,8-dihydro 6-hydroxymethylpterin pyrophosphokinase, PABA synthase and dihydropteroate synthase (vitamin B9 pathway), dihydrofolate reductase (THF pathway), DAPA aminotransferase and dethiobiotin synthetase (biotin pathway) (Figure 15). For instance in yeast, hydroxyethylthiazole kinase has two domains, one for hydroxyethylthiazole kinase activity (HK) and the other for thiamine phosphate synthase activity (TMP-TENI), indicating two enzyme activities on a single polypeptide.

In addition, some multifunctional enzymes namely hydroxymethylthiazole kinase, phosphomethylpyrimidine kinase, thiamine phosphate synthase (vitamin B1 pathway), dihydroneopterin aldolase, 7,8-dihydro 6-hydroxymethylpterin pyrophosphokinase and dihydropteroate synthase (vitamin B9 pathway), have different combination of domains and therefore different combination of enzymes in a single polypeptide. For instance in thiamine biosynthesis, plants combine phosphomethylpyrimidine kinase and thiamine phosphate synthase while yeast combines phosphomethylpyrimidine kinase and hydroxymethylpyrimidine phosphate synthase. Lastly some organisms have multiple domains for some enzymes namely GTP cyclohydrolase I (Arabidopsis), dihydroneopterin aldolase (yeast) and nicotinate phosphoribosyltransferase (Anopheles, Tribolium and plants).

In summary, domain architecture of B-vitamins and cofactors biosynthesis enzymes vary widely across organisms analyzed. This diversity is present within and between groups of organisms. Variations include loss of domains that most likely results into specialized

enzymes, or domain acquisitions and fusion of enzymes that result in a single polypeptide with multiple different enzymatic activity i.e. multifunctional polypeptides.

4.3 Glossina B-vitamins and cofactors biosynthesis pathway

To identify genes in *Glossina* genome that encode enzymes in B-vitamins and cofactors biosynthesis pathways, all experimentally validated and the computationally validated orthologs used to design the global pathways (Figures 14 and 15) were used as query sequences for homology search at VectorBase (www.vectorbase.org). Both tblastn and blastp were used respectively to search the nucleotide sequence and the software predicted protein models of the *Glossina* genome. All the hits obtained in multiple searches and which had low e-values were analysed for start and stop codons, and splice sites then translated to proteins. Both tblastn and blastp searches resulted in the same protein and these protein sequences were used in subsequent analyses with numerical IDs bearing the prefix GMOY, which stands for *Glossina morsitans* Yale strain. In addition, their physicochemical properties and domain organization were analysed and the proteins that resembled the experimentally validated orthologs in these properties were used in a reverse blastp search and only hits that identified the initial query protein were considered as true hits.

A total of 34 genes encoding proteins involved in vitamins and cofactors biosynthesis were identified in *Glossina* (Table 2). Six of the 34 genes encode enzymes involved in biosynthesis of B-vitamins namely thiamine (1 enzyme), pyridoxine (1 enzyme) and pantothenate (4 enzyme) (Table 2a), while the remaining 28 genes encode for 20 enzymes in cofactors biosynthesis namely TPP (1 enzyme), FAD (2 enzymes), NAD (5 enzymes), CoA (5 enzymes), PLP (3 enzymes) and THF (4 enzymes) (Table 2b). The variation in genes and enzyme numbers i.e. 28 genes vs 20 enzymes, is due to multiple genes encoding a single enzyme protein as in the case of FAD synthase (2 gene copies), pantothenate kinase (2 gene copies), dihydrofolate reductase (2 gene copies) and alkaline phosphatase (6 gene copies) (Table 2b) and were considered isoenzymes (Appendix 5). Two genes namely GMOY000849 and GMOY009677 were allocated EC number based on the ortholog they cluster with in the phylogenetic trees shown in supplementary data (Figure S1). Together, the tsetse fly encodes 26 enzymes in B-vitamins and cofactors biosynthesis pathways.

Pathway	Enzyme EC	Enzyme	Gene ID	Protein Length
	Number			(aa)
Thiamine	EC:2.8.1.7	Cysteine desulfurase	GMOY000270	467
Pyridoxine	EC:2.6.1.52	Phosphoserine aminotransferase	GMOY006775	364
Pantothenate	EC:2.6.1.42	Branched-chain-amino-acid aminotransferase	GMOY012027	450
	EC:1.3.5.2	Dihydropyrimidine dehydrogenase	GMOY000435	1035
	EC:3.5.2.2	Dihydropyrimidinase	GMOY004714	594
	EC:3.5.1.6	Beta-ureidopropionase	GMOY006358	386

Table 2a. List of *Glossina* genes and their respective enzymes involved in B-vitamins biosynthesis

Pathway	Enzyme EC Number	Enzyme	Gene ID	Protein Length
				(aa)
TPP	EC:2.7.6.2	Thiamine pyrophosphokinase	GMOY009051	291
FAD	EC:2.7.1.26	Riboflavin kinase	GMOY009056	165
	EC:2.7.7.2	FAD synthase	GMOY000849	424
	EC:2.7.7.2	FAD synthase	GMOY008278	247
PLP	EC:2.7.1.35	Pyridoxal kinase	GMOY003664	304
	EC:3.1.3.74	Pyridoxal phosphate phosphatase	GMOY009677	275
	EC:1.4.3.5	Pyridoxine-5'-phosphate oxidase	GMOY005148	254
NAD	EC:3.5.1.19	Nicotinamidase	GMOY006570	357
	EC:2.4.2.11	Nicotinate phosphoribosyltransferase	GMOY008976	480
	EC:2.7.7.18; EC:2.7.7.1	Nicotinamide mononucleotide adenylyltransferase 1	GMOY002776	359
	EC:6.3.5.1	glutamine-dependent NAD(+) synthetase	GMOY008198	865
	EC:2.7.1.23	NAD kinase	GMOY010621	544
CoA	EC:2.7.1.33	Pantothenate kinase	GMOY006067	391
	EC:2.7.1.33	Pantothenate kinase	GMOY000935	495
	EC:6.3.2.5	Phosphopantothenatecysteine ligase	GMOY002354	306
	EC:4.1.1.36	Phosphopantothenoylcysteine decarboxylase	GMOY009241	189
	EC:2.7.1.24; EC:2.7.7.3	Bifunctional coenzyme A synthase	GMOY000596	553
	EC:2.7.1.24	Dephospho-CoA kinase	GMOY006891	240
THF	EC:3.5.4.16	GTP cyclohydrolase 1	GMOY009349	384
	EC:3.1.3.1	Alkaline phosphatase	GMOY004796	539
	EC:3.1.3.1	Alkaline phosphatase	GMOY000067	547
	EC:3.1.3.1	Alkaline phosphatase	GMOY009926	526
	EC:3.1.3.1	Alkaline phosphatase	GMOY006875	541
	EC:3.1.3.1	Alkaline phosphatase	GMOY004885	589
	EC:3.1.3.1	Alkaline phosphatase	GMOY007323	611
	EC:6.3.2.17	Folylpolyglutamate synthase	GMOY005468	524
	EC:1.5.1.3	Dihydrofolate reductase	GMOY008444	343
	EC:1.5.1.3	Dihydrofolate reductase	GMOYdhfr2	187
Biotin	EC:6.3.4.10	Biotin protein ligase	GMOY010708	1141

Table 2b. List of *Glossina* genes and their respective enzymes involved in cofactors biosynthesis

Abbreviations: TPP; thiamine pyrophosphate, FAD; flavin adenine dinucleotiede, NAD; nicotinamide adenine dinucleotide, CoA; coenzyme A, PLP; pyridoxal phosphate, THF; tetrahydrofolate. GMOYdhfr2 is the second gene encoding dihydrofolate reductase (dhfr).

4.4 Domain structure of *Glossina* enzymes

The *Glossina* enzymes share orthology with other organisms' enzymes for B-vitamins and cofactors biosynthesis, and this is confirmed further by similar domains organizations though with some variations as in the global analysis (Figures 15 and 16). *Glossina* cysteine desulfurase, thiamine pyrophosphokinase, phosphoserine aminotransferase, nicotinamide mononucleotide adenyltransferase, NAD kinase and branched chain amino acid aminotransferase (Figure 16) have same domain architecture as other eukaryotes (Figure 15). For example yeast, human and *Drosophila* thiamine pyrophosphokinase have TPK_catalytic and TPK_B1_binding domains at the N and C-terminals respectively, an organization present in *Glossina* thiamine pyrophosphokinase.

Some enzymes however exhibit variation in domain organization as observed in global domain analysis. For example, *Glossina* dihydrofolate reductase, bifunctional coenzyme A synthase and alkaline phosphatase domain organization (Figure 16) are different from those of insects, bacteria, plants, human and yeast (Figure 15). The rest of the enzymes in *Glossina* however have similar domain architecture as those of other insects.

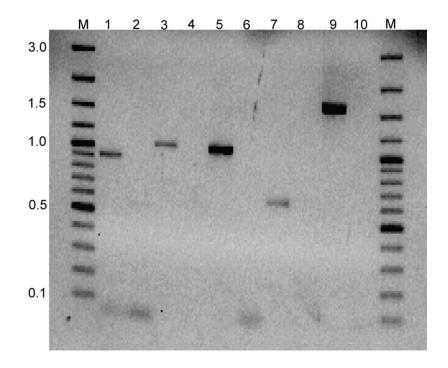
Glossina has unique bifunctional coenzyme A synthase. In insects and humans, this enzyme consists of two domains CTP_transf_2 and CoaE for phosphopantetheine adenylyltransferase activity and dephospho-CoA kinase activity respectively in a single polypeptide i.e. bifunctional. However, in bacteria, yeast and plants, these two domains are encoded in separate genes hence independent polypeptides (Figure 15). Interestingly, *Glossina* encodes both the single and bifunctional enzymes (Figure 16). The gene encoding the bifunctional enzyme may have resulted from fusion of phosphopantetheine adenylyltransferase and dephospho-CoA kinase genes.

In addition, *Glossina* dihydrofolate reductase (DHFR) has a heat shock protein (HSP) domain which is absent in other orthologs. This HSP70 domain is absent in a second DHFR in *Glossina* that is similar to insects, yeast, human and bacteria DHFR (Figures 15 and 16) and the former *Glossina* DHFR is possibly due to domain acquisition. Despite the HSP70 domain, both *Glossina* polypeptides were assumed to be DHFR.

A)

hway	Enzyme Domain architecture					
mine	Cysteine desulfurase	GMOY000270				
doxine	Phosphoserine aminotransferase	GMOY006775*				
	PLP phosphatase	GMOY009677 —				
tothenate	Branched chain amino acid aminotransferase	GMOY012027				
-	Dihydropyrimidine dehydrogenase	GMOY000435				
	Dihydropyrimidinase	GMOY004714				
-	Beta-ureidopropionase	GMOY006358				
te	GTP cyclohydrolase 1	GMOY009349				
	Alkaline phosphatase	GMOY00067 GMOY004885 GMOY009926 GMOY007323 GMOY006875				
		GMOY004796*				
Pathw	/ay Enzyme	Domain architecture				
TPP	Thiamine pyrophosphokinase	GMOY009051				
FAD	Riboflavin kinase	GMOY009056 -				
	FAD synthase	GMOY000849				
		GMOY008278				
PLP	Pyridoxal kinase	GMOY003664 —				
	Pyridoxine-5'-phosphate oxidase	GMOY005148				
NAD	NAD Nicotinamidase GMOY006570					
	Nicotinate phosphoribosyltransferase	GMOY008976				
	Nicotinamide mononucleotide adenylyltransferase	GMOY002776				
	NAD synthetase	GMOY008198				
	NAD kinase	GMOY010621				
CoA	Pantothenate kinase	GMOY006067				
	Phosphopantothenate-cysteine ligase	GMOY002354				
	Phosphopantothenoylcysteine decarboxylase	GMOY009241				
	Bifunctional coenzyme A synthase	GMOY000596				
THF	Folylpolyglutamate synthase	GMOY005468				
	Dihydrofolate reductase	GMOY008444*				
Biotin	Biotin protein ligase	GMOYdhfr2				
Pu TP TP Fla	minotran_5 PfkB tt_Phosphatase II Pyridox_oxida %_catalytic PNPOx_C %_B1_binding II EF-hand_7 avokinase II sochorismat NPS_reduct NAPRTase	NAD_synthase Image: Fer4_21 Image: SerC Alk_phosphatase NAD_kinase Image: Amidohydro_1 Image: DFP Image: PTS_HPR_HIS				

Figure 16. Domain architecture of *Glossina* enzymes for B-vitamins and cofactors biosynthesis. The domains for B-vitamins (A) and cofactors (B) biosynthesis enzymes was determined at public protein databases. The different shades represent different domains and their names are given below the figure. The IDs of genes are shown; * indicate enzymes with unique domains.


Though the domain for phosphoserine aminotransferase is similar across all organisms, in *Glossina* this enzyme has a FGGY motif at its C-terminal end, a motif observed in carbohydrate kinases. FGGY family of carbohydrate kinases include enzymes like L-fuculokinase, gluconokinase, glycerokinase, xylulokinase and L-xylulose kinase (Reizer *et al.*, 1991). It is therefore unique for this aminotransferase to contain a carbohydrate kinase motif.

Lastly, one of the six alkaline phosphatase isoenzymes encoded by gene GMOY004796 contains a phosphotransferase system (PTS) histidine-containing phosphocarrier protein (HPr) domain at its C-terminal in addition to the catalytic alkaline phosphatase domain. In contrast, all other alkaline phosphatases in *Glossina* have similar domain architecture like other homologs in insects.

In summary, the 26 enzymes obtained in *Glossina* have similar domain architecture to the other insects observed in the global analysis. Though some enzymes had unique domains, this characteristic is also present in other insects. With the *Glossina* genes having orthologs and the domain organization and physicochemical properties of their proteins similar to other organisms including insects, the genes were considered true and the resulting enzymes possibly functional in B-vitamins and cofactors biosynthesis.

4.5 Gene validation

To confirm that the genes annotated are truly existent in the fly, a polymerase chain reaction (PCR) was done to amplify full genes, one for each pathway. The shortest genes were selected for amplification because of their ease to amplify (Figure 17 and Table 1). Following amplification the products obtained were of the expected sizes (Figure 17) and after sequencing, the alignments between the protein sequences of the cloned genes and of the corresponding annotated enzymes were 98% identical (Table A1).

Figure 17. Agarose gel image showing DNA bands of amplified genes. The image was obtained after electrophoresis of PCR products of target genes on a 1% ethidium bromide stained agarose gel. Lane M represent the DNA ladder in kilobases while the subsequent lanes marked from 1-10 represent a gene and its negative control in the order GMOY002354, GMOY009051, GMOY005148, GMOYdhfr2 and GMOY009056.

4.6 Comparison between *Glossina* B-vitamins and cofactors biosynthesis enzymes and their orthologs

For comparative analysis, orthologs from a hematophagous insect, *An. gambiae* (also feeds on plant sap) *D. melanogaster* (feeds on ripe fruits) and *T. castanum* (flour) were used. Further, since endosymbionts of *Glossina* have been suggested to take part in B-vitamin metabolism (Pais *et al.*, 2008), *W. glossinidia*, *S. glossinidius*, *W. pipientis*, as well as free-living bacteria *E. coli* and *B. Subtilis* were included. The plants *A. thaliana* and *S. bicolor* which are free living and therefore biosynthesize B-vitamins, and model eukaryotes *H. sapiens* (humans) and *S. cerevisiae* (yeast) were also included. Figure 18 shows the comparative analysis.

Pathway	Enzyme	Gm Ag	Endosymbionts Wg	Free-living bacteria	Plants At	Yeast/Man
Thiamine pyrophosphate	Circleine desulfurees	Dm Tc	Wp Sg	Bs	Sb	<u>Hs</u>
(Vitamin B1)	Cysteine desulfurase			\rightarrow	$ \rightarrow $	\diamond
	Sulfur carrier protein ThiS Thiazole biosynthesis	\Leftrightarrow		\rightarrow	$\stackrel{\wedge}{\leftrightarrow}$	\leftrightarrow
	adenylyltransferase ThiF	\Leftrightarrow		\Rightarrow	\Leftrightarrow	\overleftrightarrow
	Thiamine biosynthesis protein ThiH	\Leftrightarrow		\diamond	\diamond	\Leftrightarrow
	Glycine oxidase	\Leftrightarrow	\bigtriangleup	\diamond	\diamond	\diamond
	Hydroxyethylthiazole kinase	\bigoplus		\diamond	\blacklozenge	\diamond
	Thiazole synthase	\Leftrightarrow		\diamond	\diamondsuit	\diamondsuit
	Hydroxymethylpyrimidine phosphate synthase	\Leftrightarrow		\diamond	\blacklozenge	\Leftrightarrow
	Phosphomethylpyrimidine kinase	\Leftrightarrow		\diamond	\diamond	\diamond
	Thiamine-phosphate synthase	\Leftrightarrow		\diamondsuit	\blacklozenge	\diamond
	Thiamine-monophosphate kinase	\Leftrightarrow		\diamondsuit	\diamondsuit	\diamondsuit
	Thiamine pyrophosphokinase	•	#	\diamond	\blacklozenge	\diamond
Flavin adenine dinucleotide (Vitamin B2)	3,4-dihydroxy-2-butanone 4-phosphate synthase	$\stackrel{\cdot}{\Leftrightarrow}$		\diamond	\blacklozenge	\diamond
. ,	GTP cyclohydrolase-2	${\oplus}$		\diamond		\diamond
	DARP reductase	${\oplus}$	\bigtriangleup	$\stackrel{\circ}{\Leftrightarrow}$	$\stackrel{\bullet}{\Leftrightarrow}$	\diamond
	Bifunctional protein RIB2	$\overset{\bullet}{\Leftrightarrow}$	\bigtriangleup	$\stackrel{\circ}{\diamond}$	$\stackrel{\sim}{\Leftrightarrow}$	\diamond
	DRAP deaminase	${\oplus}$		\diamond		\diamond
	HTP reductase	${\oplus}$		\diamond	\diamond	\diamond
	Lumazine synthase	${\Leftrightarrow}$		\diamond		\diamondsuit
	Riboflavin synthase	${\Leftrightarrow}$		\diamond	A	\diamond
	Riboflavin kinase	- Č		\diamond		\diamond
	FAD synthase	Å		$\stackrel{\sim}{\diamond}$	$\stackrel{\bullet}{\Leftrightarrow}$	$\stackrel{\sim}{\diamond}$
Pyridoxal phosphate	D-erythrose-4-phosphate dehydrogenase	$\overset{\bullet}{\leftrightarrow}$	\bigtriangleup	$\stackrel{\bullet}{\diamond}$	$\stackrel{\sim}{\diamond}$	$\stackrel{\bullet}{\diamond}$
(Vitamin B6)	Erythronate-4-phosphate dehydrogenase	$\stackrel{\sim}{\Leftrightarrow}$		$\stackrel{\sim}{\diamondsuit}$	$\stackrel{\sim}{\Leftrightarrow}$	$\stackrel{\circ}{\Leftrightarrow}$
	Phosphoserine aminotransferase	\mathbf{A}		$\stackrel{\vee}{\diamondsuit}$	$\overset{\vee}{\diamondsuit}$	$\stackrel{\sim}{\diamond}$
	4-hydroxythreonine-4-phosphate	$\overset{\bullet}{\leftrightarrow}$		$\stackrel{\checkmark}{\Leftrightarrow}$	$\stackrel{\vee}{\Leftrightarrow}$	\overleftrightarrow
	dehydrogenase Pyridoxine 5'-phosphate synthase	$ \bigoplus_{i=1}^{\bullet} $		$\stackrel{\checkmark}{\diamondsuit}$	$\stackrel{\vee}{\Leftrightarrow}$	$\stackrel{\vee}{\Leftrightarrow}$
	Pyridoxal kinase	\checkmark	#	$\stackrel{\checkmark}{\diamond}$	$\overset{\checkmark}{\diamondsuit}$	$ \begin{array}{c} \bullet \\ \diamond \\ \diamond \\ \bullet \\ \bullet \end{array} $
	PLP phosphatase			\sim	\sim	\sim
	Pyridoxine-5'-phosphate oxidase			\sim	\bigtriangledown	
	r yndonne-o -phosphale oxidase			\bigtriangledown	\bigtriangledown	\checkmark

Pathway	Enzyme	Insects	Endosymbionts Wg	Free-living bacteria Ec	Plants At	Yeast/Man Sc
		Gm Ag Dm Tc	Wp Sg	Bs	Sb	Hs
Nicotinamide adenine dinucleotide (Vitamin B3)	L-aspartate oxidase	\Leftrightarrow		\diamond		\Diamond
	Quinolinate synthase A	\Leftrightarrow		\diamond		\Leftrightarrow
	Nicotinamide phosphoribosyltransferase	\Leftrightarrow	\bigtriangleup	\Leftrightarrow	\diamondsuit	\Leftrightarrow
	Nicotinamidase	+	#	\diamondsuit	\diamond	\diamondsuit
	Nicotinate phosphoribosyltransferase	+	*	\diamondsuit	\blacklozenge	\diamond
	Nicotinamide mononucleotide adenylyltransferase	•		\diamond	\diamond	\diamond
	NAD synthetase	•		\diamond	\blacklozenge	\diamond
	NAD kinase	•		\diamond		\diamond
	Quinolinate phosphoribosyltransferase	\Leftrightarrow		\diamond		\diamond
Co-enzyme A (Vitamin B5)	Branched chain amino acid aminotransferase	•	*	\diamond	\blacklozenge	\diamond
	Ketopantoate hydroxymethyltransferase	\Leftrightarrow		\diamond	\diamond	\diamond
	Ketopantoate reductase	\Leftrightarrow		\diamond	\diamond	\diamondsuit
	Dihydropyrimidine dehydrogenase	•	\bigtriangleup	\diamond	\diamond	\diamond
	Dihydropyrimidinase	•	\bigtriangleup	\diamond	\blacklozenge	\diamond
	Beta-ureidopropionase	•		\Leftrightarrow		\diamond
	Aspartate 1-decarboxylase	$\stackrel{\cdot}{\Leftrightarrow}$		\diamond	\diamond	\Leftrightarrow
	Pantothenate synthetase	${\Leftrightarrow}$		\diamond	•	\diamond
	Pantothenate kinase	$\mathbf{\bullet}$		\diamond	\blacklozenge	\diamond
	Phosphopantothenate-cysteine ligase	•		\diamond	\blacklozenge	\diamond
	Phosphopantothenoylcysteine decarboxylase	•		\diamond	\diamond	\diamond
	Phosphopantetheine adenylyltransferase	•	\bigwedge	\diamond	\blacklozenge	\diamond
	Dephospho-CoA kinase	•	\bigwedge	\diamond		\diamond
Tetrahydrofolate (Vitamin B9)	GTP cyclohydrolase 1	•		\diamond	\diamondsuit	\diamond
(vitaliiii bo)	Alkaline phosphatase	$\mathbf{\bullet}$	#	\diamond		\diamond
	Dihydroneopterin triphosphate pyrophosphatase	$\stackrel{\cdot}{\Leftrightarrow}$	\bigtriangleup	\diamondsuit	\diamondsuit	\Leftrightarrow
	Dihydroneopterin aldolase	$\stackrel{\bullet}{\Leftrightarrow}$		\diamond	•	\diamond
	7,8-dihydro-6-hydroxymethylpterin pyrophosphokinase	$\stackrel{\bullet}{\Leftrightarrow}$		\diamond	•	\diamond
	Para-aminobenzoic acid synthase	$\stackrel{\cdot}{\Leftrightarrow}$		\diamond		\diamond
	Aminodeoxychorismate lyase	${\leftrightarrow} \bigoplus \bigoplus \bigoplus \bigoplus$		\diamond	\Leftrightarrow	\diamond
	Dihydropteroate synthase	\Leftrightarrow		\diamond		\diamond
	Folylpolyglutamate synthase	•		\diamond	\blacklozenge	\diamond
	Dihydrofolate reductase	♦ ♦		\diamond		\diamond
Biotin (Vitamin B7)	8-amino-7-oxononanoate synthase	\Leftrightarrow		\diamond		\diamond
(DAPA aminotransferase	\Leftrightarrow		\diamond	\blacklozenge	\diamond
	Dethiobiotin synthetase	$ \bigoplus_{i=1}^{n} $		\diamondsuit	\diamondsuit	\diamondsuit
	Biotin synthase	\bigoplus		\diamond	\diamondsuit	\diamond
	Biotin protein ligase	,		\diamond	\Leftrightarrow	\diamond

Figure 18. Comparison of B-vitamins and cofactors biosynthesis enzymes in insects, free-living bacteria, endosymbionts, plants, yeast and humans. Coloured triangles indicate the presence of the respective enzyme in an organism and its absence when white (not coloured). Enzymes encoded by *Glossina* but missing in all the endosymbionts are marked with # while those missing in *Wigglesworthia* are marked with *. Abbreviations: Dm, *Drosophila melanogaster*; Ag, *Anopheles gambiae*; Gm, *Glossina morsitans*; Tc, *Tribolium castenum*; Wg, *Wigglesworthia glossinidia*; Sg, *Sodalis glossinidius*; Wp, *Wolbachia pipientis*; Ec, *Escherichia coli*; Bs, *Bacillus subtilis*; At, *Arabidopsis thaliana*; Sb, *Sorghum bicolor*; Hs, *Homo sapien*; Sc, *Saccharomyces cerevisiae*.

Insects generally have incomplete B-vitamins biosynthesis pathways and most of the enzymes are dedicated to cofactors biosynthesis. In contrast, bacteria, plants and yeast have most enzymes for biosynthesis of B-vitamins and cofactors. For example bacteria, plants and yeast have all the enzymes for riboflavin biosynthesis, while insects have none; all have enzymes for biosynthesis of FAD. *Glossina* has similar enzymes as *D. melanogaster* but differs from *An. gambiae* and *T. castanum* which lack riboflavin kinase and dihydrofolate reductase respectively. B-vitamins and cofactors biosynthesis pathways in insects are therefore generally similar.

On comparison to its endosymbionts and using the free living bacteria as reference, *Glossina* has a number of unique enzymes that the endosymbionts do not encode namely thiamine pyrophosphokinase, pyridoxal kinase, nicotinamidase, and alkaline phosphatase (Figure 18). In addition, when *Glossina* is specifically compared to its obligate endosymbiont *Wigglesworthia*, this bacterium does not encode nicotinate phosphoribosyltransferase and the branched-chain amino acid aminotransferase in NAD and CoA pathways respectively (Figure 18).

In terms of numbers 56 enzymes from *E. coli* genome (Blattner, 1997) were taken as the minimum required for B-vitamins and cofactors biosynthesis. *Glossina* enzymes therefore make up 46.4% (26) while the other insects *Drosophila*, *Anopheles* and *Tribolium* have 44.6% (25), 42.9% (24) and 42.9% (24) enzymes respectively thus *Glossina* has more enzymes than *Anopheles*, *Drosophila* and *Tribolium*. The endosymbionts, *Wiggleswothia*, *Sodalis* and *Wolbachia* have 80.3% (45), 78.6% (44) and 30.4% (17) enzymes respectively. *Wolbachia* has an extremely reduced coding capacity for B-vitamins and cofactors biosynthesis enzymes as compared to the other endosymbionts, an indication of its parasitic

lifestyle. The endosymbionts generally lack some biosynthesis enzymes, an indication that though they have most enzymes, some of their pathways may be incomplete.

Collectively, tsetse has incomplete B-vitamins biosynthesis pathways like other insects and humans whereas plants, free living bacteria and yeast have complete pathways. In contrast, most organisms have complete cofactors biosynthesis pathways. Together, tsetse has the potential to encode enzymes in B-vitamins biosynthesis pathway which the endosymbionts do not encode, an indication of tsetse-endosymbiont cooperation in vitamins biosynthesis through metabolite sharing.

4.7 Vitamin transport proteins

Since the B-vitamins biosynthesis pathways were incomplete in tsetse and endosymbionts, and because of experimental indication of vitamin biosynthesis by endosymbionts and import by tsetse (Pais et al., 2008), potential vitamin transporters that could be utilized were sought in tsetse and endosymbionts. For *Glossina*, vitamin transporters were identified in its recently published genome (IGGI, 2014) while in endosymbionts, a search for transport proteins was done in their protein annotations databases namely http://www.ncbi.nlm.nih.gov/genome/proteins/1066?project_id=88075 for Wigglesworthia, http://www.ncbi.nlm.nih.gov/genome/proteins/531?project_id=58553 for Sodalis and http://www.ncbi.nlm.nih.gov/genome/proteins/11990?project_id=81759 for Wolbachia. Further, a homology search similar to the one used to find *Glossina* genes (see section 3.4), was done on the endosymbionts genomes using vitamin transport orthologs from other prokaryotes, then the domains of the resulting hits were compared with the domains of the orthologs used for the search.

Among the endosymbionts, only *Sodalis* was found to have vitamin transport proteins (Figure 19). Some of these proteins have earlier been reported for transport of thiamine (Snyder *et al.*, 2010). In addition, other proteins including a hypothetical protein (Figure 19, panel A) were obtained in *Sodalis* whose domains resemble those of vitamin transport proteins in other bacteria. These proteins have domains that resemble biotin and niacin transporters but no transport protein for the other B-vitamins were identified.

In *Glossina* five vitamin transport proteins have been identified (IGGI, 2014). These are multivitamin transporters with two specific for transport of thiamine and folate as indicated by their domain architecture (Figure 19, panel B).

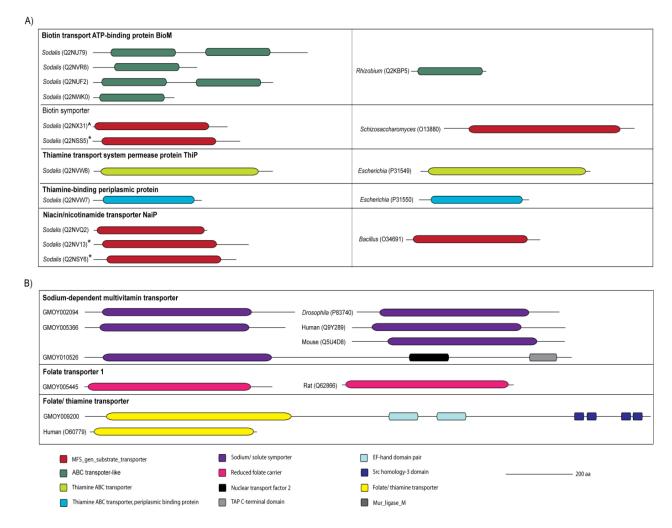


Figure 19. Domain architecture of *Sodalis* and *Glossina* vitamin metabolites transport proteins. The domain architectures were obtained using a combination of pfam, prosite and interpro. In panel A, *Sodalis* transport proteins are similar to experimentally validated vitamins transport proteins from other bacteria. The *Sodalis* proteins marked with * are general transport proteins while that marked with ^ is a hypothetical protein. In panel B, the domain organization of putative *Glossina* transport proteins is also similar to experimentally validated proteins from other eukaryotes.

In summary, tsetse encodes six and 20 enzymes for biosynthesis of B-vitamins and cofactors respectively and these have similar domain architecture to other insect orthologs. B-vitamins and cofactors biosynthesis pathways are incomplete in both tsetse and endosymbionts but together, they show complete or near complete pathways. These together with the availability of vitamins transporters in both tsetse and endosymbionts suggests a possible interaction. If accurate, then expression of *Glossina* enzymes implicated in these pathways could vary based on the presence or absence of the endosymbionts, and this was investigated.

4.8 Differential expression of *Glossina* B-vitamins and cofactors biosynthesis enzymes

If there is an association between tsetse and endosymbionts in B-vitamins biosynthesis, then there could be potential changes in expression levels of respective genes in tsetse depending on availability of endosymbionts. Therefore differential expression of *Glossina* genes encoding B-vitamins and cofactors biosynthesis enzymes was determinded in the presence and absence of its obligate endosymbiont *Wigglesworthia*, using RNA seq data. Four categories were applied. First, for B-vitamins biosynthesis enzymes specifically absent in *Wigglesworthia*, second, for enzymes that *Glossina* utilizes to generate cofactors from the vitamins, third, for enzymes that are present in *Glossina* and not in the endosymbionts and finally, for vitamin transport proteins in *Glossina* (Figure 20).

B-vitamins biosynthesis enzymes namely GTP cyclohydrolase I, branched chain aminoacid aminotransferase, dihydropyrimidine dehydrogenase and dihydropyrimidinase, missing in Wigglesworthia were generally downregulated 1.0-2.6 folds apart from betaureidopropionase which was upregulated 3.0 folds (Figure 20). Cofactors biosynthesis enzymes were upregulated in the absence of Wigglesworthia. For example, riboflavin kinase, FAD synthase, pyridoxal kinase and phosphopantothenoylcysteine decarboxylase were upregulated by approximately two-folds while thiamine pyrophosphokinase, PNP oxidase, pantothenate kinase, bifunctional coenzyme A synthase and dihydrofolate reductase were upre gulated between 1.0-1.5 folds. The enzymes that generate NAD and phosphopantothenate-cysteine ligase in CoA biosynthesis pathway were downregulated by approximately 1.0-1.5 folds. Alkaline phosphatase, pyridoxal kinase and thiamine pyrophosphokinase lacking in the endosymbionts – with reference to the free living bacteria – in addition to three vitamin transporter proteins were upregulated approximately 1.0-5.0 fold.

In summary, *Glossina* has incomplete pathways for biosynthesis of B-vitamins, but complete machinery for biosynthesis of cofactors. In addition it encodes B-vitamins biosynthesis enzymes lacking in endosymbionts; these are downregulated in absence of *Wiggleswothia*, likely because of accumulation of metabolites utilized by *Wiggleswothia*. Conversly, most enzymes that generate cofactors from B-vitamins are upregulated, an indication of fly compensation for deficit in some metabolites shared with endosymbionts, hence supporting interaction. The vitamin transport proteins in both tsetse and endosymbionts may facilitate this interaction and are upregulated in the absence of *Wiggleswothia*. Together, the data suggest a possible interaction between tsetse and its endosymbionts in biosynthesis of B-vitamins.

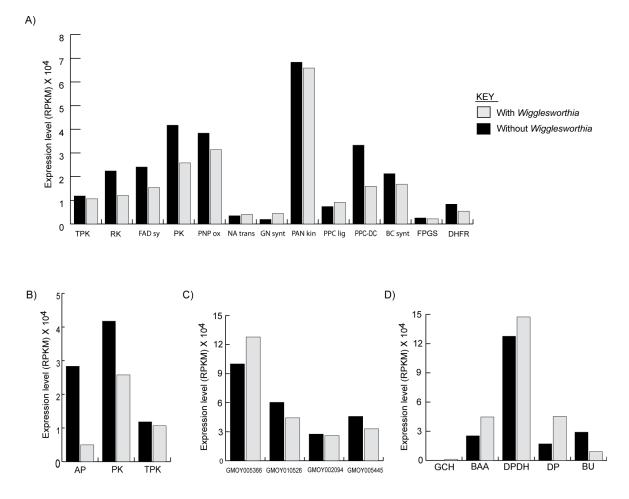


Figure 20. Differential expression level of enzymes in Glossina. RNA seq data from Wigglesworthia free (ampicillin treated) and tsetse with Wigglesworthia were used to compare gene expression level of B-vitamins and cofactors biosynthesis genes. Panel A represents enzymes that generate cofactors from vitamins. Panel B are enzymes present in Glossina but absent in all the endosymbionts, panel C are vitamin transport proteins in Glossina while panel D represents B-vitamins biosynthesis enzymes absent in Wigglesworthia. Abbreviations: TPK, Thiamine pyrophosphokinase; RK, riboflavin kinase; FAD synt, flavin adenine dinucleotide synthase; PK, pyridoxal kinase; PNP ox, pyridoxine-5'-phosphate oxidase; NA trans, nicotinamide mononucleotide adenylyltransferase; GN synt, glutamine dependent nicotinamide adenine dinucleotide synthetase; PAN kin, pantothenate PPC kinase; lig, phosphopantothenate-cysteine ligase; PPC-DC, phosphopantothenoylcysteine decarboxylase; BC synt, bifunctional coenzyme A synthase; FPGS, folylpolyglutamate synthase; DHFR, dihydrofolate reductase; AP, alkaline phosphatase; PK, pyridoxal kinase; TPK, thiamine pyrophosphokinase; GCH, GTP cyclohydrolase; BAA, branched chain aminoacid aminotransferase; DPDH. dihydropyrimidine dehydrogenase; DP, dihydropyrimidinase; BU, beta ureidopropionase.

CHAPTER FIVE

DISCUSSION

5.1 Annotation of Glossina genes involved in B-vitamins and cofactors biosynthesis

A total of 26 enzymes involved in B-vitamins (six) and cofactors (20) biosynthesis were annotated from the recently sequenced *Glossina morsitans morsitans* genome (IGGI, 2014). The annotation process involved bioinformatics analyses namely blast searches, domain prediction, protein physicochemical properties determination and RNA seq analysis. These were complemented with PCR amplification, cloning, sequencing and analysis of selected annotated genes. All these analyses ensured robustness of the annotation process.

Firstly, all possible B-vitamins and cofactors biosynthesis pathways were determined using experimentally validated enzymes known to participate in these pathways (Table S1) and global biosynthesis pathways constructed (Figure 14). Computer predicted orthologs that had similar domain organization to the experimentally validated ones (Figure 15) were also included. These pathways provided a blueprint of all the possible systems of vitamin biosynthesis utilized and orthologs for searches, hence the *Glossina* genome exhaustively interrogated.

Secondly, all the orthologs were used to search the genome of *Glossina*. This ensured that the *Glossina* genes were identified multiple times (as well as through reverse blast) hence all possible pathways were covered in the analysis. In addition all the resulting *Glossina* proteins were confirmed to have similar domain organization and physicochemical properties as experimentally validated orthologs eliminating false homologous sequences (Figure 16). Moreover they were not similar to endosymbiont orthologs since the sequenced isolate was devoid of endosymbionts and most endosymbiont enzymes were known thus enabling comparison (Figure 18).

Thirdly, a transcriptome obtained independently from the sequenced tsetse genome was mapped on the genome and the putative annotated B-vitamins and cofactors biosynthesis genes identified. This guaranteed that the annotated genes are expressed hence possibly functional, and the multiple RNA seq data used were devoid of genomic DNA contaminant and gave identical mapping results. In addition, the differential expression mediated by availability of endosymbiont also suggested accurate annotation.

Finally, the successful amplification, cloning and sequencing of selected annotated genes using genomic material from G. *m. morsitans* strain different from the sequenced Yale strain suggests that the sequenced genome is of high quality hence annotations were most likely valid. The targeted amplifications were similar to bioinformatics predicted gene models, again confirming presence and authenticity of the annotated *Glossina* genes.

Together, these gene models were determined using multiple approaches including sequence homology and domain similarity to experimentally validated orthologs, by presence of their corresponding RNA and PCR amplification, indicating presence and authenticity. Moreover, differential expression data suggests that the annotated genes encode for true B-vitamins and cofactors biosynthesis enzymes. Therefore the annotation data most likely represents all or most of the enzymes involved in B-vitamins and cofactors biosynthesis in tsetse.

5.2 Insects exhibit incomplete B-vitamin biosynthesis pathways

B-vitamins are precursors of cofactors which are components of most enzymes and are therefore vital for life. Free living organisms have means of synthesizing these nutrients *de novo* and therefore have complete biosynthesis pathways. For example plants, free living bacteria and yeast have complete B-vitamins biosynthesis pathways (Figure 18), making these organisms dietary sources of vitamins.

In contrast, insects, humans and some bacteria (parasitic or symbiotic) have incomplete Bvitamins biosynthesis pathways (Figure 18). They therefore outsource these nutrients from diet or through symbiotic associations. For example, insects like mosquitoes, fruit flies and flour beetle feed on plant materials which are rich in vitamins, while obligate feeders like tsetse flies and bat flies associate with bacteria symbionts which synthesize and provide these B-vitamins (Hosokawa *et al.*, 2012; Wang *et al.*, 2013). Humans also have co-evolved with numerous symbiotic bacteria which are a source of vitamin B and K (Cummings and Macfarlane, 1997).

Tsetse has co-evolved with three endosymbionts particularly the obligate endosymbiont *Wigglesworthia* for about 50-80 million years (Chen *et al.*, 1999). *Wigglesworthia* has retained the capacity to biosynthesize most B-vitamin which it provides to its invertebrate host (Akman *et al.*, 2002; Snyder *et al.*, 2010). Other insects that have lost some metabolic capacity but associate with symbionts to compensate this loss include aphids (retained *Buchnera* to provide essential amino acids) (Shigenobu *et al.*, 2000) and carpenter ants (retained *Blochmannia* to provide nitrogen and sulphur compounds) (Gil *et al.*, 2003). These

co-evolution and association has enabled hosts to survive on restricted diets in their ecological niches since the endosymbionts provide the nutrients that the hosts are unable to biosynthesize or are not available in their restricted diets (Aksoy *et al.*, 2005).

Cofactors are synthesized from the B-vitamins. All organisms analysed have complete cofactors biosynthesis pathways regardless of their lifestyle (Figure 18). This means that provided that an external source of B-vitamins is available, all the organisms can independently synthesize cofactors. For example, *Glossina* cured of its obligate endosymbiont can still be sustained if it is provided with an alternative source of B-vitamins e.g. a B-vitamins supplemented blood meal (Pais *et al.*, 2008). This has enabled study of the effects of individual endosymbionts by performing specific elimination of endosymbionts using antibiotics (Weiss *et al.*, 2006, 2011; Pais *et al.*, 2008; Wang *et al.*, 2013). In these studies, tsetse blood meal is supplemented with a cocktail of B-vitamins and the flies remain alive longer than their aposymbiotic counterparts lacking the supplemented blood meal. This is a clear indication that endosymbionts have a biochemical role in vitamin biosynthesis.

Insects therefore have potential to biosynthesize cofactors if provided with vitamins. The reason why these insects' B-vitamins and cofactors biosynthesis pathways are similar yet they have different sources of B-vitamins can only be speculated. Their ancestors may have outsourced B-vitamins from diet e.g. plant materials, a feature that is retained despite acquisition of different lifestyles. For example, Drosophila and Tribolium have maintained a plant meal lifestyle while Glossina acquired a blood meal lifestyle, but Anopheles retained an intermediary lifestyle i.e. feeding on both plant materials and blood. Glossina became an obligate blood feeder and therefore compensated for nutrients e.g. vitamins previously obtained from plant materials by acquiring an obligate endosymbiont, Wigglesworthia. In addition, to ensure survival of its young, it acquired an adenotropic viviparity reproduction and mammary feeding system that allow direct transfer of endosymbionts to larvae, hence no limit in endosymbiont-dependent nutrient supply. In contrast, Anopheles, Drosophila and Tribolium have no obligate endosymbionts but have other endosymbionts. Specifically, all have Wolbachia which manipulates host reproduction to favour its spread among insect populations (Mateos et al., 2006; Hughes et al., 2011; Goodacre et al., 2013) and Drosophila in addition hosts Spiroplasma which protects against pathogenic infections (Mateos et al., 2006). Anopheles hosts Serratia, Enterobacter, and Asaia (Minard et al., 2013). Serratia and Enterobacter hemolytic enzymes suggests a role in blood digestion while Asaia may provide acetic acid (Minard et al., 2013).

Apart from *Wolbachia* tsetse endosymbionts *Sodalis* and *Wigglesworthia* also have the potential of making their own cofactors (Akman *et al.*, 2002; Toh *et al.*, 2006; Pais *et al.*, 2008; Snyder *et al.*, 2010). Since tsetse B-vitamins and cofactors biosynthesis pathways are still being unravelled, its blood meal is deficient in B-vitamins and its endosymbionts potentially biosynthesize both B-vitamins and cofactors, it could follow that endosymbionts provide tsetse with both B-vitamins and cofactors. This study has therefore clarified that tsetse has complete cofactors biosynthesis pathways and has the potential to biosynthesize its own cofactors, but the facts that tsetse has cofactors biosynthesis pathways, and nutritional and endosymbiont knock-out studies (Pais *et al.*, 2008; Weiss *et al.*, 2011) suggest that tsetse biosynthesizes cofactors, makes this option highly likely.

In summary, insects and humans have incomplete B-vitamins biosynthesis pathways. This is in contrast with free living organisms like plants, yeast and some bacteria. Organisms that lack biosynthesis capabilities either acquire vitamins from diet and/or from symbiotic associations that permit supply or co-synthesis hence incomplete individual biosynthetic pathways. On association and hence integration of the pathways, the resulting machinery has capabilities of sharing precursors and metabolites involved in biosynthesis, hence a biochemical interaction responsible for the intimate association.

5.3 Possible association between *Glossina* and its endosymbionts in B-vitamins biosynthesis

The intimate association of tsetse and endosymbionts has been demonstrated experimentally (Pais *et al.*, 2008; Snyder *et al.*, 2010; Weiss *et al.*, 2011; Wang *et al.*, 2013). This association at least involves vitamins provision and/or metabolism by endosymbionts (Akman *et al.*, 2002; Pais *et al.*, 2008; Snyder *et al.*, 2010; Rita *et al.*, 2012) while tsetse provides metabolic precursors in addition to housing its endosymbionts. The bioinformatics analysis of B-vitamins biosynthesis enzymes in tsetse and endosymbionts (Figures 11, 12, 18, and A1), indicate potential interaction at molecular and biochemical levels due to the following reasons.

First, combination of tsetse and endosymbionts vitamin biosynthesis pathways provides complete or near complete pathways, justifying the role of endosymbiont in tsetse immunity, longevity, fecundity and digestion (Pais *et al.*, 2008; Weiss *et al.*, 2011). Here there is likelihood that metabolic intermediates from both partners are utilized to synthesize final

products, specifically vitamins that are utilized individually for cofactor biosynthesis and subsequently in enzymatic activity. For example *Glossina* contributes in the first steps of pantothenate biosynthesis pathway in *Wigglesworthia* and folate biosynthesis pathway in both *Wigglesworthia* and *Sodalis* (Figures 21 and A1). As a result, in pantothenate biosynthesis pathway, β -alanine and α -ketovalerate are possibly synthesized by the fly then passed on to *Wigglesworthia* pantothenate pathway. Similarly, in folate biosynthesis pathway, dihydroneopterin is possibly made in the fly then imported by both *Wigglesworthia* and *Sodalis* for the synthesis of folate.

Apart from folate biosynthesis pathway, all the incomplete B-vitamins pathways in *Wigglesworthia* could also be complemented by *Sodalis*, but since *Sodalis* is commensal, it is likely that tsetse and not *Sodalis* complements *Wigglesworthia* pathways. Further, *Wigglesworthia* has intimate association with tsetse than it has with *Sodalis* because it is the only symbiont localized in the bacteriocytes. However the involvement of *Sodalis* may also be a possibility.

Second, variations in tsetse gene expression of B-vitamins and cofactors biosynthesis enzymes in presence and absence of *Wigglesworthia* (Figure 20) suggest an interaction. Here, there is a possibility of feedback mechanism. In absence of endosymbiont, expression levels of tsetse B-vitamins biosynthesis enzymes involved in early steps of biosynthesis before transfer of metabolites to endosymbionts are downregulated, possibly due to negative inhibition by increased products. In the case where there is upregulation (e.g. β ureidopropionase), there is positive feedback due to reduced substrate level. In contrast, expression of cofactors biosynthesis enzymes increase in response to low metabolite levels available. For few cases where downregulation was observed, negative feedback due to lack of metabolites could be responsible, analogous to *E. coli lac* operon where genes are downregulated in the absence of lactose (Busby and Ebright, 1999). Though this is speculative, it could be addressed by comparing these expression levels to those of tsetse initially devoid of endosymbionts but are on vitamin-supplemented blood meal diet. In addition, the role of the other endosymbionts namely *Sodalis* and *Wolbachia* in these pathways can not be overruled and remains unknown.

Third, tsetse have putative vitamin transporters (IGGI, 2014) that are possibly used for uptake of vitamins and vitamin-like metabolic intermediates and are generally upregulated in the absence of *Wigglesworthia* (Figure 20). Tsetse cured of *Wigglesworthia* incurs fitness cost in

reproduction, immunity, digestion and growth and this cost is partially alleviated by supplementation of the tsetse blood meal with a cocktail of B-vitamins, an indication of *Wigglesworthia* role in providing B-vitamins (Pais *et al.*, 2008). These transporters could be implicated in vitamin and metabolites transport in the fly's cells and hence available for synthesis of cofactors. Through this pathway, intracellular endosymbionts also access vitamins hence transporters in *Sodalis* especially those for thiamine import, given that this endosymbiont lacks a *de novo* thiamine biosynthesis pathway (Toh *et al.*, 2006; Snyder *et al.*, 2010). Upregulation of transporter expression could be due to scavenging for limited vitamins and/or biosynthesis intermediates to meet the insect's needs. In complete absence of the vitamins, fitness in compromised.

In summary, tsetse has incomplete B-vitamins biosynthesis pathways and complete cofactors biosynthesis pathways similar to other insects, and most likely outsource for B-vitamins. To compensate for its restricted blood meal deficient in B-vitamins, tsetse lives in symbiosis with the obligate endosymbiont *Wigglesworthia*, an association that permits collaboration in vitamins biosynthesis. This is supported by complete or near complete pathways on integration of tsetse and endosymbiont biosynthetic pathways hence possible interaction. Further, gene expression of enzymes and transporters vary with endosymbiont availability, supporting interaction.

5.4 Hypothetical model for tsetse-endosymbiont interaction

If tsetse and endosymbionts share in vitamin biosynthesis, what mechanism could be employed? Since most endosymbionts are intracellular, their main source of nutrients and metabolic precursors most likely is the host, which gets its requirements from blood meal. Consequently, the endosymbionts import some metabolites as precursors for vitamin biosynthesis (Figure 21) using substrate specific transporters (Figure 12) (Akman *et al.*, 2002; Toh *et al.*, 2006). Subsequently the metabolites are utilized in B-vitamins biosynthesis and part of the end products i.e. vitamins, are exported to the fly for utilization in cofactors biosynthesis (Figure 21).

With the fly's potential to catalyze the first steps of pantothenate and folate biosynthesis lacking in endosymbionts, it has the capacity to prime synthesis of these vitamins. This suggests that the fly synthesizes β -alanine, α -ketoisovalerate and dihydroneopterin that are subsequently exported to the endosymbionts through transporters (Figure 21). Once in endosymbionts, these metabolites are utilized in biosynthesis of pantothenate and folate, part

of which are exported to the insect cell. These vitamins are utilized in cofactor biosynthesis by both partners, thus a possible biochemical interaction. In the absence of *Wigglesworthia*, these metabolites cannot be processed further due to a disrupted integrated pathway, hence no end products (vitamins) for cofactors biosynthesis, resulting into poor digestion and reproduction and subsequently death of tsetse.

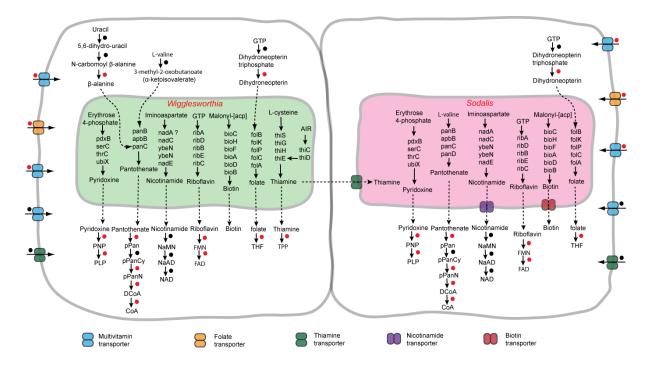


Figure 21. An illustration of the interaction between a *Glossina* cells and cytoplasmic endosymbionts in biosynthesis of B-vitamins and cofactors. The pathways presented were obtained after integrating *Glossina*, *Wigglesworthia* and *Sodalis* pathways. Dotted and block arrows represent transport and enzyme reactions respectively while red and black dots indicate upregulation and downregulation of protein respectively. Transport proteins are accompanied with arrows to show direction of movement of metabolites.

Transport proteins in *Wigglesworthia* would facilitate export of vitamins into the tsetse cytosol but orthologs have not been identified and may have possibly been lost (Ak man *et al.*, 2002; Rita *et al.*, 2012) due to this association, or an unknown machinery could be in operation. Other symbionts e.g. the obligate endosymbiont of aphids *Buchnera aphidicola* and *Blochmannia floridanus* of carpenter ants have also lost B-vitamin transporters (Gil *et al.*, 2003; van Ham *et al.*, 2003; Price *et al.*, 2011). *Sodalis* however has retained transporters for thiamine (Snyder et al., 2010) possibly because it lacks a complete thiamine biosynthesis pathway and has to acquire it from tsetse and other endosymbionts (Figure 21). In addition, it encodes other putative transporters for biotin and niacin (Figures 19 and 21). *B. aphidicola*

and *B. floridanus* have retained amino acid transporters to facilitate export of essential amino acids which the hosts can not synthesize and in return, they import non-essential ones which symbionts can not synthesize (Gil *et al.*, 2003; van Ham *et al.*, 2003; Price *et al.*, 2011). These suggest the possibility of movement of metabolites across the host and endosymbionts, a scenario that could be replicated in tsetse-endosymbionts association hence the presence of some transporters in intracellular endosymbionts.

In the absence of endosymbionts, B-vitamins can be supplied to tsetse through supplemented blood meal. In this case, tsetse cells absorb B-vitamins from the extracellular matrix using multivitamin, thiamine and folate transporters (Figure 21). These transporters are generally upregulated during vitamin deficiency (absence of *Wigglesworthia*) to increase intake from extracellular sources. Since other B-vitamin transporters have not been identified, it is possible that other means are used to absorb the remaining B-vitamins not represented by respective transporters. Similar to the B-vitamins supplied by the endosymbionts, the supplemented forms are also metabolized into cofactors and incorporated into enzyme systems.

Based on pathway analysis of tsetse and its endosymbionts, differential expression of tsetse enzymes at different points of the pathways and regulation of its transport proteins in the absence of its obligate endosymbiont, it can be hypothesized that endosymbionts and tsetse associate in vitamin biosynthesis using a machinery that relies on intracellular metabolites, vitamin transport and integrated biosynthesis pathway hence biochemical interaction.

5.5 Potential utilization of tsetse-endosymbiont biomolecular interaction

Endosymbionts can be exploited as targets for control of trypanosomiasis (Aksoy, 2000). For example, paratransgenesis involves use of transgenic endosymbionts to either kill the fly or prevent the fly from transmitting parasites (Aksoy *et al.*, 2008). In tsetse flies, the endosymbiont *Sodalis*, has been preferred for paratransgenesis because of its ability to culture and transform *in vitro* and its versatility in the insect body. In this method, transgenic *Sodalis* is propagated into tsetse population where it expresses a trypanocidal agent that target procyclic trypanosomes, preventing their establishment, hence blocking transmission (Medlock *et al.*, 2013). Though promising, this method has not been developed to success owing to challenges of maintaining the flies bearing transformed *Sodalis*. Therefore, more insight on tsetse-endosymbionts interaction is necessary hence our study.

If the hypothesized interaction is experimentally validated, then there are various ways that it can be exploited for improvement of paratransgenesis as a control strategy. Two approaches can be considered. First, the mechanism of endosymbiont export of vitamin intermediates coupled to tsetse exocytic machinery, can be utilized to export endosymbiont (in this case Sodalis)-derived trypanocidal agents into the various tsetse structures (such as mid gut and salivary glands) where trypanosomes develop, killing the parasites hence blocking transmission. Here, transgenic endosymbionts e.g. the amenable Sodalis is genetically modified to express and export trypanocidal agents into tsetse cells which subsequently export these agents into the fly structures where they act against trypanosomes. This will prevent parasite establishment in the fly and block transmission. Alternatively, since trypanosomes do not biosynthesize B-vitamins de novo (Berriman et al., 2005) and most likely acquire vitamins from tsetse and endosymbionts, blocking this supply could be a potential control strategy. This approach however may result in death of the fly, hence affecting ecological balance. This limitation is not observed in the former approach. These however will come clear after thorough understanding of tsetse-endosymbiont-trypanosome interactions, which can be fast tracked due to available genomes of the three players.

From this study, the annotation suggests that at least tsetse has B-vitamins and cofactors biosynthesis pathways. B-vitamins pathways are however not complete in tsetse, a phenomenon common to insects and humans too. On the other hand, free living organisms like plants, yeast and *E.coli* have complete pathways and therefore synthesize B-vitamins de novo. Tsetse which does not feed on vitamin-rich plant material like mosquitoes and fruit flies, benefits from its association with bacterial endosymbionts to acquire B-vitamins deficient in its blood meal. This symbiosis most likely involves B-vitamins biosynthesis, where tsetse provides biosynthesis precursors to endosymbionts for vitamins biosynthesis, in return for sharing the synthesized vitamins; a strong indication of biochemical interaction. All organisms however have complete cofactors biosynthesis pathways and should synthesize their own cofactors if provided with a vitamin source. This metabolic symbiosis in biosynthesis of B-vitamins is supported by pathway complementarity, presence of vitamins transport proteins and endosymbiont-dependent expression of B-vitamins and cofactors biosynthesis enzymes in tsetse. Nutritional symbiosis is also common among insects like aphids, which feed on amino acids-deficient plant materials, whose endosymbionts provide amino acids. With further studies, this interaction at biochemical and molecular level can be targeted in paratransgenesis to prevent parasite transmission and/or vector control.

CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The G. m. morsitans genome has 34 genes which encode for 26 B-vitamins and cofactors biosynthesis enzymes; eight genes encode isoenzymes. Cofactors biosynthesis pathways are complete in tsetse as observed in other groups of organisms including insects (Drosophila, Anopheles and Tribolium), plants and yeast. However, B-vitamins biosynthesis pathways are incomplete, a phenomenon also observed in insects, humans and endosymbiotic bacteria. One aspect of association between tsetse and its endosymbionts has been shown to be on vitamin metabolism, and comparative analysis suggests a likelihood of an association in biosynthesis of B-vitamins. This is supported by first, complete or near complete pathways only when tsetse and endosymbionts systems are integrated; second, presence of vitamin transporters in tsetse and intracellular endosymbionts; and finally, differential gene expression dependent on availability of endosymbionts. This study therefore provides insight into possible metabolic interdependence between tsetse and its endosymbionts and provides possible avenues for control of trypanosomiasis, for example by exploiting the transport mechanism of these Bvitamins. Alternatively, the potential that trypanosomes obtain B-vitamins from the tsetseendosymbiont symbiotic association enables a possible strategy that blocks trypanosomes' access to B-vitamins and thus inhibit development of procyclic trypanosomes hence prevent transmission of trypanosomes by tsetse. However this is speculative and would require further validation to have an accurate picture of the association.

6.2 Recommendations

The observations made in this study suggest potential endosymbiont-tsetse interaction in Bvitamin metabolism. This was carried out using computational approach and limited wet lab experiments. Going forward, improvement of our knowledge in this area is vital for development of paratransgenesis and/or development of novel control strategies. To exploit this potential, the following are recommended. First, confirming experimentally if the annotated genes are truly involved in vitamin metabolism. This can be through functional analysis by applying RNA interference (RNAi) of the putative genes, Western blotting for enzymes and enzyme kinetics studies among others. Second, the association in vitamin metabolism must be validated. The tools applicable include tracing labelled vitamins biosynthesis precursors in the two systems, combination of RNAi and provision of vitamin precursor supplemented blood meal and gene expression studies using quantitative PCR. Third is to determine the biochemical and molecular interaction of the other endosymbionts with tsetse and trypanosomes. Here, metabolic and immunological processes, and vector competence among other factors could be considered. Finally, understanding tsetse-endosymbionts-trypanosomes interaction would provide more insight in identifying target molecules for use in paratransgenesis. This will be accelerated by the availability of the genomes of the three players and improvement in functional genomics.

REFERENCES

- Akman L, Yamashita A, Watanabe H, Oshima K, Shiba T, Hattori M, and Aksoy S. (2002). Genome sequence of the endocellular obligate symbiont of tsetse flies, *Wigglesworthia glossinidia*. *Nature Genetics*, **32**: 402–407.
- Aksoy S. (1995). Wigglesworthia gen. nov. and Wigglesworthia glossinidia sp. nov., taxa consisting of the mycetocyte-associated, primary endosymbionts of tsetse flies. International Journal of Systematic Bacteriology, 45: 848–851.
- Aksoy S. (2000). A Haven for Microorganisms. Parasitology Today, 16: 125–126.
- Aksoy S. (2003). Control of tsetse flies and trypanosomes using molecular genetics. *Veterinary Parasitology*, **115**: 125–145.
- Aksoy S, Berriman M, Hall N, Hattori M, Hide W, and Lahane M. (2005). A case for a *Glossina* genome project. *Trends in Parasitology*, **21**: 107–111.
- Aksoy S, Chen X, and Hypsa V. (1997). Phylogeny and potential transmission routes of midgut-associated endosymbionts of tsetse (Diptera:Glossinidae). Insect Molecular Biology, 6: 183–90.
- Aksoy S, and Rio RVM. (2005). Interactions among multiple genomes: tsetse, its symbionts and trypanosomes. *Insect Biochemistry and Molecular Biology*, **35**: 691–698.
- Aksoy S, Weiss B, and Attardo G (2008). Paratransgenesis applied for control of tsetse transmitted sleeping sickness. *Advances in Experimental Medicine and Biology*, **627**: 35–48.
- Allsopp R, and Hursey BH. (2004). Insecticidal control of tsetse. In P. H. Maudlin, Holmes, and M. A. Miles (Eds.), *The Trypanosomiases* (pp. 491–507). CABI Publishing.
- Anene B, Onah D, and Nawa Y. (2001). Drug resistance in pathogenic African trypanosomes: what hopes for the future? *Veterinary Parasitology*, **96**: 83–100.
- Attardo G, Lohs C, Heddi A, Alam UH, Yildirim S and Aksoy S. (2008). Analysis of milk gland structure and function in *Glossina morsitans*: milk protein production, symbiont populations and fecundity. *Journal of Insect Physiology*, **54**: 1236–1242.
- Attardo GM, Benoit JB, Michalkova V, Yang G, Roller L, Bohova J, Takáč P and Aksoy S. (2012). Analysis of lipolysis underlying lactation in the tsetse fly, *Glossina morsitans*. *Insect Biochemistry and Molecular Biology*, **42**: 360–370.
- Attardo GM, Guz N, Strickler-Dinglasan P and Aksoy S. (2006). Molecular aspects of viviparous reproductive biology of the tsetse fly (*Glossina morsitans morsitans*): regulation of yolk and milk gland protein synthesis. *Journal of Insect Physiology*, 52: 1128–1136.

- Attardo GM, Strickler-Dinglasan P, Perkin S, Caler E, Bonaldo MF, Soares MB, El-Sayeed N and Aksoy S. (2006). Analysis of fat body transcriptome from the adult tsetse fly, *Glossina morsitans morsitans. Insect Molecular Biology*, 15: 411–424.
- Balasegaram M, Young H, Chappuis F, Priotto G, Raguenaud ME, and Checchi F. (2009). Effectiveness of melarsoprol and effornithine as first-line regimens for gambiense sleeping sickness in nine Médecins Sans Frontières programmes. *Transactions of the Royal Society of Tropical Medicine and Hygiene*, **103**: 280–290.
- Beard CB, O'Neill SL, Mason P, Mandelco L, Woese CR, Tesh RB, Richards FF and Aksoy S. (1993). Genetic transformation and phylogeny of bacterial symbionts from tsetse. *Insect Molecular Biology*, 1:123–131.
- Begley TP, Chatterjee A, Hanes JW, Hazra A and Ealick SE. (2008). Cofactor biosynthesis still yielding fascinating new biological chemistry. *PMC*, **12**: 118–125.
- Begley TP, Kinsland C and Strauss E. (2001). The biosynthesis of coenzyme A in bacteria. *Vitamins and Hormones*, **61**: 157–171.
- Berrang L. (2007). Civil conflict and sleeping sickness in Africa in general and Uganda in particular. *Conflict and Health*, **1**: 6.
- Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard, E. Caler, N. E. Hamlin, B. Haas, U. Böhme, L. Hannick, M. A. Aslett, J. Shallom, L. Marcello, L. Hou, B. Wickstead, U. C. M. Alsmark, C. Arrowsmith, R. J. Atkin, A. J. Barron, F. Bringaud, K. Brooks, M. Carrington, I. Cherevach, T.-J. Chillingworth, C. Churcher, L. N. Clark, C. H. Corton, A. Cronin, R. M. Davies, J. Doggett, A. Djikeng, T. Feldblyum, M. C. Field, A. Fraser, I. Goodhead, Z. Hance, D. Harper, B. R. Harris, H. Hauser, J. Hostetler, A. Ivens, K. Jagels, D. Johnson, J. Johnson, K. Jones, A. X. Kerhornou, H. Koo, N. Larke, S. Landfear, C. Larkin, V. Leech, A. Line, A. Lord, A. Macleod, P. J. Mooney, S. Moule, D. M. A. Martin, G. W. Morgan, K. Mungall, H. Norbertczak, D. Ormond, G. Pai, C. S. Peacock, J. Peterson, M. A. Quail, E. Rabbinowitsch, M.-A. Rajandream, C. Reitter, S. L. Salzberg, M. Sanders, S. Schobel, S. Sharp, M. Simmonds, A. J. Simpson, L. Tallon, C. M. R. Turner, A. Tait, A. R. Tivey, S. Van Aken, D. Walker, D. Wanless, S. Wang, B. White, O. White, S. Whitehead, J. Woodward, J. Wortman, M. D. Adams, T. M. Embley, K. Gull, E. Ullu, J. D. Barry, A. H. Fairlamb, F. Opperdoes, B. G. Barrell, J. E. Donelson, N. Hall, C. M. Fraser, S. E. Melville, and El-Sayed, N. M. (2005). The genome of the African trypanosome *Trypanosoma brucei*. Science, **309**: 416–422.

- Blattner FR. (1997). The Complete Genome Sequence of *Escherichia coli* K-12. *Science*, **277**: 1453–1462.
- Brightwell R, Dransfield RD and Kyorku C. (1991). Development of a low-cost tsetse trap and odour baits for *Glossina pallidipes* and *G. longipennis* in Kenya. *Medical and Veterinary Entomology*, **5**: 153–164.
- Busby S and Ebright RH. (1999). Transcription activation by catabolite activator protein (CAP). *Journal of Molecular Biology*, **293**: 199–213.
- Calvitti M, Moretti R, Skidmore A R and Dobson SL. (2012). *Wolbachia* strain wPip yields a pattern of cytoplasmic incompatibility enhancing a *Wolbachia*-based suppression strategy against the disease vector *Aedes albopictus*. *Parasites and Vectors*, **5**: 254–264.
- Carver T, Berriman M, Tivey A, Patel C, Böhme U, Barrell BG, Rajandream MA. (2008). Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. *Bioinformatics (Oxford, England)*, 24:, 2672–2676.
- Chen X, Li S and Aksoy S. (1999). Concordant evolution of a symbiont with its host insect species: molecular phylogeny of genus *Glossina* and its bacteriome-associated endosymbiont, *Wigglesworthia glossinidia*. *Journal of Molecular Evolution*, **48**:49–58.
- Cheng Q and Aksoy S. (1999). Tissue tropism, transmission and expression of foreign genes in vivo in midgut symbionts of tsetse flies. *Insect Molecular Biology*, **8**: 125–132.
- Conesa A, Götz S, García-Gómez JM, Terol J, Talón M and Robles M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. *Bioinformatics*, **21**: 3674–3676.
- Cummings JH and Macfarlane GT. (1997). Role of intestinal bacteria in nutrient metabolism. *Clinical Nutrition*, **16**: 3–11.
- Dale C and Maudlin I. (1999). Sodalis gen. nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans. International Journal of Systematic Bacteriology, **49**: 267–275.
- Doudoumis V, Tsiamis G, Wamwiri F, Brelsfoard C, Alam U, Aksoy E, Dalaperas S, Abd-Alla A, Ouma J, Takac P, Aksoy S, Bourtzis K. (2012). Detection and characterization of *Wolbachia* infections in laboratory and natural populations of different species of tsetse flies (genus *Glossina*). *BMC Microbiology*, **12**: S3.
- Douglas AE. (1989). Mycetocyte symbiosis in insects. *Biological Reviews of the Cambridge Philosophical Society*, **64**: 409–434.
- Dransfield RD, Williams BG and Brightwell R. (1991). Control of tsetse flies and trypanosomiasis: Myth or reality? *Parasitology Today*, **7**: 287–291.

- Edwards MA, Kaufman ML and Storvick CA. (1957). Microbiologic assay for the thiamine content of blood of various species of animals and man. *The American Journal of Clinical Nutrition*, **5**: 51–55.
- FAO. (2013). Animal production and health. Retrieved August 12, 2013, from Food and Agriculture Organization of the United Nations: http://www.fao.org/ag/againfo/programmes/en/paat/disease.html
- Fèvre EM, Wissmann BV, Welburn SC and Lutumba P. (2008). The burden of human African trypanosomiasis. *PLoS Neglected Tropical Diseases*, **2**: e333.
- Fischer M, Haase I, Feicht R, Richter G, Gerhardt S, Changeux J, Bacher A. (2002). Biosynthesis of riboflavin, **526**: 519–526.
- Gabelli SB, Bianchet M, Xu W, Dunn CA, Niu ZD, Amzel LM and Bessman MJ. (2007). Structure and function of the *E. coli* dihydroneopterin triphosphate pyrophosphatase: a Nudix enzyme involved in folate biosynthesis. *Structure*, **15**: 1014–1022.
- Gil R, Silva FJ, Zientz E, Delmotte F, González-Candelas F, Latorre A and Moya A. (2003). The genome sequence of *Blochmannia floridanus*: comparative analysis of reduced genomes. *Proceedings of the National Academy of Sciences of the United States of America*, **100**: 9388–9393.
- Goodacre SL, Fricke C and Martin OY. (2013). A screen for bacterial endosymbionts in the model organisms *Tribolium castaneum*, *T. confusum*, *Callosobruchus maculatus*, and related species. *Insect Science*. doi:10.1111/1744-7917.12096
- Hanson AD and Gregory JF. (2011). Folate biosynthesis, turnover, and transport in plants. Annual Review of Plant Biology, **62**: 105–125.
- Hassanali A, Herren H, Khan ZR, Pickett J and Woodcock CM. (2008). Integrated pest management: the push-pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry. *Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences*, 363: 611–621.
- Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A and Werren JH. (2008). How many species are infected with *Wolbachia*?-A statistical analysis of current data. *FEMS Microbiology Letters*, **281**: 215–220.
- Holmes P. (2013). Tsetse-transmitted trypanosomes Their biology, disease impact and control. *Journal of Invertebrate Pathology*. doi:10.1016/j.jip.2012.07.014.
- Holt R, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR P. Wincker, A.G. Clark, J. M. C. Ribeiro, R. Wides, S. L. Salzberg, B. Loftus, M. Yandell, W. H.

Majoros, D. B. Rusch, Z. Lai, C. L. Kraft, J. F. Abril, V. Anthouard, P. Arensburger, P. W. Atkinson, H. Baden, V. de Berardinis, D. Baldwin, V. Benes, J. Biedler, C. Blass, R. Bolanos, D. Boscus, M. Barnstead, S. Cai, A. Center, K. Chaturverdi, G. K. Christophides, M. a Chrystal, M. Clamp, A. Cravchik, V. Curwen, A. Dana, A. Delcher, I. Dew, C. a Evans, M. Flanigan, A. Grundschober-Freimoser, L. Friedli, Z. Gu, P. Guan, R. Guigo, M. E. Hillenmeyer, S. L. Hladun, J. R. Hogan, Y. S. Hong, J. Hoover, O. Jaillon, Z. Ke, C. Kodira, E. Kokoza, A. Koutsos, I. Letunic, A. Levitsky, Y. Liang, J.-J. Lin, N. F. Lobo, J. R. Lopez, J. a Malek, T. C. McIntosh, S. Meister, J. Miller, C. Mobarry, E. Mongin, S. D. Murphy, D. a O'Brochta, C. Pfannkoch, R. Qi, M. a Regier, K. Remington, H. Shao, M. V Sharakhova, C. D. Sitter, J. Shetty, T. J. Smith, R. Strong, J. Sun, D. Thomasova, L. Q. Ton, P. Topalis, Z. Tu, M. F. Unger, B. Walenz, A. Wang, J. Wang, M. Wang, X. Wang, K. J. Woodford, J. R. Wortman, M. Wu, A. Yao, E. M. Zdobnov, H. Zhang, Q. Zhao, S. Zhao, S. C. Zhu, I. Zhimulev, M. Coluzzi, A. della Torre, C. W. Roth, C. Louis, F. Kalush, R. J. Mural, E. W. Myers, M. D. Adams, H. O. Smith, S. Broder, M. J. Gardner, C. M. Fraser, E. Birney, P. Bork, P. T. Brey, J. C. Venter, J. Weissenbach, F. C. Kafatos, F. H. Collins and Hoffman SL. (2002). The genome sequence of the malaria mosquito Anopheles gambiae. Science, 298: 129–149.

- Hooper LV and Gordon JI. (2001). Commensal host-bacterial relationships in the gut. *Science*, **292**: 1115–1118.
- Hosokawa T, Nikoh N, Koga R, Satô M, Tanahashi M, Meng XY and Fukatsu T. (2012). Reductive genome evolution, host-symbiont co-speciation and uterine transmission of endosymbiotic bacteria in bat flies. *The ISME Journal*, 6: 577–587.
- Hughes GL, Ren X, Ramirez JL, Sakamoto JM, Bailey JA, Jedlicka AE and Rasgon JL.
 (2011). Wolbachia infections in Anopheles gambiae cells: transcriptomic characterization of a novel host-symbiont interaction. PLoS Pathogens, 7: e1001296.
- Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A and Yong SY. (2012). InterPro in 2011: new developments in the family and domain prediction database. *Nucleic Acids Research*, 40: D306–D312.
- International *Glossina* Genome Initiative (IGGI). (2014). Genome Sequence of the Tsetse Fly (*Glossina morsitans*): Vector of African Trypanosomiasis. *Science*, **344**: 380–386.
- Jurgenson CT, Begley TP and Ealick S E. (2009). The structural and biochemical foundations of thiamin biosynthesis. *Annual Review of Biochemistry*, **78**: 569–603.
- Kanehisa M, Goto S, Sato Y, Furumichi M and Tanabe M. (2012). KEGG for integration and interpretation of large-scale molecular data sets. *Nucleic Acids Research*, **40**: D109–14.

- Kappmeier K and Nevill EM. (1999). Evaluation of coloured targets for the attraction of *Glossina brevipalpis* and *Glossina austeni* (Diptera: *Glossinidae*) in South Africa. *The Onderstepoort Journal of Veterinary Research*, **66**: 291–305.
- Kennedy PGE. (2006). Diagnostic and neuropathogenesis issues in human African trypanosomiasis. *International Journal for Parasitology*, **36**: 505–512.
- Kgori PM, Modo S and Torr SJ. (2006). The use of aerial spraying to eliminate tsetse from the Okavango Delta of Botswana. *Acta Tropica*, **99**: 184–199.
- Lawhorn BG, Mehl RA and Begley T P. (2004). Biosynthesis of the thiamin pyrimidine: the reconstruction of a remarkable rearrangement reaction. *Organic and Biomolecular Chemistry*, **2**: 2538–2546.
- Leak SGA. (1999). Tsetse Biology and Ecology (pp. 1–568). CABI Publishing.
- Lee D, Redfern O and Orengo C. (2007). Predicting protein function from sequence and structure. *Nature Reviews. Molecular Cell Biology*, **8**: 995–1005.
- Lehane M J. (2005). The Biology of Blood-Sucking in Insects. Cambridge University Press.
- Lin H, Kwan AL and Dutcher SK. (2010). Synthesizing and salvaging NAD: lessons learned from *Chlamydomonas reinhardtii*. *PLoS Genetics*, **6**: e1001105
- Lin S and Cronan JE. (2011). Closing in on complete pathways of biotin biosynthesis. Molecular bioSystems, 7:1811–1821.
- Marx H, Mattanovich D and Sauer M. (2008). Overexpression of the riboflavin biosynthetic pathway in *Pichia pastoris*. *Microbial Cell Factories*, **7**: 23–30.
- Mateos M, Castrezana SJ, Nankivell BJ, Estes AM, Markow T and Moran N. (2006). Heritable endosymbionts of *Drosophila*. *Genetics*, **174**: 363–376.
- Medlock J, Atkins KE, Thomas DN, Aksoy S and Galvani AP. (2013). Evaluating Paratransgenesis as a Potential Control Strategy for African Trypanosomiasis. *PLoS Neglected Tropical Diseases*, **7**: e2374.
- Minard G, Mavingui P and Moro CV. (2013). Diversity and function of bacterial microbiota in the mosquito holobiont. *Parasites and Vectors*, **6**: 146–151.
- Misra S, Crosby MA, Mungall CJ, Matthews BB, Campbell KS, Hradecky P and Lewis SE. (2002). Annotation of the *Drosophila melanogaster* euchromatic genome: a systematic review. *Genome Biology*, 3: RESEARCH0083.
- Moran NA, McCutcheon JP and Nakabachi A. (2008). Genomics and evolution of heritable bacterial symbionts. *Annual Review of Genetics*, **42**: 165–190.
- Mortazavi A, Williams BA, Mccue K, Schaeffer L and Wold B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. *Nature Methods*, **5**: 1–8.

- Nogge G. (1976). Sterility in tsetse flies (*Glossina morsitans* Westwood) caused by loss of symbionts. *Experientia*, **32**: 995–1006.
- O'Neill SL, Gooding RH and Aksoy S. (1993). Phylogenetically distant symbiotic microorganisms reside in *Glossina* midgut and ovary tissues. *Medical and Veterinary Entomology*, **7**: 377–383.
- Odiit M, Coleman PG, Liu WC, McDermott JJ, Fèvre EM, Welburn SC and Woolhouse MEJ. (2005). Quantifying the level of under-detection of Trypanosoma brucei rhodesiense sleeping sickness cases. *Tropical Medicine & International Health: TM & IH*, 10: 840–849.
- Pais R, Lohs C, Wu Y, Wang J and Aksoy S. (2008). The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the tsetse fly. Applied and Environmental Microbiology, 74: 5965–5974.
- Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D and Yeates TO. (1999). Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles. *Proceedings of the National Academy of Sciences of the United States of America*, 96: 4285–4288.
- Petersen FT, Meier R, Kutty SN and Wiegmann BM. (2007). The phylogeny and evolution of host choice in the *Hippoboscoidea* (Diptera) as reconstructed using four molecular markers. *Molecular Phylogenetics and Evolution*, **45**: 111–122.
- Pinon V, Ravanel S, Douce R and Alban C. (2005). Biotin synthesis in plants. The first committed step of the pathway is catalyzed by a cytosolic 7-keto-8-aminopelargonic acid synthase. *Plant Physiology*, **139**: 1666–1676.
- Politi C, Carrín G, Evans D, Kuzoe FA and Cattand PD. (1995). Cost-effectiveness analysis of alternative treatments of African gambiense trypanosomiasis in Uganda. *Health Economics*, **4**: 273–287.
- Price DRG, Duncan RP, Shigenobu S and Wilson ACC. (2011). Genome expansion and differential expression of amino acid transporters at the aphid/*Buchnera* symbiotic interface. *Molecular Biology and Evolution*, **28**: 3113–3126.
- Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C and Finn RD. (2012). The Pfam protein families database. *Nucleic Acids Research*, **40**: D290–D301.
- Reizer A, Deutscher J, Saier MH and Reizer J. (1991). Analysis of the gluconate (gnt) operon of *Bacillus subtilis*. *Molecular Microbiology*, **5**: 1081–1089.

- Rita R, Rebecca S, Jingwen W, Claudia L, Yi-neng W, Anna S and Serap A. (2012). Insight into the Transmission Biology and Species-Specific Functional Capabilities of Tsetse (Diptera: *Glossinidae*) Obligate Symbiont *Wigglesworthia*. *mBio*, **3**: 1–13.
- Schramek N, Bracher A and Bacher A. (2001). Biosynthesis of riboflavin. Single turnover kinetic analysis of GTP cyclohydrolase II. *The Journal of Biological Chemistry*, 276: 44157–44162.
- Settembre E, Dorrestein PC, Zhai H, Chatterjee A, McLafferty FW, Begley TPand Ealick SE. (2004). Thiamin biosynthesis in *Bacillus subtilis*: structure of the thiazole synthase/sulfur carrier protein complex. *Biochemistry*, 43: 11647–11657.
- Shaw APM. (2009). Assessing the economics of animal trypanosomosis in Africa history and current perspectives. *Journal of Veterinary Research*, **32**: 27–32.
- Shigenobu S, Watanabe H, Hattori M, Sakaki Y and Ishikawa H. (2000). Genome sequence of the endocellular bacterial symbiont of aphids *Buchnera* sp. APS. *Nature*, **407**: 81–86.
- Sigrist CJA, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A and Xenarios I. (2013). New and continuing developments at PROSITE. *Nucleic Acids Research*, **41**: D344–D347.
- Simarro PP, Diarra A, Ruiz Postigo J, Franco JR and Jannin JG. (2011). The human African trypanosomiasis control and surveillance programme of the World Health Organization 2000-2009: the way forward. *PLoS Neglected Tropical Diseases*, **5**:e1007.
- Sinkins S and O'Neill S. (2000). *Wolbachia* as a vehicle to modify insect populations. In: Handler A, James A. (Eds.), Insect Transgenesis. *CRC Press*, New York, pp. 271–287
- Snyder AK, Deberry JW, Runyen-Janecky L and Rio RVM. (2010). Nutrient provisioning facilitates homeostasis between tsetse fly (Diptera: *Glossinidae*) symbionts. *Proceedings. Biological Sciences*, 277: 2389–2397.
- Suzuki Y and Brown G. (1974). The Biosynthesis of Folic Acid. *The Journal of Biological Chemistry*, **249**: 2405–2410.
- Tambasco-Studart M, Titiz O, Raschle T, Forster G, Amrhein N, and Fitzpatrick T B. (2005). Vitamin B6 biosynthesis in higher plants. *Proceedings of the National Academy of Sciences of the United States of America*, **102**: 13687–13692.
- Tanaka T, Tateno Y and Gojobori T. (2005). Evolution of vitamin B6 (pyridoxine) metabolism by gain and loss of genes. *Molecular Biology and Evolution*, **22**: 243–250.
- Thompson JD, Higgins DG and Gibson TJ. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-

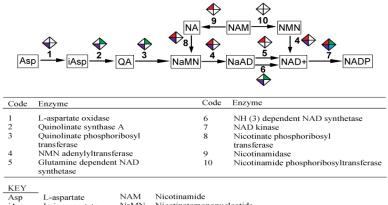
specific gap penalties and weight matrix choice. *Nucleic Acids Research*, **22**: 4673–4680.

- Tian W and Skolnick J. (2003). How well is enzyme function conserved as a function of pairwise sequence identity? *Journal of Molecular Biology*, **333**: 863–882.
- Tobe SS and Langley PA. (1978). Reproductive physiology of *Glossina*. Annual Review of Entomology, **23**: 283–307.
- Toh H, Weiss BL Perkin SAH, Yamashita A, Oshima K, Hattori M and Aksoy S. (2006). Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of *Sodalis glossinidius* in the tsetse host. *Genome Research*, 16: 149–156.
- Vale GA. (1993). Development of baits for tsetse flies (Diptera: Glossinidae) in Zimbabwe. Journal of Medical Entomology, 30: 831–842.
- Van Ham RC, Kamerbeek J, Palacios C, Rausell C, Abascal F, Bastolla U and Moya A. (2003). Reductive genome evolution in *Buchnera aphidicola*. *Proceedings of the National Academy of Sciences of the United States of America*, **100**: 581–586.
- Vreysen MJ B, Seck MT, Sall B and Bouyer J. (2013). Tsetse flies: their biology and control using area-wide integrated pest management approaches. *Journal of Invertebrate Pathology*, **112**:, 15–25.
- Vreysen MJ, Saleh KM, Ali MY, Abdulla AM, Zhu ZR, Juma KG and Feldmann HU. (2000). Glossina austeni (Diptera: Glossinidae) eradicated on the island of Unguja, Zanzibar, using the sterile insect technique. Journal of Economic Entomology, 93: 123– 135.
- Wang J, Weiss BL and Aksoy S. (2013). Tsetse fly microbiota: form and function. Frontiers in Cellular and Infection Microbiology, 3, 69–78.
- Weiss BL, Mouchotte R, Rio RVM, Wu YN, Wu Z, Heddi A and Aksoy S. (2006). Interspecific transfer of bacterial endosymbionts between tsetse fly species: infection establishment and effect on host fitness. *Applied and Environmental Microbiology*, 72: 7013–7021.
- Weiss BL, Wang J and Aksoy S. (2011). Tsetse immune system maturation requires the presence of obligate symbionts in larvae. *PLoS Biology*, **9**: e1000619.
- Welburn SC, Maudlin I and Ellis DS. (1987). *In vitro* cultivation of rickettsia-like-organisms from *Glossina* spp. *Annals of Tropical Medicine and Parasitology*, **81**: 331–335.
- Wellde BT, Waema D, Chumo DA, Reardon MJ, Oloo F, Njogu AR and Mugutu S. (1989).
 Review of tsetse control measures taken in the Lambwe Valley in 1980-1984. *Annals of Tropical Medicine and Parasitology*, 83: 119–125.

- Wernegreen JJ. (2002). Genome evolution in bacterial endosymbionts of insects. *Nature Reviews. Genetics*, **3**: 850–861.
- Werren, J. H. (1997). Wolbachia run amok. Proceedings of the National Academy of Sciences of the United States of America, **94**: 11154–11165.
- Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD and Hochstrasser, D. F. (1999). Protein identification and analysis tools in the ExPASy server. In *Methods in molecular biology* **112**: 531–52).

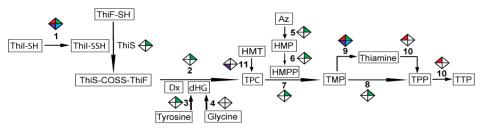
APPENDICES

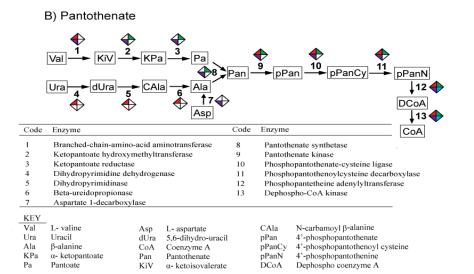
Appendix 1: Grinding buffer


Grinding buffer was prepared by mixing 10 ml of 0.1M of NaCl, 20 ml of 0.2M sucrose, 10 ml of 0.1M Tris (pH 9.2), 10 ml of 0.05M ethylenediaminetetraacetic acid (EDTA), 5 ml of 0.5% sodium dodecyl sulfate (SDS) and double distilled water to a final volume of 100ml.

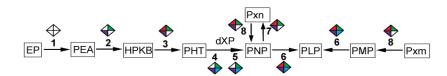
Appendix 2: Transformation media and reagents

- a) Isopropyl β -D-1-thiogalactopyranoside (IPTG) stock solution 0.1M contains 1.2g IPTG dissolved in 50ml distilled water and stored at 4°C
- b) 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-Gal) 2ml was prepared by dissolving 100g of 5-bromo 4-chloro 3-indolyl β-D-galactoside in 2ml of N, N'dimethyl-formamide. It is stored at -20°C in an aluminium foil covered container.
- c) Luria-Bertani (LB) medium: 10g Bacto-tryptone, 5g Bacto-yeast extract and 5g NaCl was dissolved in a litre of distilled water and its pH adjusted to pH 7 using NaOH. This was then autoclaved before use.
- d) LB plates with ampicillin, IPTG and X-Gal: 15g agar was added to a litre of LB medium then autoclaved. This was allowed to cool to 50 °C before ampicillin was added to a final concentration of 100µg/ml
- e) Super Optimal broth with Catabolite repression (SOC) medium: 100ml was prepared by mixing 2g of bacto-tryptome, 0.5g bacto-yeast extract, 1ml 1M NaCl, 0.25ml 1M KCl, 1ml 2M Mg²⁺ stock (filter sterilized), 1ml 2M glucose (filter sterilized) and distilled water to a final volume of 100ml.
- f) 2M Mg²⁺ stock: Prepared by mixing 20.3g MgCl₂ •6H₂O and 24.65g MgSO₄ •7H₂O and distilled water to a final volume of 100ml then filter sterilized.

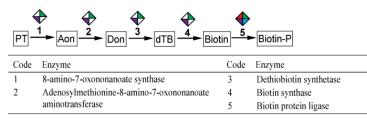

Appendix 3: Figure A1



Asp	L-aspartate	NAM	Nicotinamide
iAsp	Iminoaspartate	NaMN	Nicotinatemononucleotide
QA	Quinolinate	NaAD	Nicotinate adenine dinucleotide
NADP	NAD phosphate	NAD	Nicotinamide adenine dinucleotide
NA	Nicotinic acid	NMN	Nicotinamide mononucleotide



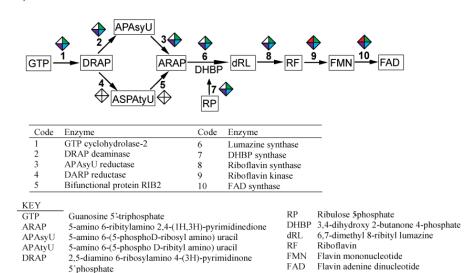
Code	Enzyme	Code	Enzyme
1	Cysteine desulfurase	6	Phosphomethylpyrimidine kinase
2	Thiazole synthase	7	Thiamine-phosphate synthase
3	Thiamine biosynthesis protein ThiH	8	Thiamine-monophosphate kinase
4	Glycine oxidase	9	Non-specific phosphatase
5	Phosphomethylpyrimidine synthase	10	Thiamine pyrophosphokinase
		11	Hydroxyethylthiazole kinase
KEY Dx dHG TPC Az HMP	1-deoxy D-xylulose 5-phosphate Dehydroglycine Thiazole phosphate carboxylate 5-aminoimidazole Hydroxymethyl pyrimidine phosphate	HMI TMF TPP TTP HMT	P Thiamine monophosphate Thiamine pyrophosphate Thiamine triphosphate


D) Pyridoxine

Code	Enzyme	Code	Enzyme
1	D-erythrose-4-phosphate	5	Pyridoxine 5'-phosphate synthase
	dehvdrogenase	6	Pyridoxine-5'-phosphate oxidase
2	Erythronate-4-phosphate	7	Pyridoxal phosphate phosphatase
	dehydrogenase	8	Pyridoxal kinase
3	Phosphoserine aminotransferase		
4	4-hydroxythreonine-4-phosphate		
	dehydrogenase		
KEY			
EP	D-erythrose 4-phosphate	PLP	Pyridoxal phosphate
PEA	4-phospho D- erythronate	PMP	Pyridoxamine mononhosphate
Pxm	Pyridoxamine	PHT	4-phosphohydroxy L -threonine
Pxn	Pyridoxine	dXP	Pyridoxamine monophosphate 4-phosphohydroxy L-threonine 1-deoxyxyluloge 5-phosphate 3-hydroxy 4-phosphohydroxy α-ketobutyrat
PNP	Pyridoxine phosphate	HPKB	2 hudrowy 4-phosphohydroxy α-ketobutyrat

E) Fola		G dHT]	CM ADCM ADCM PABA PABA HMdHTP dHTe -	dHF	
Code	Enzyme	Code	Enzyme		
1	GTP cyclohydrolase I	7	P-aminobenzoic acid synthase		
2	Alkaline phosphatase	8	Aminodeoxychorismate lyase		
2 3 4 5	Dihydroneopterin pyrophosphatase	9	Dihydropteroate synthase		
4	Non specific phosphatase	10	Folylpolyglutamate synthase		
	Dihydroneopterin aldolase	11	Dihydrofolate reductase		
6	2-amino-4-hydroxy-6-hydroxymethyl dihydropteridine pyrophosphokinase				
KEY GTP dHPTP dHT dHPMP HMdHT HMdHTP	Guanosine triphosphate Dihydroneopterin triphosphate Dihydroneopterin Dihydroneopterin monophosphate Hydroxymethyldihydropterin Hydroxymethyldihydropterin pyrophosphate	CM ADCM PABA dHTe dHf tHF	Chorismate Aminodeoxychorismate Para aminobenzoic acid Dihydropteroate Dihydrofolate Tetrahydrofolate		

G) Biotin


KEY

PT	Pimelate thioester
----	--------------------

- Aon 8-amino-7-oxononanoate
- Don 7,8-diaminononanoate
- dTB Dethiobiotin
- Biotin-P Biotin Protein

F) Riboflavin

tHF

G. morsitans W. glossinidia S. glossinidius W. pipientis

Figure A1. Integrated pathways for vitamins and cofactors biosynthesis in *Glossina*, *Wigglesworthia*, *Sodalis* and *Wolbachia*. The arrows represent chemical reactions, numbers represent enzymes while products/ substrates are in squares. A coloured triangles indicate that the enzyme is present in the respective organism and absent if it is white (not coloured).

Gene IDs	Nucleotide sequence (%)	Amino acid sequence (%)
GMOY002354	97.0 (893/921)	98.4 (301/306)
GMOY009051	97.1 (1024/1055)	98.6 (287/291)
GMOY005148	96.1 (995/1035)	97.2 (247/254)
GMOYdhfr2	97.0 (605/624)	99.0 (185/187)
GMOY009056	96.0 (1537/1602)	97.5 (161/165)
Average identities	96.6	98.1

Appendix 4: Table A1. Percentage identities between the sequenced and annotated genes

Appendix 5: Alignment of isoenzymes

Alkaline phosphatases

GMOY000067 GMOY004796 GMOY004885 GMOY006875 GMOY007323	1 10 MLFNY.KFYSQI MGSQI.LLYV. MFYLI.YF MIAVRNDFYKFI SCYVA	20 FFIIIIVFYCSH .LIALLIDTI. .CVVSIIHCAK LFFVTLILHCAK FFVIIKYTLLNR	GLAI .RAA A TISFPP VLDV VD.KFSHLLV	30 DKSTTDDDEER DHLKYGS PIIRTLDTTGQU DCVAIGDP.YHKE NRSRSGTF.IHVK	40 GPEFKTLDP F.D. RQDVNYSSIDGSE	50
GMOY009926 GMOY000067 GMOY004796 GMOY004885 GMOY006875 GMOY007323 GMOY009926	TPMKFYHSNRFI	 KIAATFLLLSLS	ILITGTCLAYY	60 .RLEKRALPMLRFE .YTAKN .KLAKANE .FYENRLT GKLANNSSATSGSE	70 EYLKNRELDSNHWQ MSPEHTTEYWN DKKVEDSKFWF PEKERSTEFWL FNLNNLPSEQVIWF	LVRQGEE L 80 90 ELGQSITEKQTKSKST EKAQDILKQKLVQVQS NVGLKQLKVVVQS NVGLKQLKKVTG .S. EKQEAELKALNR K NLSREFIKQMNR
GMOY000067 GMOY004796 GMOY004885 GMOY006875 GMOY007323 GMOY009926	100	110	120	130	140	150 160 160 20VADSACTATAYLAGIKA 20VADSACSATAYLGGVKG KQVPDSAGTATAYLGGVKG GQTPDSACTATAYLCGVKT RIVSDSACTATAYLCGVKT RIVSDSACTATAYLCGVKA
GMOY000067 GMOY004796 GMOY004885 GMOY006875 GMOY007323 GMOY009926	170	180 1	90 20	0 210	220	230 NRNWEDDGHVLKDNGD. QRGWENDAEILKSDCS. HRDWECDSKIPEQSK NRLWECDNDINTMGAIIGP RSWECESNMPESAK DRSWENDSKVKEACGTK
GMOY000067 GMOY004796 GMOY004885 GMOY006875 GMOY007323 GMOY009926	250 PKVCPDIAHQM PKVNVDIARQL AHYIDIARQL GEECKDIAQQL MQGCTDIATQL	260 IYSAVGRKLNVI VEWPVGRKLKVI VETSPGNKFNVV ITSEPGKNLNVI VEGNVGQKINVI	270 LGGGRKHFLPE MGGGRSNFRNV LGGGLQPLGAM LGGGMGKFLPK	L .TVIDE.D .NPMEKRTTPWEGG .HKVDA.F ISGSEEDP.LD.	280 KSNGSRLDGRNI GIAGQRYDGRDI STEKVCSRNDTLNI GVKGERRDGLDI HWAGYSKDGRHI	
GMOY000067 GMOY004796 GMOY004885 GMOY006875 GMOY007323 GMOY009926	310 SREEFFNLP.K: NRKGLNSLNLNN TQEEFKQLDLKN NLEEFEKVDFN NRDEFMAINGT TRNELMQVNLS	SADK LIGLF AMD NTDY LIGLF SSS KINS LMGLF RNN QTKQ LIGLF HSS SVNY VLGIF ANG	HIPYHLDSD HCPFHGDLKRN MTYAIAKE HLEYYSKAKVE HIKYDNELDMG MLCHLETD.E	TTTPSLDEMVC NISTLVPSLSEMTE EGEPSLKEMTE RFKQPRLKDMTF SESMPSLKEMTV	350 34LHILKTQSQGK SALKVLSK.KNN CAILVLSK.KNN CAILVLERGNKSK KAILKTLEK.NSE VKALQILSS.RER KAIEHLQH.NEN	370 380 GYFLFVEGGRIDHAHHDSL GFFLFVEGGRIDMAHHETK GYVLLVEGGRIDQAHHQNY GYFLFIEGGRIDHGHHETK GFLLVVEGLIDQAHHRGK GYFVFIEGGLIDWLHHFNK
GMOY000067 GMOY004796 GMOY004885 GMOY006875 GMOY007323 GMOY009926	390 AmkAldetves Arksledtees Arallhevyes Aayaldetles Akk ai nevlas Prl al deties	400 DKAVQLAQLQTS AKAVDLTRKMFS DMAIQAALEKTN DEAIQTALDLTD NNAINASIQALN SK <u>AIQA</u> ARQITS	410 NDDTLIVV EEDTLIV ENETLIV HRETLIVV KEELEDTLIV EEDTLIVV	420 TSDHSHTMTVAGYS TSDHSHTMTISGYE TADHSHAVTLNGYE TSDHSHTMTISGYE TADHSHTLTINGYE TADHSHAFSYGGYE	SRKNNTVGINNSC VRDEDITGLAADC ARGNDILGFANKP SRGNPILGLNERD DRGTSVFGIAGKS	40, 450, MGLDGLPYATISYANGPGY . ADDDLPYTIISYANGPGF . GQDP.IYETITYANGPGF LDSDGVPYSVLNYAIGPQ. . ITEGTPYTVLTYGTTRK. . GKDGKPYMPLNYANGPSF
GMOY000067 GMOY004796 GMOY004885 GMOY006875 GMOY007323 GMOY009926	460 TNNLLTKST ENTYDKKG KDHLNLSATTEI QYMDS.N GFQ.TD.D1 SKFFDTES	470 GFQRKNLHQVN. RKRINPEE. NIWITNFTEKQ. GKRLDLTN. KCLRKNPATDD. GQRVDPSLN	480 MDDKDYQFPS TIDPNFQYLA RQSSTYRHLA FISDNMIFPS TESWEYTQQG IVGNTDDEFPS	490, 500, AVPLDSETHGCDV TVPLASETHGCDV TLPLPDETHGCEDV YIKALMGTHAGEDV AVNTEENNHGGSDV TWPMQWETHGCDV	510 GVFAKCPFAHLFT GVFASCPFAHYFS ALFAHGPGSSLVR AIFARGPGADLFS TIHATGAMSHLFH PVYASCPWSHLFT	520 GVYEONFIPHAIAYASCLC GYYEOSNIPAMMAKAANIC GVFEONYIAFVMSYAGCMC GLLOONVIPHLMAYAACIC GVHEOSYVAHAISYALRIC GVYEONALPHFMAYAACLC
GMOY000067 GMOY004796 GMOY004885 GMOY006875 GMOY007323 GMOY009926	TFKSAAGVHARI PAKDFDNSCQHI NGLHLCK	PTVMA RSGAGSLSISLL	LFIIHFFII LFAAVSFVPYI V	LLKIR HIFDN .QEDV KQLNE		

Dihydrofolate reductases

	i	10	20	зо	40	50	бÖ	7 <u>0</u>	8 <u>0</u>
GMOY008444	INYKNFI	ISKSNVKT	IKMSKTPGVG	INSDATYSIQI	HGKVDTIDNDE	GNRTSPLYV	AFNETERPIED	ATHNQVAMNS	QNTKN
GMOYdhfr2	• • • • • • •								
		эö	100	110	120	130	140	150	160
GMOY008444	LIDRKSI	DPAVQAN	MKHGRLDIHD	VQSKPEIEQIO	CGDEKKTFLSK	TRETTGVDFI	OKSDINAVVTI	SSRQANENGG	TIGG <mark>L</mark>
GMOYdhfr2				•••••				• • • • • • • • • • •	МЦ
		170	180	190	200	210	220	230	
GMOY008444							والمالكين الالمالي ال	DRLNIVLSTT	
GMOYdhfr2	KENLIVA	AVSKNEGI	GLKGGLPWEL	KSELEYFSDM	TKRVFDSTKRN	VVUMGRKTY	GIPLNNRPLE	RLNIVLSTT	LNKVG
24	4 <u>0</u>	250	260	270	280	290	300	310	
GMOY008444 GMOYdhfr2					IGGAGVFKDAM IGGASVFKEAM			VFLPAIPDDF	QEVIT
GMOIGHITZ	BT 5 BE A 1	LLQPNLEA.	AMKELEDNNT	LKSNIENIWI.	IGGASVFRMAN	ASKRCHRLY.	ITEIQSSFE ^{SI}	VELETENDE	EQLIP
32	20	330	340						
GMOY008444 GMOYdhfr2	EPEIPQ GPEVPQ	G MQAEN GT I VQVEN CI	N f V ykv fQ k . C f R ykv le k R	R E					

FAD synthases

	1	10	20	30	40	5 O	eo	7 <u>0</u>	8 <u>0</u>
GMOY000849 GMOY008278	MEGETKI	DSEAKDSEAK	DSKKRRKPKP	KPKPKPPPEPI	VYLGKTAKIN	AKLLKAKQRV	PPQKKPEKKE	EKKEGEEEPP	ΡΕK
GM01008278									
		90	100	110	120	130	140	150	160
GMOY000849	KEKEEKH	KVQKSQKKVA	KAKAEAKKKS	EDAELARLVKF	QELKAKYKEI	IKVREKRKKK	EEPEKKLCTI	TKGKAKAVVE	EDK
GMOY008278	• • • • • •								• • •
		170	180	190	200	210	220	230	240
GMOY000849	KPGSGSO	GENLKDTIYH	~		VP KY YKF EEI			OMYKAQEVMLA	
GMOY008278	• • • • • •		.MSINSVLEE	NCL R AN PE F I I	EAKY.SLEEI	KSNIQIKE KS	FEELCKKTFÇ	MYKAEEVVL S	FNG
		250	260	270	280	290	300	310	320
GMOY000849	GKDCTV		كالتركيب بتراك فالمتحد		PEVEEFVNDC	نتاكي كالكانة كالكانية أ			
GMOY008278	GKDSTV	VLHMLARFFQ	KDHNLKHLKI	LALFITDPDGE	SEIDEFVDDC	SKLYNIELIK	MEGTIKQALE	RMCRERPLIR	AVF
		330	340	350	360	370	380	390	400
GMOY000849					RDVWQYMYVY				
GMOY008278	MGSRRTI	ррнсоргктм	QPTDPGWPAL	MRINPILEWTO	RDIWQYIYVY	DVAYCILYQK	GFTSIGNKKN	TKPNPYLQVA	ΈSQ
		410	420						
GMOY000849		YRPG HELLDN	-						
GMOY008278	TGRVLNY	YRHA HELLDN	DNLERAGRV						

Pantothenate kinase

	i i	. o	20		зо	40	50	6 º 7 º
GMOY000935 GMOY006067						VHNNNNS <mark>K</mark> RKF LHCNVLVKDSN		EKNNLKIKI A KE DKEAAAYW
	8	° O	90	100	110	120 :	130 1	40 150
GMOY000935 GMOY006067								QEAESLRSIRRY SESHKVLGIREL
		60	170	180	190	200		210
GMOY000935 GMOY006067	L T K N S A Y G K L E L N D A Q L E	.TGHRDTH LHGFRDPW	LQMDNV B IR QEQKKT E NE	QRRGS L HF I EA.VP L LS A	RFQTT DM RLQEI DA IESD	.GN FL S LAK Q. Rer wl e lvr gvi	KGM <mark>A</mark> E LAGNMFDWG <mark>A</mark> Q	LVTTVCATGGGA AVTNILQE.DAS
	220	230	240	250	260	270	280	290
GMOY000935 GMOY006067	FKFENDFR FGL.NAALE	Q VN M K LAK R IQ K R PWL	F deld tl ik M ddld AW lk	G I LFS EV QNI R L QEE EI HK	RTEC Y YYE N AR CAAI F VDN S GV	DITKSEKRVYDI DVVLG	FSQ PY PFI LV N IL PF ARE LL K	V gs gvsIlAvyg R gi kvlLcAnte
	300	310	320	330	340	350	360	370
GMOY000935 GMOY006067				CNTFEEAIQI CNCSCPV		KLVRDIYGGDYI	DRFGLTGDLVA	SSFGQMHIRDKR
	380	390	400	410	420	430	440	450
GMOY000935 GMOY006067	ASVSREDLA							LFLEHEGYFGAL LILEGMGRALHT
	460	470	480	4 9	p.			
GMOY000935 GMOY006067	GCL LQFN GE NLY A R FN CE			NPTPSALFS GDTFAVICK				

SUPPLEMENTARY DATA

Table S1: Experimentally validated orthologs in B-vitamins and cofactors biosynthesis

Entry	Organism	EC number	Path wa y	Literature
P38891	Saccha rom yces cerevisiae	2.6.1.42	L-isoleucine biosynthesis	Colon M., Hernandez F., Lopez K., Quezada H., Gonzalez J., Lopez G., Aranda C., Gonzalez A. 2011
P47176	Saccha rom yces cerevisiae	2.6.1.42	L-isoleucine biosynthesis	Colon M., Hernandez F., Lopez K., Quezada H., Gonzalez J., Lopez G., Aranda C., Gonzalez A. 2011
P37653	Escherichia coli	2.4.1.12	Bacterial cellulose	Zogaj X., Nimtz M., Rohde M., Bokranz W., Roemling U. 2001
			biosynthesis	
P12995	Escherichia coli	2.6.1.62	Biotin biosynthesis	Stoner GL., Eisenberg M.A. 1975
P50277	Saccharomyces cerevisiae	2.6.1.62	Biotin biosynthesis	Wu H, Ito K, Shimoi H. 2005.
P12996	Escherichia coli	2.8.1.6	Biotin biosynthesis	Sanyal I., Cohen G., Flint D.H. 1994
P12999	Escherichia coli	2.1.1.197	Biotin biosynthesis	Del Campillo-Campbell A., Kayajanian G., Campbell A., Adhya S. 1967
P13000	Escherichia coli	6.3.3.3	Biotin biosynthesis	Eisenberg M.A., Krell K. 1969
B0F481	Arabidopsis thaliana	6.3.3.3; 2.6.1.62	Biotin biosynthesis	Patton D.A., Volrath S., Ward E.R. 1996
P53556	Bacillus subtilis	2.3.1.47	Biotin biosynthesis	Bower S., Perkins J.B., Yocum R.R., Howitt C.L., Rahaim P., Pero J. 1996
P12998	Escherichia coli	2.3.1.47	Biotin biosynthesis	Webster S.P., Alexeev D., Campopiano D.J., Watt R.M., Alexeeva M., Sawyer L., Baxter R.L. 2000
P13001	Escherichia coli	3.1.1.85	Biotin biosynthesis	Tomczyk N.H., Nettleship J.E., Baxter R.L., Crichton H.J., Webster S.P., Campopiano D.J. 2001
P06709	Escherichia coli	6.3.4.15	Biotin biosynthesis	Weaver L.H., Kwon K., Beckett D., Matthews B.W. 2001
Q9UBR1	Homo sapiens	3.5.1.6	Beta-alanine biosynthesis	Sakamoto T., Sakata S.F., Matsuda K., Horikawa Y., Tamaki N. 2001
Q03941	Saccharomyces cerevisiae	2.7.1.24	Coenzyme A biosynthesis	Olzhausen J., Schuebbe S., Schueller HJ. 2009
O48946	Arabidopsis thaliana	2.4.1.12	Plant cellulose biosynthesis	Burn J.E., Hocart C.H., Birch R.J., Cork A.C., Williamson R.E. 2002
P0ABQ0	Escherichia coli	4.1.1.36; 6.3.2.5	Coenzyme A biosynthesis	Strauss E., Kinsland C., Ge Y., McLafferty F.W., Begley T.P. 2001
Q96CD2	Homo sapiens	4.1.1.36	Coenzyme A biosynthesis	Daugherty M., Polanuyer B., Farrell M., Scholle M., Lykidis A., de Crecy-Lagard V., Osterman A. 2002
Q9ZPV8	Arabidopsis thaliana	2.7.7.3	Coenzyme A biosynthesis	Kupke T., Hemandez-Acosta P., Culianez-Macia F.A. 2003
P0A6I6	Escherichia coli	2.7.7.3	Coenzyme A biosynthesis	Izard T. 2002
P53332	Saccharomyces cerevisiae	2.7.7.3	Coenzyme A biosynthesis	Olzhausen J., Schuebbe S., Schueller HJ. 2009
P0A6I9	Escherichia coli	2.7.1.24	Coenzyme A biosynthesis	Mishra P.K., Park P.K., Drueckhammer D.G. 2001
Q13057	Homo sapiens	2.7.7.3; 2.7.1.24	Coenzyme A biosynthesis	Daugherty M., Polanuyer B., Farrell M., Scholle M., Lykidis A., de Crecy-Lagard V., Osterman A. 2002
P37564	Bacillus subtilis	2.7.1.33	Coenzyme A biosynthesis	Hong B.S., Yun M.K., Zhang YM., Chohnan S., Rock C.O., White S.W., Jackowski S., Park HW., Leonardi R. 2006
Q18677	Caeno thabditis elegans	3.5.2.2	Coenzyme A biosynthesis	Takemoto T., Sasaki Y., Hamajima N., Goshima Y., Nonaka M., Kimura H. 2000
P0AC13	Escherichia coli	2.5.1.15	Tetrahydrofolate biosynthesis	Swedberg G., Castensson S., Skold O. 1979
Q12882	Homo sapiens	1.3.1.2	Beta-alanine biosynthesis.	Lu ZH., Zhang R., Diasio R.B. 1992
Q28943	Sus scrofa	1.3.1.2	Beta-alanine biosynthesis.	Lohkamp B., Voevodskaya N., Lindqvist Y., Dobritzsch D. 2010
Q86XF0	Homo sapiens	1.5.1.3	Tetrahydrofolate biosynthesis	Anderson D.D., Quintero C.M., Stover P.J. 2011
P0ABQ4	Escherichia coli	1.5.1.3	Tetrahydrofolate biosynthesis	Bystroff C., Kraut J. 1991
P00374	Homo sapiens	1.5.1.3	Tetrahydrofolate biosynthesis	Anderson D.D., Quintero C.M., Stover P.J. 2011
P0A9B6	Escherichia coli	1.2.1.72	Pyridoxine 5'-phosphate biosynthesis	Yang Y., Zhao G., Man TK., Winkler M.E. 1998
Q8NFF5	Homo sapiens	2.7.7.2	FAD biosynthesis	Torchetti E.M., Brizio C., Colella M., Galluccio M., Giancaspero T.A., Indiveri C., Roberti M., Barile M. 2010
P53848	Saccharomyces cerevisiae	4.1.2.25; 2.7.6.3; 2.5.1.15	Tetrahydrofolate biosynthesis	Lawrence M.C., Iliades P., Fernley R.T., Berglez J., Pilling P.A., Macreadie I.G. 2005
Q9SF23	Arabidopsis thaliana	4.1.2.25	Tetrahydrofolate biosynthesis	Bauer S., Schott A.K., Illarionova V., Bacher A., Huber R., Fischer M. 2004
P28823	Bacillus subtilis	4.1.2.25	Tetrahydrofolate biosynthesis	Slock J., Stahly D.P., Han CY., Six E.W., Crawford I.P. 1990
P0AC16	Escherichia coli	4.1.2.25	Tetrahydrofolate biosynthesis	Haussmann C., Rohdich F., Schmidt E., Bacher A., Richter G. 1998

Entry	Organism	EC number	Path way	Literature
205932	Homo sapiens	6.3.2.17	Tetrahydrofolylpolyglut amat e	Tomsho J.W., Moran R.G., Coward J.K. 2008
			biosynthesis.	
208645	Saccharomyces cerevisiae	6.3.2.17	Tet rahydrofolylpolyglut amate	DeSouza L., Shen Y., Bognar A.L. 2000
			biosynthesis.	
F4K2A1	Arabidopsis thaliana	6.3.2.17	Tet rahydrofolylpolyglut amate	Srivastava A.C., Ramos-Parra P.A., Bedair M., Robledo-Hemandez A.L., Tang Y., Sumner L.W., Diaz de la
	4 7 • 7 • 7 7•	()) 17	biosynthesis.	Garza R.I., Blancaflor E.B. 2011
F4J2K2	Arabidopsis thaliana	6.3.2.17	Tet rahydrofolylpolyglut amate	Srivastava A.C., Ramos-Parra P.A., Bedair M., Robledo-Hernandez A.L., Tang Y., Sumner L.W., Diaz de la
2011/0.25	4 7 • 7 • 7 7•	()) 17	biosynthesis.	Garza R.I., Blancaflor E.B. 2011
Q8W035	Arabidopsis thaliana	6.3.2.17	Tetrahydrofolylpolyglutamate	Srivastava A.C., Ramos-Parra P.A., Bedair M., Robledo-Hemandez A.L., Tang Y., Sumner L.W., Diaz de la
248596	Drosophila melanogaster	3.5.4.16	biosynthesis. 7,8-dihydroneopterin	Garza R.I., Blancaflor E.B. 2011 McLean J.R., Krishnakumar S., O'Donnell J.M. 1993
40390	Drosophilametanogasier	5.5.4.10	triphosphate biosynthesis	Melean J.K., Kilsinakuma S., ODonnen J.M. 1793
P0A6T5	Escherichia coli	3.5.4.16	7,8-dihydroneopterin	Lee S., Ahn C., Park E., Hwang D.S., Yim J. 2002
04015	Escherichia con	5.5.4.10	triphosphate biosynthesis	Lee S, Alin C, Fak E, Hwang D.S., Tin J. 2002
230793	Homo sapiens	3.5.4.16	7.8-dihydroneopterin	Schoedon G., Redweik U., Curtius HC. 1989
20120		5.00	triphosphate biosynthesis	
94398	Bacillus subtilis	3.5.4.16	7,8-dihydroneopterin	El Yacoubi B., Bonnett S., Anderson J.N., Swairjo M.A., Iwata-Reuyl D., de Crecy-Lagard V. 2006
			triphosphate biosynthesis	
D31616	Bacillus subtilis	1.4.3.19	Thiamine diphosphate	Nishiya Y., Imanaka T. 1998
			biosynthesis.	
26281	Escherichia coli	2.7.6.3	Tetrahydrofolate biosynthesis	Xiao B., Shi G., Chen X., Yan H., Ji X. 1999
031461	Bacillus subtilis	2.6.1.42	L-isoleucine biosynthesis	Berger B.J., English S., Chan G., Knodel M.H. 2003
239576	Bacillus subtilis	2.6.1.42	L-isoleucine biosynthesis	Berger B.J., English S., Chan G., Knodel M.H. 2003
P0A6B7	Escherichia coli	2.8.1.7	Thiamine biosynthesis	Lauhon C.T., Kambampati R. 2000
Q8L3X9	Arabidopsis thaliana	2.3.1.41	Fatty acid biosynthesis.	Ewald R., Kolukisaoglu U., Bauwe U., Mikkat S., Bauwe H. 2007
211458	Escherichia coli	2.5.1.72	NAD(+) biosynthesis	Ollagnier-de Choudens S., Loiseau L., Sanakis Y., Barras F., Fontecave M. 2005
238032	Bacillus subtilis	1.4.3.16	NAD(+) biosynthesis	Sun D., Setlow P.L. 1993
210902	Escherichia coli	1.4.3.16	NAD(+) biosynthesis	Seifert J., Kunz N., Flachmann R., Laeufer A., Jany KD., Gassen H.G. 1990
Q15274	Homo sapiens	2.4.2.19	NAD(+) biosynthesis	Liu H., Woznica K., Catton G., Crawford A., Botting N., Naismith J.H. 2007
243619	Saccharomyces cerevisiae	2.4.2.19	NAD(+) biosynthesis	Panozzo C., Nawara M., Suski C., Kucharczyka R., Skoneczny M., Becam AM., Rytka J., Herbert C.J. 2002
208164	Bacillus subtilis	6.3.1.5	NAD(+) biosynthesis	Symersky J., Devedjiev Y., Moore K., Brouillette C., DeLucas L. 2002
P18843	Escherichia coli	6.3.1.5	NAD(+) biosynthesis	Jauch R., Humm A., Huber R., Wahl M.C. 2005
Q6IA69	Homo sapiens	6.3.5.1	NAD(+) biosynthesis	Hara N., Yamada K., Terashima M., Osago H., Shimoyama M., Tsuchiya M. 2003
056YN3	Arabidopsis thaliana	2.7.1.23; 2.7.1.86	NAD(+) biosynthesis	Berrin JG., Pierrugues O., Brutesco C., Alonso B., Montillet JL., Roby D., Kazmaier M. 2005
095544	Homo sapiens	2.7.1.23	NAD(+) biosynthesis	Lemer F., Niere M., Ludwig A., Ziegler M. 2001
Q9Y697	Homo sapiens	2.8.1.7	Thiamine biosynthesis	Marelja Z., Stoecklein W., Nimtz M., Leimkuchler S. 2008
Q93WX6	Arabidopsis thaliana	2.8.1.7; 4.4.1.16	Thiamine biosynthesis	Pilon-Smits E.A.H., Garifullina G.F., Abdel-Ghany S., Kato S., Mihara H., Hale K.L., Burkhead J.L., Esaki N.,
	···· r	,		Kurihara T., Pilon M. 2002
Q9HAN9	Homo sapiens	2.7.7.1; 2.7.7.18	NAD(+) biosynthesis	Sorci L., Cimadamore F., Scotti S., Petrelli R., Cappellacci L., Franchetti P., Orsomando G., Magni G. 2007
Q9BZQ4	Homo sapiens	2.7.7.1; 2.7.7.18	NAD(+) biosynthesis	Sorci L., Cimadamore F., Scotti S., Petrelli R., Cappellacci L., Franchetti P., Orsomando G., Magni G. 2007
Q96T66	Homo sapiens	2.7.7.18; 2.7.7.1	NAD(+) biosynthesis	Sorci L., Cimadamore F., Scotti S., Petrelli R., Cappellacci L., Franchetti P., Orsomando G., Magni G. 2007
239683	Saccharom yces cerevisiae	6.3.4.21	NAD(+) biosynthesis	Panozzo C., Nawara M., Suski C., Kucharczyka R., Skoneczny M., Becam AM., Rytka J., Herbert C.J. 2002
POAFC0	Escherichia coli	3.6.1	NAD(+) biosynthesis	Gabelli S.B., Bianchet M.A., Xu W., Dunn C.A., Niu ZD., Amzel L.M., Bessman M.J. 2007
Q9CA40	Arabidopsis thaliana	3.6.1; 3.6.1.55;	Folate biosynthesis	Dobrzanska M., Szurmak B., Wyslouch-Cieszynska A., Kraszewska E. 2002
-	*	3.6.1.22	-	
O9NWU1	Homo sapiens	2.3.1.41	Fatty acid biosynthesis.	Zhang L., Joshi A.K., Hofmann J., Schweizer E., Smith S. 2005

Entry	Organism	EC number	Path way	Literature
P00903	Escherichia coli	2.6.1.85	Tetrahydrofolate biosynthesis	Roux B., Walsh C.T. 1993
P28820	Bacillus subtilis	2.6.1.85	Tet rahy drofolate biosynthesis	Schadt H.S., Schadt S., Oldach F., Sussmuth R.D.(2009)
P28821	Bacillus subtilis	4.1.3.38	Tetrahydrofolate biosynthesis	Slock J., Stahly D.P., Han CY., Six E.W., Crawford I.P. 1990
P28305	Escherichia coli	4.1.3.38	Tetrahydrofolate biosynthesis	Green J.M., Nichols B.P. 1991
P37254	Saccha rom yces cerevisiae	2.6.1.85	Tet rahydrofolat e biosynthesis	Edman J.C., Goldstein A.L., Erbe J.G. 1993
P31057	Escherichia coli	2.1.2.11	(R)-pantothenate biosynthesis	Teller J.H., Powers S.G., Snell E.E. 1976
P31663	Escherichia coli	6.3.2.1	(R)-pantothenate biosynthesis	Miyatake K., Nakano Y., Kitaoka S. 1978
P40459	Saccha rom yces cerevisiae	6.3.2.1	(R)-pantothenate biosynthesis	White W.H., Gunyuzlu P.L., Toyn J.H. 2001
P0A790	Escherichia coli	4.1.1.11	(R)-pantothenate biosynthesis	Cronan J.E. Jr. 1980
P0A9J4	Escherichia coli	1.1.1.169	(R)-pantothenate biosynthesis	Zheng R., Blanchard J.S. 2000
Q04430	Saccha rom yces cerevisiae	2.7.1.33	Coenzyme A biosynthesis	Olzhausen J., Schuebbe S., Schueller HJ. 2009
O80448	Arabidopsis thaliana	4.3.3.6	Pyridoxal 5'-phosphate biosynthesis.	Tambasco-Studart M., Titiz O., Raschle T., Forster G., Amrhein N., Fitzpatrick T.B. 2005
Q9ZNR6	Arabidopsis thaliana	4.3.3.6	Pyridoxal 5'-phosphate biosynthesis.	Tambasco-Studart M., Titiz O., Raschle T., Forster G., Amrhein N., Fitzpatrick T.B. 2005
Q8L940	Arabidopsis thaliana	4.3.3.6	Pyridoxal 5'-phosphate biosynthesis.	Tambasco-Studart M., Titiz O., Raschle T., Forster G., Amrhein N., Fitzpatrick T.B. 2005
P19624	Escherichia coli	1.1.1.262	Pyridoxine 5'-phosphate biosynthesis	Banks J., Cane D.E. 2004
205459	Escherichia coli	1.1.1.290	Pyridoxine 5'-phosphate biosynthesis	Yang Y., Zhao G., Man TK., Winkler M.E. 1998
POAFI7	Escherichia coli	1.4.3.5	B6 vitamer interconversion	di Salvo M., Yang E., Zhao G., Winkler M.E., Schirch V. 1998
P0A794	Escherichia coli	2.6.99.2	Pyridoxine 5'-phosphate biosynthesis	Laber B., Maurer W., Scharf S., Stepusin K., Schmidt F.S. 1999
Q8W1X2	Arabidopsis thaliana	2.7.1.35	B6 vitamer interconversion	Shi H., Zhu JK. 2002
P39610	Bacillus subtilis	2.7.1.35	Thiamine biosynthesis	Park JH., Burns K., Kinsland C., Begley T.P. 2004
Q8TCD6	Homo sapiens	3.1.3.74	Pyridoxine 5'-phosphate biosynthesis	Roberts S.J., Stewart A.J., Schmid R., Blindauer C.A., Bond S.R., Sadler P.J., Farquharson C. 2005
Q96GD0	Homo sapiens	3.1.3.3; 3.1.3.74	Vitamin B6	Jang Y.M., Kim D.W., Kang TC., Won M.H., Baek NI., Moon B.J., Choi S.Y., Kwon OS. 2003
P53184	Saccharomyces cerevisiae	3.5.1.19	Nicotinate biosynthesis	Ghislain M., Talla E., Francois J.M. 2002
Q6XQN6	Homo sapiens	6.3.4.21	NAD(+) biosynthesis	Hara N., Yamada K., Shibata T., Osago H., Hashimoto T., Tsuchiya M. 2007
Q9NVS9	Homo sapiens	1.4.3.5	B6 vitamer interconversion	Musayev F.N., Di Salvo M.L., Ko TP., Schirch V., Safo M.K. 2003
200634	Escherichia coli	3.1.3.1	Tet rahy dro folate biosynthesis	Kim E.E., Wyckoff H.W. 1991
P11491	Saccha rom yces cerevisiae	3.1.3.1; 3.1.7.6	Tet rahy drofolate biosynthesis	Klionsky D.J., Emr S.D. 1989
Q9HAB8	Homo sapiens	6.3.2.5	Coenzyme A biosynthesis	Daugherty M., Polanuyer B., Farrell M., Scholle M., Lykidis A., de Crecy-Lagard V., Osterman A. 2002
P40506	Saccharomyces cerevisiae	6.3.2.5	Coenzyme A biosynthesis	Olzhausen J., Schuebbe S., Schueller HJ. 2009
Q9ZPY1	Arabidopsis thaliana	1.4.3.5	B6 vitamer interconversion	Sang Y., Goertzen L.R., Tzou YM., Locy R.D., Singh N.K. 2011
Q12362	Saccharomyces cerevisiae	5.4.99.28; 3.5.4.26	Riboflavin biosynthesis	Oltmanns O., Bacher A. 1972
Q99258	Saccharomyces cerevisiae	4.1.99.12	Riboflavin biosynthesis	Holt L.J., Tuch B.B., Villen J., Johnson A.D., Gygi S.P., Morgan D.O. 2009
250861	Saccharomyces cerevisiae	2.5.1.78	Riboflavin biosynthesis	Moert1 S., Fischer M., Richter G., Tack J., Weinkauf S., Bacher A. 1996
066747	Aquifex aeolicus	1.1.1.302	Riboflavin biosynthesis.	Romisch-Margl W., Eisenreich W., Haase I., Bacher A., Fischer M. 2008
P33312	Saccharomyces cerevisiae	1.1.1.302	Riboflavin biosynthesis.	Oltmanns O., Bacher A. 1972
P47924	Arabidopsis thaliana	4.1.99.12; 3.5.4.25	Riboflavin biosynthesis	Hiltunen H.M., Illarionov B., Hedtke B., Fischer M., Grimm B. 2012
P0A7I7	Escherichia coli	3.5.4.25	Riboflavin biosynthesis	Foor F., Brown G.M. 1975
P0A7J0	Escherichia coli	4.1.99.12	Riboflavin biosynthesis	Richter G., Volk R., Krieger C., Laham HW., Roethlisberger U., Bacher A. 1992

Entry	Organism	EC number	Pathway	Literature	
P17618	Bacillus subtilis	3.5.4.26; 1.1.1.193	Riboflavin biosynthesis	Richter G., Fischer M., Krieger C., Eberhardt S., Luttgen H., Gerstenschlager I., Bacher A. 1997	
P25539	Escherichia coli	3.5.4.26; 1.1.1.193	Riboflavin biosynthesis	Richter G., Fischer M., Krieger C., Eberhardt S., Luttgen H., Gerstenschlager I., Bacher A. 1997	
P0AG40	Escherichia coli	2.7.1.26; 2.7.7.2	FAD biosynthesis	Kamio Y., Lin CK., Regue M., Wu H.C. 1985	
Q9STY4	Arabidopsis thaliana	1.1.1.193	Riboflavin biosynthesis	Hasnain G., Frelin O., Roje S., Ellens K.W., Ali K., Guan J.C., Garrett T.J., de Crecy-Lagard V., Gregory J.F. III,	
Q.51 1		1111170	rubbinu, m crosy mitesis	McCarty D.R., Hanson A.D. 2013	
P94465	Bacillus subtilis	2.7.1.26	Riboflavin biosynthesis	Solovieva I.M., Kreneva R.A., Errais Lopes L., Perumov D.A. 2005	
Q969G6	Homo sapiens	2.7.1.26	FMN biosynthesis	Yazdanpanah B., Wiegmann K., Tchikov V., Krut O., Pongratz C., Schramm M., Kleinridders A., Wunderlich T., Kashkar H., Utermoehlen O., Bruening J.C., Schuetze S., Kroenke M. 2009	
Q03778	Saccha rom yces cerevisiae	2.7.1.26	FMN biosynthesis	Santos M.A., Jimenez A., Revuelta J.L. 2000	
P16440	Bacillus subtilis	2.5.1.9	Riboflavin biosynthesis	Bacher A., Baur R., Eggers U., Harders H.D., Otto M.K., Schnepple H. 1980	
P0AFU8	Escherichia coli	2.5.1.9	Riboflavin biosynthesis	Eberhardt S.M.R., Richter G., Gimbel W., Wemer T., Bacher A. 1996	
P38145	Saccha rom yces cerevisiae	2.5.1.9	Riboflavin biosynthesis	Santos M.A., Garcia-Ramirez J.J., Revuelta J.L. 1995	
P11998	Bacillus subtilis	2.5.1.78	Riboflavin biosynthesis	Fischer M., Haase I., Kis K., Meining W., Ladenstein R., Cushman M., Schramek N., Huber R., Bacher A. 2003	
P61714	Escherichia coli	2.5.1.78	Riboflavin biosynthesis	Moertl S., Fischer M., Richter G., Tack J., Weinkauf S., Bacher A. 1996	
P23721	Escherichia coli	2.6.1.52	L-serine biosynthesis	Lam HM., Winkler M.E. 1990	
Q03148	Saccharomyces cerevisiae	4.3.3.6	Pyridoxal 5'-phosphate biosynthesis.	Rodriguez-Navarro S., Llorente B., Rodriguez-Manzaneque M.T., Ramne A., Uber G., Marchesan D., Dujon B., Herrero E., Sunnerhagen P., Perez-Ortin J.E. 2002	
P43545	Saccharomyces cerevisiae	4.3.3.6	Pyridoxal 5'-phosphate	Rodriguez-Navarro S., Llorente B., Rodriguez-Manzaneque M.T., Ramne A., Uber G., Marchesan D., Dujon B.,	
			biosynthesis.	Herrero E., Sunnerhagen P., Perez-Ortin J.E. 2002	
P77444	Escherichia coli	2.8.1.7; 4.4.1.16	Iron-sulfur cluster biosynthesis.	Outten F.W., Wood M.J., Munoz F.M., Storz G. 2003	
Q08224	Saccharomyces cerevisiae	2.7.1.49; 2.7.4.7	Thiamine diphosphate biosynthesis	Llorente B., Fairhead C., Dujon B. 1999	
Q08975	Saccharomyces cerevisiae	2.7.1.49; 2.7.4.7	Thiamine diphosphate biosynthesis	Llorente B., Fairhead C., Dujon B. 1999	
O82392	Arabidopsis thaliana	4.1.99.17	Thiamine diphosphate biosynthesis.	Raschke M., Buerkle L., Mueller N., Nunes-Nesi A., Fernie A.R., Arigoni D., Amrhein N., Fitzpatrick T.B. 2007	
P45740	Bacillus subtilis	4.1.99.17	Thiamine diphosphate biosynthesis.	Zhang Y., Begley T.P. 1997	
P30136	Escherichia coli	4.1.99.17	Thiamine diphosphate biosynthesis.	Lawhorn B.G., Gerdes S.Y., Begley T.P. 1994	
O31620	Bacillus subtilis	2.7.1.49; 2.7.4.7	Thiamine diphosphate biosynthesis	Park JH., Burns K., Kinsland C., Begley T.P. 2004	
P76422	Escherichia coli	2.7.1.49; 2.7.4.7	Thiamine diphosphate biosynthesis	Mizote T., Tsuda M., Smith D.D.S., Nakayama H., Nakazawa T. 1999	
P39594	Bacillus subtilis	2.5.1.3	Thiamine diphosphate biosynthesis	Zhang Y., Taylor S.V., Chiu HJ., Begley T.P. 1997	
P30137	Escherichia coli	2.5.1.3	Thiamine diphosphate biosynthesis	Lawhorn B.G., Gerdes S.Y., Begley T.P. 1994	
P30138	Escherichia coli	2.7.7.73	Thiamine diphosphate biosynthesis.	Taylor S.V., Kelleher N.L., Kinsland C., Chiu HJ., Costello C.A., Backstrom A.D., McLafferty F.W., Begley T.P. 1998	
O31618	Bacillus subtilis	2.8.1.10	Thiamine diphosphate biosynthesis.	Park JH., Dorrestein P.C., Zhai H., Kinsland C., McLafferty F.W., Begley T.P. 2003	
P30139	Escherichia coli	2.8.1.10	Thiamine diphosphate biosynthesis.	Leonardi R., Fairhurst S.A., Kriek M., Lowe D.J., Roach P.L. 2003	
P30140	Escherichia coli	4.1.99.19	Thiamine diphosphate biosynthesis.	Leonardi R., Fairhurst S.A., Kriek M., Lowe D.J., Roach P.L. 2003	

Entry	Organism	EC number	Path wa y	Literature
P0AGG0	Escherichia coli	2.7.4.16	Thiamine diphosphate	Nishino H. 1972
			biosynthesis	
O31617	Bacillus subtilis	ThiS	Thiamine diphosphate	Dorrestein P.C., Zhai H., McLafferty F.W., Begley T.P. 2004
			biosynthesis.	
O32583	Escherichia coli	ThiS	Thiamine diphosphate	Taylor S.V., Kelleher N.L., Kinsland C., Chiu HJ., Costello C.A., Backstrom A.D., McLafferty F.W., Begley
			biosynthesis.	T.P. 1998
Q9H3S4	Homo sapiens	2.7.6.2	Thiamine diphosphate	Nosaka K., Onozuka M., Kakazu N., Hibi S., Nishimura H., Nishino H., Abe T. 2001
			biosynthesis	
Q5M731	Arabidopsis thaliana	2.5.1.3; 2.7.1.49	Thiamine diphosphate	Komeda Y., Tanaka M., Nishimune T. 1988
			biosynthesis	
P21829	Escherichia coli	3.1.3.74	Pyridoxine 5'-phosphate	Maupin-Furlow J.A., Rosentel J.K., Lee J.H., Deppenmeier U., Gunsalus R.P., Shanmugam K.T. 1995
			biosynthesis	

Path wa y	Organism	Seq ID	Domain name	E-value	Pre dicte d active site residues
Thiamine	Drosophilla	Q9VKD3	Aminotran_5	1.30E-93	[386,386]
Thiamine	Tribolium	D6WLY0	Aminotran_5	4.30E-90	[369,369]
Thiamine	Anopheles	Q7PW45	Aminotran_5	6.70E-92	[370,370]
Thiamine	Wigglesworthia	H6Q4V9	Aminotran_5	5.50E-140	[365,365]
Thiamine	Wigglesworthia	H6Q534	Aminotran_5	1.20E-79	[328,328]
Thiamine	Sodalis	Q2NT15	Aminotran_5	1.10E-150	[365,365]
Thiamine	Sodalis	Q2NS31	Aminotran_5	6.20E-81	[328,328]
Thiamine	Wolbachia	Q73H67	_		
		-	Aminotran_5	7.50E-64	[323,323]
Thiamine	Wolbachia	Q73GF8	Aminotran_5	1.30E-85	[339,339]
Thiamine	Ecoli	P77444	Aminotran_5	6.20E-159	[364,364]
Thiamine	Ecoli	P0A6B7	Aminotran_5	9.10E-93	[328,328]
Thiamine	Bacillus	O34599	Aminotran_5	1.30E-87	[325,325]
Thiamine	Bacillus	P38033	Aminotran_5	1.40E-92	[325,325]
Thiamine	Bacillus	O34874	Aminotran_5	3.80E-78	[324,324]
Thiamine	Bacillus	O32164	Aminotran_5	2.80E-163	[361,361]
Thiamine	A rabidop sis	Q93WX6	Aminotran_5	3.30E-144	[418,418]
Thiamine	Arabidopsis	O49543	Aminotran_5	1.30E-89	[377,377]
Thiamine	Sorghum	C5Y0K0	Aminotran_5	2.60E-130	[330,330]
Thiamine	Yeast	P25374	_	2.40E-104	[421,421]
			Aminotran_5		
Thiamine	Human	Q9Y697	Aminotran_5	4.50E-94	[381,381]
Thiamine	Yeast	Q08224	TENA_THI-4	6.20E-75	[468]
Thiamine	Yeast	Q08975	Phos_pyr_kin	1.40E-80	-
Thiamine	Yeast	Q08975	TENA_THI-4	4.40E-68	[468]
hiamine	Ecoli	P30138	ThiF	1.20E-43	-
Thiamine	Ecoli	P30138	MoeZ_MoeB	7.00E-29	[184]
Thiamine	Bacillus	O31619	ThiF	1.00E-41	-
Thiamine	Bacillus	O31619	MoeZ_MoeB	3.40E-21	[181]
Thiamine	Wigglesworthia	H6Q4N2	ThiS	6.10E-08	-
Thiamine	Ecoli	032583	ThiS	1.00E-17	
Thiamine	Bacillus	O32585 O31617	ThiS	2.30E-10	-
					-
Thiamine	Wigglesworthia	H6Q4N4	Radical_SAM	4.00E-07	-
Thiamine	Wigglesworthia	H6Q4N4	BATS	1.10E-20	-
Thiamine	Sodalis	Q2NWR4	Radical_SAM	1.30E-09	-
Thiamine	Ecoli	P30140	Radical_SAM	2.00E-08	-
hiamine	Ecoli	P30140	BATS	5.70E-21	-
hiamine	Bacillus	O31616	DAO	4.40E-73	-
Thiamine	Wigglesworthia	H6Q4N3	ThiG	3.30E-104	[95]
Thiamine	Ecoli	P30139	ThiG	1.70E-109	[95]
Thiamine	Bacillus	O31618	ThiG	1.10E-109	[98]
Thiamine	Wigglesworthia	H6Q4N1	TMP-TENI	1.60E-50	[70]
Thiamine	Ecoli	P30137	TMP-TENI	7.60E-57	
	Bacillus				-
Thiamine		P39594	TMP-TENI	2.00E-61	-
Thiamine	Yeast	P41835	TMP-TENI	2.20E-58	-
hiamine	Yeast	P41835	НК	2.40E-101	-
hiamine	Wigglesworthia	H6Q5T5	AIRS	1.90E-19	-
hiamine	Wigglesworthia	H6Q5T5	AIRS_C	2.10E-07	-
Thiamine	Sodalis	Q2NV96	AIRS	6.10E-18	-
Thiamine	Sodalis	Q2NV96	AIRS_C	4.10E-07	-
hiamine	Ecoli	P0AGG0	AIRS	3.10E-23	-
hiamine	Ecoli	POAGGO	AIRS_C	1.80E-09	-
Thiamine	Bacillus	005514	AIRS	1.70E-22	
Thamine	Bacillus	O05514 O05514			-
			AIRS_C	8.50E-07 2.10E 42	-
'hiamine	Dro sophilla	Q8T4A5	TPK_catalytic	2.10E-42	-
hiamine	Drosophilla	Q8T4A5	TPK_B1_binding	5.20E-19	-
Thiamine	Anopheles	Q7QD56	TPK_catalytic	2.80E-28	-
hiamine	Anopheles	Q7QD56	TPK_B1_binding	2.40E-17	-
Thiamine	Bacillus	O34664	TPK_catalytic	1.70E-31	-
hiamine	Bacillus	O34664	TPK_B1_binding	5.80E-18	-
hiamine	Yeast	P35202	TPK_catalytic	1.90E-17	-
'hiamine	Yeast	P35202	TPK_B1_binding	8.80E-14	-
hiamine	Human	Q9H3S4	TPK_catalytic	9.90E-36	-
		-	-		=
Thiamine	Human Wie - Lemandein	Q9H3S4	TPK_B1_binding	1.10E-25	-
Riboflavin	Wigglesworthia	H6Q580	DHBP_synthase	3.60E-78	-
Riboflavin	Sodalis	Q2NWD7	DHBP_synthase	2.90E-79	-
Riboflavin	Wolbachia	Q73HB4	DHBP_synthase	4.00E-74	-
Riboflavin	Ecoli	P0A7J0	DHBP_synthase	7.30E-80	-
Riboflavin	Bacillus	P17620	DHBP_synthase	2.80E-84	-
Riboflavin	Bacillus	P17620	GTP_cyclohydro2	4.90E-80	[330]
Riboflavin	Arabidopsis	Q6NLQ7	DHBP_synthase	2.50E-83	-
	1				
Siboflavin	Arabidopsis	Q6NLQ7	GTP_cyclohydro2	5.00E-51	[429]

Path wa y	Organism	Seq ID	Domain name	E-value	Pre dicte d acti w si te resi dues
Riboflavin	Arabidopsis	F4KJA1	GTP_cyclohydro2	2.40E-74	[467]
Riboflavin	Arabidopsis	P47924	DHBP_synthase	1.00E-82	-
Riboflavin	Arabidopsis	P47924	GTP_cyclohydro2	1.40E-72	[459]
Riboflavin	Sorghum	C5XVM3	DHBP_synthase	3.00E-83	-
Riboflavin	Sorghum	C5XVM3	GTP_cyclohydro2	7.60E-74	[468]
Riboflavin	Sorghum	C5YJR6	DHBP_synthase	5.90E-84	-
Riboflavin	Sorghum	C5YJR6	GTP_cyclohydro2	8.70E-73	[444]
Riboflavin	Sorghum	C5YZA3	DHBP_synthase	4.50E-67	-
Riboflavin	Sorghum	C5YZA3	GTP_cyclohydro2	4.60E-75	[510]
Riboflavin	Yeast	Q99258	DHBP_synthase	1.80E-78	-
Riboflavin	Wigglesworthia	H6Q4V2	GTP_cyclohydro2	3.90E-64	[128]
Riboflavin	Sodalis	Q2NT40	GTP_cyclohydro2	1.20E-66	[128]
Riboflavin	Wolbachia	Q73IY9	GTP_cyclohydro2	5.10E-58	[291]
Riboflavin	Ecoli	P0A7I7	GTP_cyclohydro2	1.50E-69	[128]
Riboflavin	Yeast	P38066	GTP_cyclohydro2	5.50E-52	[233]
Riboflavin	Wigglesworthia	H6Q5T9	dCMP_cyt_deam_1	8.40E-19	[58]
Riboflavin	Wigglesworthia	H6Q5T9	RibD_C	1.10E-39	-
Riboflavin	Sodalis	Q2NV99	dCMP_cyt_deam_1	2.20E-21	[53]
Riboflavin	Sodalis	Q2NV99	RibD_C	2.10E-52	-
Riboflavin	Wolbachia	Q73H62	dCMP_cyt_deam_1	4.40E-20	[52]
Riboflavin	Wolbachia	Q73H62	RibD_C	2.50E-40	-
Riboflavin	Ecoli	P25539	dCMP_cyt_deam_1	2.10E-24	[52]
Riboflavin	Ecoli	P25539	RibD_C	5.70E-64	-
Riboflavin	Bacillus	P17618	dCMP_cyt_deam_1	2.40E-22	[51]
Riboflavin	Bacillus	P17618	RibD_C	3.00E-65	-
Riboflavin	Arabidopsis	Q8GWP5	dCMP_cyt_deam_1	6.70E-21	[123]
Riboflavin	Sorghum	C5X102	dCMP_cyt_deam_1	1.60E-20	[101]
Riboflavin	Wigglesworthia	H6Q5T8	DMRL_synthase	9.10E-44	-
Riboflavin	Sodalis	Q2NV98	DMRL_synthase	5.30E-56	-
Riboflavin	Wolbachia	P61729	DMRL_synthase	8.80E-42	-
Riboflavin	Ecoli	P61714	DMRL_synthase	2.70E-57	-
Riboflavin	Bacillus	P1 1998	DMRL_synthase	9.70E-59	-
Riboflavin	Arabidopsis	080575	DMRL_synthase	2.90E-51	-
Riboflavin	Sorghum	C5Y9F9	DMRL_synthase	2.30E-51	
Riboflavin	Yeast	P50861	DMRL_synthase	9.30E-44	-
Riboflavin	Wigglesworthia	H6Q4Y2	Lum_binding	1.70E-24	_
Riboflavin	Wigglesworthia	H6Q4Y2	Lum_binding	8.80E-21	_
Riboflavin	Sodalis	Q2NT11	Lum_binding	6.20E-25	
Riboflavin	Sodalis	Q2NT11	Lum_binding	4.70E-27	
Riboflavin	Wolbachia	Q73IM7	Lum binding	1.50E-17	
Riboflavin	Wolbachia	Q73IM7	Lum_binding	9.60E-17	
Riboflavin	Ecoli	POAFU8	Lum_binding		-
Riboflavin	Ecoli	POAFU8 POAFU8	Lum_binding	5.80E-30 2.20E-29	-
Riboflavin	Bacillus		Lum_binding		-
		P16440		2.00E-30	-
Riboflavin	Bacillus	P16440	Lum_binding	3.00E-26	-
Riboflavin	Arabidopsis	Q84MD8	HAD_2	2.70E-25	[17]
Riboflavin	Arabidopsis	Q84MD8	Flavokinase	3.00E-36	-
Riboflavin	Sorghum	C5X020	HAD_2	9.30E-27	[17]
Riboflavin	Sorghum	C5X020	Flavokinase	3.10E-34	-
Riboflavin	Yeast	Q03778	Flavokinase	1.40E-30	-
Riboflavin	Human	Q969G6	Flavokinase	1.50E-39	-
Riboflavin	Drosophilla	Q9VJY1	PAPS_reduct	3.30E-21	-
Riboflavin	Drosophilla	Q8IR76	PAPS_reduct	4.20E-10	-
Riboflavin	Drosophilla	Q8IR76	PAPS_reduct	1.00E-20	-
Riboflavin	Tribolium	D6WDE0	MoCF_biosynth	4.30E-07	-
Riboflavin	Tribolium	D6WDE0	PAPS_reduct	2.80E-26	-
Riboflavin	Anopheles	F5HKN2	PAPS_reduct	1.10E-32	-
Riboflavin	Yeast	P38913	PAPS_reduct	1.70E-41	-
Riboflavin	Human	Q8NFF5	MoCF_biosynth	1.70E-28	-
Riboflavin	Human	Q8NFF5	PAPS_reduct	6.20E-06	-
Riboflavin	Human	Q8NFF5	PAPS_reduct	3.10E-17	-
Riboflavin	Human	P30043	NAD_binding_10	1.90E-32	-
VitaminB6	Ecoli	P0A9B6	Gp_dh_N	2.50E-52	[155]
VitaminB6	Ecoli	P0A9B6	Gp_dh_C	5.80E-53	-
VitaminB6	Wigglesworthia	H6Q509	2-Hacid_dh	6.20E-16	-
VitaminB6	Wigglesworthia	H6Q509	2-Hacid_dh_C	1.10E-32	[254,237,208]
VitaminB6	Wigglesworthia	H6Q509	DUF3410	1.90E-16	
VitaminB6	Sodalis	Q2NSH9	2-Hacid_dh	9.40E-16	-
VitaminB6	Sodalis	Q2NSH9	2-Hacid_dh_C	2.20E-30	-
VitaminB6	Sodalis	Q2NSH9	DUF3410	1.40E-25	-
VitaminB6	Ecoli	P05459	2-Hacid_dh	2.20E-18	-
VitaminB6	Ecoli	P05459	2-Hacid_dh_C	8.30E-32	
	LUII	103437		0.500-52	-

Path wa y	Organism	Seq ID	Domain name	E-value	Pre di cte d acti v si te resi dues
VitaminB6	Drosophilla	Q9VAN0	Aminotran_5	2.40E-50	-
VitaminB6	Tribolium	D6W9Q3	Aminotran_5	6.70E-56	-
VitaminB6	Anopheles	Q5T RW7	Aminotran_5	5.00E-44	-
VitaminB6	Wigglesworthia	H6Q4Q1	Aminotran_5	4.40E-45	-
VitaminB6	Sodalis	Q2NUB0	Aminotran_5	3.00E-56	-
VitaminB6	Ecoli	P23721	Aminotran_5	4.30E-71	-
√itaminB6	Bacillus	P80862	Aminotran_5	3.10E-44	-
/itaminB6	Arabidopsis	Q9SHP0	Aminotran_5	2.00E-49	-
/itaminB6	Arabidopsis	Q96255	Aminotran_5	1.90E-49	-
/itaminB6	Yeast	P0CX33	Ribosomal_S30	9.60E-29	-
/itaminB6	Human	O9Y617	Aminotran 5	2.70E-67	-
/itaminB6	Wigglesworthia	H6Q499	PdxA	2.50E-95	-
/itaminB6	Sodalis	O2NVX5	PdxA	5.60E-112	-
/itaminB6	Ecoli	P19624	PdxA	1.60E-123	
/itaminB6	Wigglesworthia	H6Q5B7	PdxJ	7.00E-90	[72,45,193]
itaminB6	Sodalis	Q2NS16	PdxJ	7.40E-102	[72,45,193]
itaminB6	Wolbachia	Q3V8B3	PdxJ	3.30E-85	[69,42,188]
itaminB6	Ecoli	P0A794	PdxJ	8.70E-106	
					[72,45,193]
/itaminB6	Bacillus	P37527	SOR_SNZ	8.30E-114	-
/itaminB6	Arabidopsis	O80448	SOR_SNZ	6.20E-115	-
'itaminB6	Arabidopsis	Q9ZNR6	SOR_SNZ	1.60E-77	-
'itaminB6	Arabidopsis	Q8L940	SOR_SNZ	9.00E-116	-
itaminB6	Sorghum	C5X768	SOR_SNZ	5.80E-113	-
'itaminB6	Yeast	P43545	SOR_SNZ	1.00E-106	-
itaminB6	Yeast	Q03148	SOR_SNZ	1.50E-112	-
'itaminB6	Drosophilla	Q7KUC2	Phos_pyr_kin	1.20E-15	-
/itaminB6	Tribolium	D6WEG5	PfkB	1.60E-18	[223]
'itaminB6	Anopheles	Q7Q6C1	PfkB	6.50E-18	[231]
itaminB6	Ecoli	P77150	Phos_pyr_kin	2.20E-15	-
itaminB6	Ecoli	P40191	Phos_pyr_kin	9.60E-26	-
'itaminB6	Bacillus	P39610	Phos_pyr_kin	1.30E-87	-
'itaminB6	Arabidopsis	Q8W1X2	Phos_pyr_kin	9.80E-16	-
itaminB6	Yeast	P39988	Phos_pyr_kin	6.20E-11	-
itaminB6	Yeast	P53727	Phos_pyr_kin	2.40E-10	_
itaminB6	Human	O00764	PfkB	1.00E-33	[235]
itaminB6	Drosophilla	Q9VWF0	Put_Phosphatase	4.20E-95	[200]
itaminB6	Tribolium	D6WJQ0	Put_Phosphatase	1.00E-71	
itaminB6	Anopheles	Q7QCX1	Put_Phosphatase	6.30E-65	
itaminB6	Human	Q8TCD6	Put_Phosphatase	1.70E-103	-
itaminB6	Human	Q96GD0	Hydrolase_6	7.10E-26	[25]
itaminB6	Human	-	Hydrolase_like	3.50E-19	[25]
		Q96GD0	Pyridox oxidase		
itaminB6	Drosophilla	Q7KSW3	-	1.90E-22	
itaminB6	Drosophilla	Q7KSW3	PNPOx_C	7.60E-22	-
'itaminB6	Drosophilla	Q8INR5	Pyridox_oxidase	3.00E-15	-
itaminB6	Anopheles	Q7QK95	Pyridox_oxidase	1.40E-23	-
itaminB6	Anopheles	Q7QK95	PNPOx_C	2.30E-22	-
itaminB6	Wigglesworthia	H6Q4X8	Pyridox_oxidase	4.30E-17	-
itaminB6	Wigglesworthia	H6Q4X8	PNPOx_C	3.80E-16	-
'itaminB6	Sodalis	Q2NT03	Pyridox_oxidase	3.00E-21	-
itaminB6	Sodalis	Q2NT03	PNPOx_C	2.60E-19	-
itaminB6	Wolbachia	Q73G09	Pyridox_oxidase	2.80E-23	-
'itaminB6	Wolbachia	Q73G09	PNPOx_C	1.90E-14	-
itaminB6	Ecoli	POAFI7	Pyridox_oxidase	6.00E-25	-
itaminB6	Ecoli	P0AFI7	PNPOx_C	2.30E-19	-
itaminB6	Yeast	P38075	Pyridox_oxidase	1.20E-12	-
itaminB6	Yeast	P38075	PNPOx_C	4.60E-21	-
/itaminB6	Human	Q9NVS9	Pyridox_oxidase	6.30E-25	-
itaminB6	Human	Q9NVS9	PNPOx_C	1.50E-19	-
liacin	Sodalis	Q2NS06	FAD_binding_2	1.00E-100	[244,263,290
liacin	Sodalis	Q2NS06	Succ_DH_flav_C	3.70E-19	-
iacin	Ecoli	P10902	FAD_binding_2	1.20E-106	[244,263,290
liacin	Ecoli	P10902	Succ_DH_flav_C	6.00E-19	-
iacin	Bacillus	P38032	FAD_binding_2	3.80E-86	[226,245,272]
liacin	Bacillus	P38032	Succ_DH_flav_C	2.20E-15	L220,270,272
liacin	Arabidopsis		FAD_binding_2		[313,341,368]
	Arabidopsis Arabidopsis	Q94AY1		4.20E-88 7.10E-20	[313,341,308]
liacin		Q94AY1 C5YTY1	Succ_DH_flav_C	7.10E-20	[215 242 270
liacin	Sorghum	C5XTX1	FAD_binding_2	3.30E-90	[315,343,370]
liacin	Sorghum	C5XTX1	Succ_DH_flav_C	8.40E-20	-
Viacin	Wigglesworthia	H6Q5F4	NadA	1.50E-100	-
Viacin	Sodalis	Q2NUL1	NadA	3.70E-103	-
Viacin	Ecoli	P11458	NadA	3.50E-105	-
		001771771	37 14	2 000 107	
Viacin Viacin	Bacillus Arabidopsis	Q9KWZ1	NadA SufE	3.00E-107 9.30E-18	-

Path wa y	Organism	Seq ID	Domain name	E-value	Predicted activ site residues
Niacin	Arabidopsis	Q9FGS4	NadA	1.10E-29	-
Niacin	Sorghum	C5YNE5	NadA	2.40E-32	-
Niacin	Ecoli	P21369	Isochorismatase	1.80E-38	[10,111,156]
Viacin	Yeast	P53184	Isochorismatase	4.50E-27	[8,122,167]
Viacin	Dro sophilla	Q9VQX4	NAPRT ase	2.50E-31	-
Viacin	Anopheles	Q7PJC3	NAPRT ase	2.50E-10	-
Viacin	Anopheles	Q7PJC3	NAPRT ase	9.80E-19	-
Viacin	Sodalis	Q2NU84	NAPRT ase	2.70E-75	-
Viacin	Ecoli	P18133	NAPRT ase	4.70E-79	-
Viacin	Bacillus	O32090	NAPRT ase	2.30E-24	-
Viacin	Arabidopsis	Q8RWM2	NAPRT ase	2.20E-15	-
Viacin	Arabidopsis	Q8RWM2	NAPRT ase	1.20E-28	-
Viacin	Sorghum	C5WTX0	NAPRT ase	1.10E-11	-
Viacin	Sorghum	C5WTX0	NAPRT ase	5.30E-26	_
Viacin	Yeast	P39683	NAPRT ase	1.40E-75	_
Viacin	Human	Q6XQN6	NAPRT ase	8.20E-14	_
Viacin	Drosophilla	Q7KS06	CTP_transf_2	1.00E-32	_
Viacin	Tribolium	D6X0P6		3.20E-34	_
			CTP_transf_2		
Viacin	Anopheles	Q7QG76	CTP_transf_2	1.20E-32	-
Viacin	Wigglesworthia	H6Q5E3	CTP_transf_2	1.80E-25	-
Viacin	Sodalis	Q2NUV0	CTP_transf_2	1.60E-33	-
Viacin	Ecoli	P0A752	CTP_transf_2	3.50E-41	-
Viacin	Bacillus	P54455	CTP_transf_2	1.10E-40	-
Viacin	Arabidopsis	F4K687	CTP_transf_2	3.10E-30	-
Viacin	Sorghum	C5XVU3	CTP_transf_2	2.60E-31	-
Viacin	Yeast	P53204	CTP_transf_2	1.80E-35	-
Viacin	Yeast	Q06178	CTP_transf_2	3.10E-37	-
Viacin	Human	Q9BZQ4	CTP transf 2	1.20E-32	-
Viacin	Human	Q96T66	CTP_transf_2	4.30E-47	-
Viacin	Human	Q9HAN9	CTP_transf_2	3.70E-34	-
Viacin	Drosophilla	Q9VYA0	CN_hydrolase	4.50E-33	[175]
Viacin	Drosophilla	Q9VYA0	NAD_synthase	3.50E-27	[1/5]
Viacin	Tribolium	D1ZZT1	CN_hydrolase	5.00E-31	[175]
					[175]
Viacin	Tribolium	D1ZZT1	NAD_synthase	4.00E-27	-
Viacin	Anopheles	Q7PS02	CN_hydrolase	3.70E-27	[176]
Viacin	Anopheles	Q7PS02	NAD_synthase	6.10E-26	-
Viacin	Wigglesworthia	H6Q4X3	NAD_synthase	2.60E-65	-
Viacin	Sodalis	Q2NRT4	NAD_synt hase	1.40E-71	-
Viacin	Ecoli	P18843	NAD_synt hase	9.40E-79	-
Viacin	Bacillus	P08164	NAD_synt hase	4.10E-82	-
Viacin	Arabidopsis	Q9C723	CN_hydrolase	3.80E-22	[174]
Viacin	A rabidop sis	Q9C723	NAD_synthase	3.10E-24	-
Niacin	Sorghum	C5X4A1	CN_hydrolase	3.40E-21	[174]
Viacin	Sorghum	C5X4A1	NAD_synthase	1.50E-27	-
Viacin	Yeast	P38795	CN_hydrolase	1.50E-25	[175]
Viacin	Yeast	P38795	NAD_synthase	5.00E-22	-
Viacin	Human	Q6IA69	CN_hydrolase	1.70E-33	[175]
Viacin	Human	Q6IA69	NAD_synthase	6.50E-27	-
Viacin	Drosophilla	A1Z9F4	NAD_synthase	8.00E-62	-
	1		NAD_kinase		-
Viacin Viacin	Anopheles Wigglesworthig	Q7QHC1	-	1.50E-58	-
Viacin Viacin	Wigglesworthia Sodalis	H6Q5S1 02NS01	NAD_kinase	6.70E-58 8 10E 67	-
Viacin	Sodalis	Q2NS01	NAD_kinase	8.10E-67	-
Viacin	Wolbachia	Q73GR1	NAD_kinase	1.70E-29	-
Viacin	Ecoli	P0A7B3	NAD_kinase	7.60E-73	-
Viacin	Bacillus	O31612	NAD_kinase	1.20E-55	-
Viacin	Bacillus	O34934	NAD_kinase	1.90E-51	-
Viacin	Arabidopsis	Q56YN3	NAD_kinase	2.60E-61	-
Viacin	Sorghum	C5XIJ6	NAD_kinase	3.60E-60	-
Viacin	Sorghum	C5YXF6	NAD_kinase	1.50E-54	-
Viacin	Human	O95544	NAD_kinase	8.80E-64	-
Viacin	Wigglesworthia	H6Q4Z3	QRPTase_N	4.00E-27	-
Viacin	Wigglesworthia	H6Q4Z3	QRPTase_C	1.80E-55	-
Viacin	Sodalis	Q2NVT6	QRPTase_N	2.80E-25	-
Viacin	Sodalis	Q2NVT6	QRPTase_C	2.10E-57	-
Viacin	Ecoli	P30011	QRPTase_N	9.40E-27	-
Viacin	Ecoli	P30011	QRPTase_C	4.60E-65	-
Viacin	Bacillus				-
		P39666	QRPTase_N	2.60E-25	-
Viacin	Bacillus Auchidan cia	P39666	QRPTase_C	3.00E-65	-
Niacin	Arabidopsis	A8MRX1	QRPTase_N	8.30E-21	-
Viacin	Arabidopsis	A8MRX1	QRPTase_C	2.50E-62	-
Viacin	Sorghum	C5X7Q7	QRPTase_N	1.20E-23	-
T	Sorghum	C5X7Q7	QRPTase_C	2.30E-58	-
Viacin	Sorghunn		QRPTase_N		

Path wa y	Organism	Seq ID	Domain name	E-value	Predicted active site residues
Viacin	Yeast	P43619	QRPTase_C	3.50E-60	-
Niacin	Human	Q15274	QRPTase_N	3.20E-20	-
Niacin	Human	Q15274	QRPTase_C	4.60E-59	-
Coenzyme A	Drosophilla	Q9VYD5	Aminotran_4	3.50E-18	[279]
Coenzyme A	Tribolium	D6WAG1	Aminotran_4	4.80E-20	[253]
Coenzyme A	Anopheles	Q7QEI9	Aminotran_4	5.80E-20	[279]
Coenzyme A	Sodalis	Q2NQA5	Aminotran_4	4.90E-41	[160]
Coenzyme A	Ecoli	P0AB80	Aminotran_4	1.40E-46	[160]
Coenzyme A	Bacillus	O31461	Aminotran_4	2.20E-31	[197]
Coenzyme A	Arabidopsis	Q93Y32	Aminotran_4	5.60E-31	[231]
Coenzyme A	Sorghum	C5YVA1	Aminotran_4	3.90E-40	[181]
Coenzyme A	Yeast	P38891	Aminotran_4	3.70E-29	[219]
Coenzyme A	Yeast	P47176	Aminotran_4	4.20E-30	[202]
Coenzyme A	Human	P54687	Aminotran_4	2.00E-23	[222]
Coenzyme A	Human	O15382	Aminotran_4	1.20E-22	[229]
Coenzyme A	Wigglesworthia	H6Q5V2	Pantoate_transf	1.30E-102	[181]
Coenzyme A	Sodalis	Q2NVR2	Pantoate_transf	1.10E-108	[179]
Coenzyme A	Ecoli	P31057	Pantoate_transf	2.70E-107	[181]
Coenzyme A	Bacillus	P52996	Pantoate_transf	5.50E-111	[181]
Coenzyme A	Arabidopsis	O82357	Pantoate_transf	3.60E-104	[222]
Coenzyme A	Sorghum	C5XKA7	Pantoate_transf	1.20E-104	[255]
Coenzyme A	Wigglesworthia	H6Q5G7	ApbA	5.80E-27	-
Coenzyme A	Wigglesworthia	H6Q5G7	ApbA_C	9.60E-28	[176]
Coenzyme A	Sodalis	Q2NV89	ApbA	3.60E-27	-
Coenzyme A	Sodalis	Q2NV89	ApbA_C	4.40E-33	[176]
Coenzyme A	Ecoli	POA9J4	ApbA	1.50E-28	-
Coenzyme A	Ecoli	P0A9J4	ApbA_C	2.10E-39	[176]
Coenzyme A	Bacillus	O31717	ApbA	2.70E-40	-
Coenzyme A	Bacillus	O31717	ApbA_C	1.20E-24	[184]
Coenzyme A	Bacillus	O34661	ApbA	2.70E-32	-
Coenzyme A	Bacillus	O34661	ApbA_C	4.00E-29	[179]
Coenzyme A	Yeast	P38787	ApbA	1.00E-35	-
Coenzyme A	Yeast	P38787	ApbA_C	2.60E-24	[224]
Coenzyme A	Dro sophilla	Q9W374	Fer4_20	5.90E-32	-
Coenzyme A	Drosophilla	Q9W374	NAD_binding_8	9.30E-08	-
Coenzyme A	Drosophilla	Q9W374	DHO_dh	8.60E-37	[666]
Coenzyme A	Drosophilla	Q9W374	Fer4_21	1.30E-22	-
oenzyme A	Tribolium	D6WGA9	Fer4_20	3.50E-31	-
Coenzyme A	Tribolium	D6WGA9	DHO_dh	7.30E-33	[662]
Coenzyme A	Tribolium	D6WGA9	Fer4_21	6.80E-23	-
Coenzyme A	Anopheles	Q7QHY0	Fer4_20	2.00E-31	-
Coenzyme A	Anopheles	Q7QHY0	NAD_binding_8	6.10E-07	-
oenzyme A	Anopheles	Q7QHY0	DHO_dh	4.20E-33	[669]
Coenzyme A	Anopheles	Q7QHY0	Fer4_21	1.30E-22	-
Coenzyme A	Arabidopsis	Q9LVI9	DHO_dh	2.70E-33	[191]
Coenzyme A	Sorghum	C5XZ92	DHO_dh	9.20E-34	[185]
Coenzyme A	Human	Q12882	Fer4_20	3.90E-31	-
Coenzyme A	Human	Q12882	NAD_binding_8	6.50E-07	-
Coenzyme A	Human	Q12882	DHO_dh	1.60E-35	[671]
Coenzyme A	Human	Q12882	Fer4_21	5.90E-23	-
Coenzyme A	Drosophilla	Q8IPQ2	Amidohydro_1	4.20E-21	-
Coenzyme A	Anopheles	F5HKZ6	Amidohydro_5	8.50E-13	-
Coenzyme A	Ecoli	Q46806	Amidohydro_4	8.90E-28	-
Coenzyme A	Arabidopsis	Q9FMP3	Amidohydro_4	7.50E-16	-
Coenzyme A	Sorghum	C5XMK0	Amidohydro_4	6.00E-19	-
Coenzyme A	Human	Q14117	Amidohydro_1	9.30E-25	-
Coenzyme A	Drosophilla	Q9VI04	CN_hydrolase	2.50E-39	[234,197,120]
Coenzyme A	Tribolium	D2A4C0	CN_hydrolase	7.70E-37	[232,195,118]
Coenzyme A	Anopheles	Q7Q0P4	CN_hydrolase	3.60E-38	[234,197,120]
Coenzyme A	Arabidopsis	Q8H183	CN_hydrolase	4.20E-36	[249,212,137]
Coenzyme A	Sorghum	C5X8L4	CN_hydrolase	3.70E-37	[255,218,143]
Coenzyme A	Human	Q9UBR1	CN_hydrolase	2.80E-40	[233,196,119]
Coenzyme A	Sodalis	Q2NVR4	Asp_decarbox	1.70E-50	[25,58]
Coenzyme A	Ecoli	P0A790	Asp_decarbox	3.50E-49	[25,58]
Coenzyme A	Bacillus	P52999	Asp_decarbox	3.40E-54	[25,58]
Coenzyme A	Wigglesworthia	H6Q5V3	Pantoate_ligase	2.90E-88	[39]
Coenzyme A	Sodalis	Q2NVR3	Pantoate_ligase	3.60E-102	[37]
Coenzyme A	Ecoli	P31663	Pantoate_ligase	8.00E-124	[37]
Coenzyme A	Bacillus	P52998	Pantoate_ligase	3.30E-127	[37]
Coenzyme A	Arabidopsis	Q9FKB3	Pantoate_ligase	2.40E-91	[39]
Coenzyme A	Sorghum	C5WS23	Panto at e_ligase	3.20E-86	[44]
Coenzyme A	Yeast	P40459	Pantoate_ligase	2.70E-125	[40]
		D8FT20		3.20E-130	[69]

Path way	Organism	Seq ID	Domain name	E-value	Pre dicte d active site residues
Coenzyme A	Drosophilla	Q9VMU2	DUF89	2.70E-54	-
Coenzyme A	Tribolium	D6WCF9	Fumble	2.20E-137	[137]
Coenzyme A	Tribolium	D6WMP7	DUF89	6.90E-42	-
Coenzyme A	Anopheles	Q7Q0Y3	DUF89	1.90E-47	-
Coenzyme A	Anopheles	Q7PVC2	Fumble	1.80E-138	[146]
Coenzyme A	Wigglesworthia	H6Q4M3	PRK	8.70E-11	-
Coenzyme A	Sodalis	Q2NWS4	PRK	1.50E-13	-
Coenzyme A	Ecoli	P0A6I3	PRK	5.60E-13	-
Coenzyme A	Bacillus	P37564	Pan kinase	1.10E-70	-
Coenzyme A	Bacillus	P54556	PRK	1.60E-14	-
Coenzyme A	Arabidopsis	Q8L5Y9	Fumble	1.20E-146	[201]
Coenzyme A	Arabidopsis	Q8L5Y9	DUF89	1.20E-44	-
Coenzyme A	Sorghum	C5X682	Fumble	2.70E-138	[205]
Coenzyme A	Sorghum	C5X682	DUF89	4.80E-44	-
•	Yeast				
Coenzyme A		Q04430	Fumble	1.30E-132	[105]
Coenzyme A	Human	Q8TE04	Fumble	3.10E-146	[363]
Coenzyme A	Human	Q9NVE7	Fumble	6.70E-143	-
Coenzyme A	Human	Q9NVE7	DUF89	1.00E-57	-
Coenzyme A	Human	Q9H999	Fumble	4.70E-144	[138]
Coenzyme A	Human	Q9BZ23	Fumble	3.00E-139	[338]
Coenzyme A	Drosophilla	Q7KN99	DFP	4.00E-06	-
Coenzyme A	Drosophilla	Q7KN99	DFP	2.90E-11	-
Coenzyme A	Tribolium	D6X537	DFP	4.00E-11	-
Coenzyme A	Anopheles	Q7QAC3	DFP	5.90E-06	-
Coenzyme A	Anopheles	Q7QAC3	DFP	2.70E-11	-
Coenzyme A	Wigglesworthia	H6Q4R3	Flavoprotein	4.90E-34	[75]
Coenzyme A	Wigglesworthia	H6Q4R3	DFP	3.40E-66	-
Coenzyme A	Sodalis	Q2NQU1	Flavoprotein	8.00E-32	[76]
Coenzyme A	Sodalis	Q2NQU1	DFP	1.80E-69	-
Coenzyme A	Ecoli	P0ABQ0	Flavoprotein	5.40E-31	[75]
Coenzyme A	Ecoli	P0ABQ0	DFP	1.10E-72	-
Coenzyme A	Bacillus	035033	Flavoprotein	4.80E-35	[74]
Coenzyme A	Bacillus	O35033	DFP	3.60E-72	[/+j -
•			DFP	9.50E-12	-
Coenzyme A	Arabidopsis	Q8GXR5	DFP	3.00E-14	-
Coenzyme A	Arabidopsis Somhum	Q9LZM3			-
Coenzyme A	Sorghum	C5XVP2	DFP	1.10E-07	-
Coenzyme A	Sorghum	C5XVP2	DFP	1.30E-11	-
Coenzyme A	Sorghum	C5YHW1	DFP	5.10E-08	-
Coenzyme A	Sorghum	C5YHW1	DFP	2.20E-13	-
Coenzyme A	Yeast	P40506	DFP	4.90E-06	-
Coenzyme A	Human	Q9HAB8	DFP	1.20E-06	-
Coenzyme A	Human	Q9HAB8	DFP	1.00E-11	-
Coenzyme A	Drosophilla	Q8MKK3	Flavoprotein	9.30E-41	[80]
Coenzyme A	Tribolium	D2CFX2	Flavoprotein	2.10E-44	[76]
Coenzyme A	Anopheles	Q7PZN2	Flavoprotein	2.90E-45	[79]
Coenzyme A	A rabidop sis	P94063	Flavoprotein	2.40E-42	[82]
Coenzyme A	Arabidopsis	Q9SWE5	Flavoprotein	1.40E-42	[90]
Coenzyme A	Sorghum	C5XLV1	Flavoprotein	4.20E-41	[88]
Coenzyme A	Sorghum	C5Z606	Flavoprotein	1.60E-38	[91]
Coenzyme A	Sorghum	C5Z607	Flavoprotein	1.10E-42	[91]
Coenzyme A	Yeast	P36076	Flavoprotein	9.20E-39	[391]
Coenzyme A	Human	Q96CD2	Flavoprotein	1.30E-44	[88]
Coenzyme A	Drosophilla	Q90CD2 Q9VRP4	CTP_transf_2	3.50E-10	[00]
Coenzyme A	Drosophilla Drosophilla	Q9VRP4 Q9VRP4	CoaE	4.90E-44	-
			COAL CTP transf 2	4.90E-44 2.20E-10	-
Coenzyme A	Anopheles	Q7Q774			
Coenzyme A	Anopheles	Q7Q774	CoaE	8.30E-40	-
Coenzyme A	Wigglesworthia	H6Q528	CTP_transf_2	3.30E-19	-
Coenzyme A	Sodalis	Q2NQU5	CTP_transf_2	1.20E-20	-
Coenzyme A	Ecoli	P0A6I6	CTP_transf_2	8.50E-25	-
Coenzyme A	Bacillus	O34797	CTP_transf_2	4.50E-23	-
Coenzyme A	Arabidopsis	Q9ZPV8	CTP_transf_2	3.30E-11	-
Coenzyme A	Sorghum	C5XB13	CTP_transf_2	2.50E-09	-
Coenzyme A	Sorghum	C5XTW9	CTP_transf_2	4.50E-13	-
Coenzyme A	Yeast	P53332	CTP_transf_2	2.60E-20	-
Coenzyme A	Human	Q13057	CTP_transf_2	4.80E-09	-
Coenzyme A	Human	Q13057	CoaE	4.70E-40	-
Coenzyme A	Wigglesworthia	H6Q5C1	CoaE	1.80E-44	-
Coenzyme A	Sodalis	Q2NVT9	CoaE	1.90E-72	-
Coenzyme A	Ecoli	P0A6I9	CoaE	1.90E-72 1.10E-77	-
Coenzyme A	Bacillus	O34932	CoaE	2.50E-65	-
					-
Coenzyme A	Arabidopsis	Q9ZQH0	CoaE	1.50E-61	
Coenzyme A	Sorghum	C5XKI1	CoaE	1.10E-61	-
Coenzyme A	Sorghum	C5YLK2	CoaE	3.40E-63	-

Path wa y	Organism	Seq ID	Domain name	E-value	Pre dicte d acti w si te resi dues
Coenzyme A	Yeast	Q03941	CoaE	2.20E-70	-
THF	Drosophilla	P48596	GTP_cyclohydroI	3.40E-72	-
ГНF	Tribolium	D2CFW6	GTP_cyclohydroI	1.90E-73	-
THF	Anopheles	A7UU97	GTP_cyclohydroI	1.50E-74	-
THF	Wigglesworthia	H6Q500	GTP_cyclohydroI	1.10E-59	-
ΓHF	Sodalis	Q2NUE3	GTP_cyclohydroI	7.60E-63	-
ГНF	Ecoli	P0A6T5	GTP_cyclohydroI	1.50E-63	-
ΓHF	Bacillus	P19465	GTP_cyclohydroI	5.60E-81	-
FHF	Arabidopsis	F4JED5	GTP_cyclohydroI	4.60E-35	-
ГНF	Arabidopsis	F4JED5	GTP_cyclohydroI	6.50E-39	-
ΓHF	Yeast	P51601	GTP_cyclohydroI	7.60E-75	-
ГНF	Human	P30793	GTP_cyclohydroI	2.00E-75	-
ΓHF	Drosophilla	Q9VRM8	Alk_phosphatase	6.20E-128	[128,128]
THF	Tribolium	D2A3C2	Alk_phosphatase	4.00E-120	[127,127]
THF	Anopheles E li	Q7P Y02	Alk_phosphatase	1.20E-134	[153,153]
THF THF	Ecoli Ecoli	P00634	Alk_phosphatase	1.20E-134	[124,124]
THF	Bacillus	P00634 P42251	Alk_phosphatase PhoD	2.30E-09 9.80E-165	-
THF	Bacillus				-
THF	Bacillus	P19405 P19406	Alk_phosphatase Alk_phosphatase	7.70E-153 2.20E-151	[101,101] [108,108]
THF	Arabidopsis	F4K1J1	PhoD	7.90E-26	[108,108]
THF	Sorghum	C5XWF9	PhoD	9.90E-20	
THF	Yeast	P11491	Alk_phosphatase	3.10E-158	[123,123]
THF	Human	P09923	Alk_phosphatase	5.20E-185	[123,123]
ГНГ ГНГ	Human	P05186	Alk_phosphatase	1.60E-180	[110,110]
THF	Human	P05187	Alk_phosphatase	1.00E-180	[110,110]
ГНГ	Human	P10696	Alk_phosphatase	2.60E-187	[111,111]
ГНF	Wigglesworthia	H6Q5S8	FolB	1.00E-24	-
ГНF	Sodalis	Q2NWE4	FolB	8.80E-31	-
ГНГ	Ecoli	P0AC16	FolB	2.20E-32	-
ГНF	Bacillus	P28823	FolB	1.70E-31	-
ГНF	Arabidopsis	Q9SF23	FolB	1.00E-26	-
ГНF	Arabidopsis	F4IYU3	FolB	1.40E-22	-
ГНF	Arabidopsis	Q9FM54	FolB	2.90E-23	-
ГНF	Sorghum	C5YNA8	FolB	3.30E-29	-
ГНF	Yeast	P53848	FolB	7.40E-17	-
ГНF	Yeast	P53848	FolB	3.10E-16	-
ГНF	Yeast	P53848	НРРК	1.80E-38	-
ГНF	Yeast	P53848	Pterin_bind	5.10E-42	-
ГНF	Wigglesworthia	H6Q551	HPPK	7.00E-42	-
ГНF	Sodalis	Q2NVR1	HPPK	2.60E-43	-
ГНF	Wolbachia	Q73GQ3	Pterin bind	5.90E-29	-
ГНF	Ecoli	P26281	HPPK	2.80E-44	-
ΓHF	Bacillus	P29252	HPPK	4.20E-48	-
ГНF	A rabidop sis	F4JPH1	Pterin_bind	3.50E-77	-
ГНF	Sorghum	C5X2E7	HPPK	1.40E-39	-
ΓHF	Sorghum	C5X2E7	Pterin_bind	1.30E-72	-
ГНF	Sorghum	C5XIR9	HPPK	3.90E-39	-
ГНF	Sorghum	C5XIR9	Pterin_bind	1.40E-72	-
ГНF	Wigglesworthia	H6Q5R8	Anth_synt_I_N	1.90E-19	-
ГНF	Wigglesworthia	H6Q5R8	Chorismate_bind	5.70E-74	-
ГНF	Sodalis	Q2NTC1	Anth_synt_I_N	7.50E-27	-
ГНF	Sodalis	Q2NTC1	Chorismate_bind	1.20E-88	-
ГНF	Sodalis	Q2NQJ8	GAT ase	1.20E-57	[174,176,81]
ΓHF	Ecoli	P05041	Anth_synt_I_N	2.60E-28	-
ГНF	Ecoli	P05041	Chorismate_bind	2.90E-90	-
ΓHF	Ecoli	P00903	GAT ase	2.20E-61	[168,170,79]
ΓHF	Bacillus	P28820	Anth_synt_I_N	7.60E-32	-
ГНF	Bacillus	P28820	Chorismate_bind	1.80E-95	-
THF	Bacillus	P28819	GAT ase	2.90E-60	[168,170,79]
THF	Arabidopsis	Q8LPN3	GAT ase	1.40E-28	[172]
THF	Arabidopsis	Q8LPN3	GAT ase	2.70E-07	-
ГНF	Arabidopsis	Q8LPN3	Anth_synt_I_N	5.20E-20	-
ΓHF	Arabidopsis	Q8LPN3	Chorismate_bind	4.80E-87	-
ΓHF	Sorghum	C5Z8W2	GAT ase	4.70E-07	-
ΓHF	Sorghum	C5Z8W2	GAT ase	2.00E-09	-
ΓHF	Sorghum	C5Z8W2	Anth_synt_I_N	4.80E-19	-
ΓHF	Sorghum	C5Z8W2	Chorismate_bind	4.60E-88	-
ΓHF	Yeast	P37254	GAT ase	1.50E-32	[207,209,112]
ΓHF	Yeast	P37254	Anth_synt_I_N	4.10E-13	-
ГНF	Yeast	P37254	Chorismate_bind	2.40E-63	-
	Wigglesworthia	H6Q5Q3	Aminotran_4	7.60E-34	[141]
THF THF	Sodalis	Q2NU37	Aminotran_4	1.10E-43	[140]

Path way	Organism	Seq ID	Domain name	E-value	Pre dicte d active site residues
THF	Ecoli	P28305	Aminotran_4	2.60E-42	[140]
ГНF	Bacillus	P28821	Aminotran_4	3.50E-44	[146]
ΓHF	Wigglesworthia	H6Q587	Pterin_bind	1.60E-62	-
ГНF	Sodalis	Q2NW28	Pterin_bind	2.40E-68	-
THF	Ecoli	P0AC13	Pterin_bind	2.10E-76	-
ГНF	Bacillus	P28822	Pterin_bind	4.90E-75	-
ГНF	Wigglesworthia	H6Q506	Mur_ligase_M	4.70E-10	-
THF	Sodalis	Q2NSI4	Mur_ligase_M	4.40E-13	-
THF	Wolbachia	Q73GA7	Mur_ligase_M	3.80E-11	-
THF	Ecoli	P08192	Mur_ligase_M	9.70E-14	-
THF	Ecoli	P08192	Mur ligase C	7.80E-07	-
THF	Bacillus	Q05865	Mur_ligase_M	6.30E-16	-
THF	Bacillus	Q05865	Mur_ligase_C	2.30E-11	-
THF	Arabidopsis	F4J2K2	Mur_ligase_M	6.40E-06	-
THF	Arabidopsis	Q8W035	Mur_ligase_M	1.20E-06	-
THF	Arabidopsis	F4JYE9	Mur_ligase_M	2.90E-11	-
THF	Yeast	Q12676	Mur_ligase_M	2.00E-06	-
THF	Drosophilla	P17719	DHFR_1	5.50E-37	-
THF	Anopheles	Q7Q0L5	DHFR 1	9.50E-40	
THF	Wigglesworthia	H6Q4A2	DHFR_1	2.70E-52	-
ГНF	Sodalis	Q2NVX9	DHFR_1	2.90E-56	-
THF	Wolbachia	Q73GQ2	DHFR 1	9.30E-37	-
THF	Ecoli	P0ABQ4	DHFR_1	7.50E-59	-
THF	Econ Bacillus	P0ABQ4 P11045	DHFR_1 DHFR_1	2.20E-65	-
THF			DHFR_1	1.80E-37	-
	A rabidopsis	Q05762	—		-
THF	Arabidopsis	Q05762	Thymidylat_synt	6.50E-121	[401]
THF	Arabidopsis	Q05763	DHFR_1	2.40E-36	-
THF	Arabidopsis	Q05763	Thymidylat_synt	1.30E-122	[447]
THF	Sorghum	C5Y2E9	DHFR_1	1.00E-33	-
THF	Sorghum	C5Y2E9	Thymidylat_synt	1.90E-125	[403]
THF	Yeast	P07807	DHFR_1	3.20E-30	-
THF	Human	P00374	DHFR_1	2.20E-34	-
THF	Human	Q86XF0	DHFR_1	2.10E-31	-
Biotin	Wigglesworthia	H6Q5U6	Met hyltran sf_11	7.40E-25	-
Biotin	Sodalis	Q2NUJ5	Met hyltran sf_11	3.70E-25	-
Biotin	Ecoli	P12999	Met hyltran sf_11	2.60E-23	-
Biotin	Wigglesworthia	H6Q5Z4	ketoacyl-synt	3.80E-40	[161,161]
Biotin	Wigglesworthia	H6Q5Z4	Ketoacyl-synt_C	1.90E-26	-
Biotin	Sodalis	Q2NSH7	ketoacy1-synt	1.10E-40	[161,161]
Biotin	Sodalis	Q2NSH7	Ketoacyl-synt_C	4.70E-29	-
Biotin	Ecoli	P0A953	ketoacy1-synt	9.10E-43	[163,163]
Biotin	Ecoli	P0A953	Ketoacyl-synt_C	2.30E-29	-
Biotin	Drosophilla	Q9VNF5	ketoacyl-synt	3.90E-58	[187,187]
Biotin	Drosophilla	Q9VNF5	Ketoacyl-synt_C	1.10E-32	-
Biotin	Tribolium	D6X1D1	ketoacyl-synt	5.50E-57	[167,167]
Biotin	Tribolium	D6X1D1	Ketoacyl-synt_C	9.30E-32	-
Biotin	Anopheles	Q7QCU6	ketoacyl-synt	1.80E-57	[203,203]
Biotin	Anopheles	Q7QCU6	Ketoacyl-synt_C	3.80E-34	-
Biotin	Sodalis	Q2NU38	ketoacyl-synt	2.80E-56	[164,164]
Biotin	Sodalis	Q2NU38	Ketoacyl-synt_C	4.80E-40	-
Biotin	Wolbachia	Q73FX9	ketoacyl-synt	5.00E-56	[174,174]
Biotin	Wolbachia	Q73FX9	Ketoacyl-synt_C	4.30E-38	[1/ 7 ,1/7]
Biotin	Ecoli	POAAI5	ketoacyl-synt_C	1.00E-59	[164,164]
Biotin	Ecoli	POAAI5 POAAI5	Ketoacyl-synt C	3.10E-39	[104,104]
Biotin	Bacillus	O34340	ketoacyl-synt	1.00E-62	[164,164]
Biotin	Bacillus	O34340 O34340	Ketoacyl-synt_C	1.40E-40	[104,104]
Biotin	Arabidopsis	Q8L3X9	ketoacyl-synt	7.40E-54	[209,209]
Biotin	A rabidopsis A rabidopsis	Q8L3X9 Q8L3X9	Ketoacyl-synt_C	1.50E-35	[209,209]
	*				-
Biotin	Sorghum Sorghum	C5Z5Z9	ketoacyl-synt	1.70E-55	[212,212]
Biotin	Sorghum Volum	C5Z5Z9	Ketoacyl-synt_C	1.80E-32	-
Biotin	Yeast	P39525	ketoacyl-synt	3.70E-56	[187,187]
Biotin	Yeast	P39525	Ketoacyl-synt_C	9.40E-33	-
Biotin	Human	Q9NWU1	ketoacyl-synt	2.50E-55	[209,209]
Biotin	Human	Q9NWU1	Ketoacyl-synt_C	7.50E-36	-
Biotin	Wigglesworthia	H6Q5Q1	adh_short	6.40E-33	[151]
Biotin	Sodalis	Q2NU40	adh_short	6.40E-37	[151]
Biotin	Wolbachia	Q73HB7	adh_short	3.70E-36	[152]
Biotin	Ecoli	P0AEK2	adh_short	9.50E-40	[151]
Biotin	Bacillus	P51831	adh_short	8.90E-45	[154]
Biotin	Bacillus	O31767	adh_short	2.70E-26	[150]
Biotin	Bacillus	O34308	adh_short_C2	1.10E-21	-
Biotin	Arabidopsis	P33207	adh_short	4.20E-43	[226]
					L = = ~]

Path way	Organism	Seq ID	Domain name	E-value	Pre dicte d active si te resi dues
Biotin	Arabidopsis	Q9SQR2	adh_short_C2	2.70E-32	[183,176]
Biotin	Arabidopsis	Q9SVQ9	adh_short_C2	1.30E-30	[174,167]
Biotin	Arabidopsis	F4JWJ4	adh_short	1.90E-30	[168]
Biotin	Sorghum	C5WZI4	adh short	5.40E-36	[166]
Biotin	Sorghum	C5WZI6	adh_short	1.90E-36	[170]
Biotin	Sorghum	C5WZI7	adh_short	2.50E-35	[170]
Biotin	Sorghum	C5WWL1	adh_short	7.90E-22	[183]
Biotin	Sorghum	C5XAC7	adh short C2	3.60E-29	[187,180]
Biotin	Sorghum	C5X9U6	adh short	1.00E-28	[182]
Biotin	Sorghum	C5XSJ4	adh_short	3.20E-43	[223]
Biotin	Sorghum	C5XUE9	adh short C2	2.10E-33	[206,199]
Biotin	Sorghum	C5YE75	adh_short	1.40E-42	[200,199]
Biotin	Wigglesworthia	H6Q4T3	FabA	3.10E-41	[54]
Biotin	Sodalis	O2NRL8	FabA	4.40E-42	[54]
Biotin	Wolbachia	P61455	FabA	2.30E-35	[49]
Biotin	ecoli		FabA	2.50E-55 1.10E-42	[49]
	Bacillus	P0A6Q6 P94584	FabA	2.10E-42	
Biotin					[48]
Biotin	Arabidopsis	Q9SIE3	FabA	2.00E-37	[122]
Biotin	Arabidopsis	Q9LX13	FabA	1.30E-37	[121]
Biotin	Sorghum	C5YIY2	FabA	4.20E-38	[127]
Biotin	Sorghum	C5YYP0	FabA	4.50E-37	[119]
Biotin	Wigglesworthia	H6Q4V4	adh_short_C2	3.10E-76	[164,157]
Biotin	Sodalis	Q2NST7	adh_short_C2	1.10E-80	[163,156]
Biotin	Wolbachia	Q73IR6	adh_short_C2	1.10E-78	[164,157]
Biotin	Ecoli	P0AEK4	adh_short_C2	2.40E-79	[163,156]
Biotin	Bacillus	P54616	adh_short_C2	6.70E-82	[165,158]
Biotin	Arabidopsis	Q9SLA8	adh_short_C2	2.20E-101	[282,274]
Biotin	Wigglesworthia	H6Q4F0	Abhydrolase_6	3.10E-26	[82,236,207]
Biotin	Sodalis	Q2NQH6	Abhydrolase_6	1.20E-29	[82,235,207]
Biotin	Ecoli	P13001	Abhydrolase_6	6.80E-34	[82,235,207]
Biotin	Wigglesworthia	H6Q5U7	Aminotran_1_2	2.40E-43	[256]
Biotin	Sodalis	Q2NUJ6	Aminotran_1_2	2.10E-61	[238]
Biotin	Ecoli	P12998	Aminotran_1_2	1.30E-69	[236]
Biotin	Bacillus	P53556	Aminotran_1_2	6.20E-64	[237]
Biotin	Arabidopsis	Q2QKD2	Aminotran_1_2	9.40E-49	[319]
Biotin	Sorghum	C5WSC4	Aminotran_1_2	2.40E-45	[301]
Biotin	Wigglesworthia	H6Q5U9	Aminotran_3	2.40E-98	-
Biotin	Sodalis	O2NUJ8	Aminotran 3	1.70E-108	-
Biotin	Ecoli	P12995	Aminotran_3	8.60E-114	-
Biotin	Bacillus	P53555	Aminotran 3	2.10E-107	-
Biotin	Arabidopsis	B0F481	AAA_26	9.30E-44	-
Biotin	Arabidopsis	B0F481	Aminotran 3	7.10E-44	-
Biotin	Sorghum	C5WTT1	AAA 26	1.90E-40	-
Biotin	Sorghum	C5WTT1	Aminotran_3	1.40E-43	-
Biotin	Yeast	P50277	Aminotran 3	5.10E-84	-
Biotin	Wigglesworthia	H6Q5U5	AAA 26	1.20E-34	-
Biotin	Sodalis	Q2NUJ4	AAA_26	1.20E-34 1.80E-35	-
Biotin	Sodalis	Q2NSY4	AAA_26	1.60E-23	-
Biotin	Sodalis	O2NSY4	MFS 1	1.60E-14	_
Biotin	Ecoli	P13000	AAA 26	4.70E-42	-
Biotin	Ecoli	P0A6E9	AAA_26	2.90E-30	-
Biotin	Bacillus	P53558	AAA_20 AAA_26	2.90E-30 1.00E-49	-
Biotin	Yeast	P53630	_	1.40E-49	-
DIOUII	reusi	10000	AAA_26	1.4UE-47	-

Table S3: Physicochemical properties of orthologs

Path way	Organism	En zyme EC	Se quence ID	Length	Isoelectric	Molecular
					Point	weight
Thiamine	Glossina	2.8.1.7	TMP002270	467	8.36	52129.56
Thiamine	Glossina	2.8.1.7	TMP003624	293	5.87	31752.83
Thiamine	Glossina	2.8.1.7	TMP002651	176	8.97	19627.6
Thiamine	Glossina	2.8.1.7	TMP006982	148	6.63	16110.55
Thiamine	Glossina	2.8.1.7	TMPEC2.8.1.7-648456	314	5.71	34074.21
Thiamine	Glossina	2.8.1.7	TMPEC2.8.1.7-641678	134	9.55	14765.82
Thiamine	Glossina	2.8.1.7	TMPEC2.8.1.7-652413	218	6.24	23377.14
Thiamine	Glossina	2.8.1.7	TMPEC2.8.1.7-641518	257	6.43	27888.49
Thiamine	Drosophilla	2.8.1.7	Q9VKD3	462	8.4	51074.18
Thiamine	Tribolium	2.8.1.7	D6WLY0	445	8.5	49273.5
Thiamine	Anopheles	2.8.1.7	Q7PW45	462	8.32	49288.61
Thiamine	Wigglesworthia	2.8.1.7	H6Q4V9	410	9.62	46519.71
Thiamine	Wigglesworthia	2.8.1.7	H6Q534	381	9.48	42470.38
Thiamine	Sodalis	2.8.1.7	Q2NT15	407	5.67	44886.42

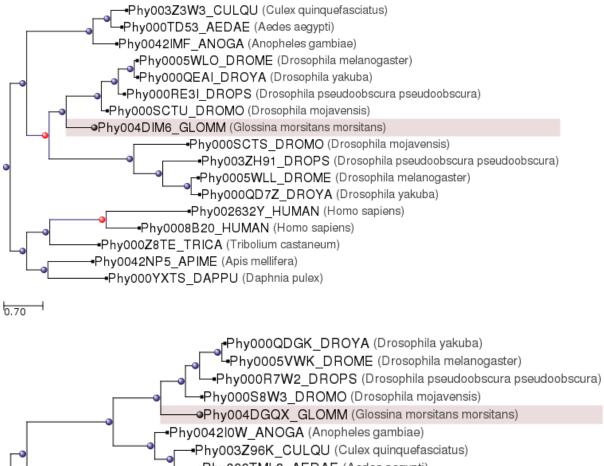
Path wa y	Organism	En zyme EC	Se quence ID	Length	Isoelectri c Point	Mole cula r weight
Thiamine	Sodalis	2.8.1.7	Q2NS31	399	6.73	42889.12
Thiamine	Wolbachia	2.8.1.7	Q73H67	378	5.67	40913.05
Thiamine	Wolbachia	2.8.1.7	Q73GF8	415	6.55	46234.02
Thiamine	Escherichia	2.8.1.7; 4.4.1.16	P77444	406	5.89	44433.76
Thiamine	Escherichia	2.8.1.7	P0A6B7	404	5.94	45089.5
Thiamine	Bacillus	2.8.1.7	O34599	379	5.55	41191.56
Thiamine	Bacillus	2.8.1.7	P38033	395	6.41	43785.97
Thiamine	Bacillus	2.8.1.7	O34874	381	6.33	41487.55
Thiamine	Bacillus	2.8.1.7	O32164	406	5.32	44921.99
Thiamine	Arabidopsis	2.8.1.7; 4.4.1.16	Q93WX6	463	5.98	46761.08
Thiamine	Arabidopsis	2.8.1.7	O49543	453	6.52	50295.75
Thiamine	Sorghum	2.8.1.7	C5Y0K0	375	5.89	41293.01
Thiamine	Saccharom yces	2.8.1.7	P25374	497	6.63	50723.63
Thiamine	Human	2.8.1.7	Q9Y697	457	8.54	50195.67
Thiamine	Glossina	ThiC	TMPThiC-641665	253	5.36	28340.58
Thiamine	Wigglesworthia	ThiC	H6Q4N0	623	8.95	71576.86
Thiamine	Escherichia	ThiC	P30136	631	5.7	70850.36
Thiamine	Bacillus	ThiC	P45740	590	5.44	65931.72
Thiamine	Arabidopsis	ThiC	O82392	644	5.83	68066.07
Thiamine	Sorghum	ThiC	C5WPN8	640	5.9	71291
	Glossina	ThiD	TMPThiD-641665	81	6.63	
Thiamine Thiamine	Giossina Wigglesworthia	ThiD	H6Q4Z9	268	0.03 9.51	8868.05 29395.4
	00		-			
Thiamine	Escherichia Basillara	ThiD	P76422	266	5.73	28633.61
Thiamine	Bacillus	ThiD	O31620	271	5.74	29124.03
Thiamine	Arabidopsis	ThiD	Q5M731	522	5.76	51867.44
Thiamine	Sorghum	ThiD	C5YTC8	547	7.5	57782.46
Thiamine	Saccharom yces	ThiD	Q08224	551	5.81	61269.35
Thiamine	Saccharom yces	ThiD	Q08975	551	5.63	61334.3
Thiamine	Escherichia	ThiF	P30138	251	4.69	26969.78
Thiamine	Bacillus	ThiF	O31619	336	5.72	36399.71
Thiamine	Wigglesworthia	ThiS	H6Q4N2	66	8.01	7439.76
Thiamine	Escherichia	ThiS	O32583	66	4.37	7311.29
Thiamine	Bacillus	ThiS	O31617	66	5.59	7625.79
Thiamine	Wigglesworthia	ThiH	H6Q4N4	372	9.05	43387.34
Thiamine	Sodalis	ThiH	Q2NWR4	278	9.33	32065.97
Thiamine	Escherichia	ThiH	P30140	377	6.57	43320.13
Thiamine	Bacillus	ThiO	O31616	369	5.92	40936.83
Thiamine	Wigglesworthia	ThiG	H6Q4N3	254	9.07	27828.52
Thiamine	Escherichia	ThiG	P30139	256	5.36	26896.1
Thiamine	Bacillus	ThiG	O31618	256	4.91	27022.23
Thiamine	Wigglesworthia	2.5.1.3	H6Q4N1	212	9.74	24365.79
Thiamine	Escherichia	2.5.1.3	P30137	211	5.51	23015.28
Thiamine	Bacillus	2.5.1.3	P39594	211	5.24	23680.96
Thiamine	Arabidopsis	2.5.1.3; 2.7.1.49	Q5M731	522	5.76	51867.44
Thiamine						
	Sorghum	2.5.1.3	C5YTC8	547 540	7.5	57782.46
Thiamine	Saccharom yces	2.5.1.3; 2.7.1.50	P41835	540	5.67	58058.71
Thiamine	Wigglesworthia	2.7.4.16	H6Q5T5	288	9.71	32668.31
Thiamine	Sodalis	2.7.4.16	Q2NV96	328	4.95	36055.83
Thiamine	Escherichia	2.7.4.16	POAGGO	325	4.48	35070.85
Thiamine	Bacillus	2.7.4.16	005514	325	5.19	35883.99
Thiamine	Glossina	2.7.6.2	TMP011237	291	8.08	33322.16
Thiamine	Drosophilla	2.7.6.2	Q8T4A5	345	9.08	38383.85
Thiamine	Tribolium	2.7.6.2	664370/XP_975470.2	322	6.07	29464.7
Thiamine	Anopheles	2.7.6.2	Q7QD56	271	5.49	29879.9
Thiamine	Bacillus	2.7.6.2	O34664	214	5.34	24098.59
Thiamine	Arabidopsis	2.7.6.2	F4IV16	267	5.7	30214.43
Thiamine	Sorghum	2.7.6.2	C5XJY7	267	6.89	30442.84
Thiamine	Sorghum	2.7.6.2	C5XH23	263	5.1	28943.79
Thiamine	Sorghum	2.7.6.2	C5YWW8	277	4.99	30085.04
Thiamine	Saccharom yces	2.7.6.2	P35202	319	5.92	36616.09
Thiamine	Human	2.7.6.2	Q9H3S4	243	5.03	27265.28
Riboflavin	Wigglesworthia	4.1.99.12	H6Q580	243	9.06	23546.54
Riboflavin	Sodalis	4.1.99.12	Q2NWD7	214	5.15	23540.54
Riboflavin	Wolbachia	4.1.99.12	Q73HB4	217	5.98	23909.6
			-			
Riboflavin	Escherichia Basillara	4.1.99.12	P0A7J0 P17C20	217	4.9 5.64	23353.47
Riboflavin	Bacillus	4.1.99.12; 3.5.4.25	P17620	398	5.64	44121.41
Riboflavin	Arabidopsis	4.1.99.12	Q6NLQ7	476	5.8	52199.79
Riboflavin	A rabidop sis	4.1.99.12	F4KJA1	543	5.8	60176.6
Riboflavin	Arabidopsis	4.1.99.12; 3.5.4.25	P47924	543	5.1	53093.25
Riboflavin	Sorghum	4.1.99.12	C5XVM3	554	5.92	59885.25
	Sorghum	4.1.99.12	C5YJR6	547	5.54	59397.41
Riboflavin						
Riboflavin Riboflavin	Sorghum	4.1.99.12	C5YZA3	603	5.92	65823.04

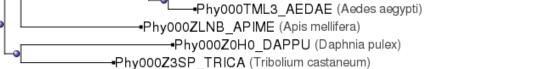
Path wa y	Organism	Enzyme EC	Se quence ID	Length	Isoelectri c Point	Mole cular weight
Riboflavin	Glossina	3.5.4.25	TMP003195	379	5.66	41912.38
Riboflavin	Glossina	3.5.4.25	TMPEC3.5.4.25-648457	301	6.46	34169.06
Riboflavin	Wigglesworthia	3.5.4.25	H6Q4V2	199	8.75	22313.77
Riboflavin	Sodalis	3.5.4.25	Q2NT40	199	5.9	21896.16
Riboflavin	Wolbachia	3.5.4.25	Q73IY9	360	5.97	41129.81
Riboflavin	Escherichia	3.5.4.25	P0A7I7	196	5.6	21835.98
Riboflavin	Bacillus	4.1.99.12; 3.5.4.25	P17620	398	5.64	44121.41
Riboflavin	Arabidopsis	3.5.4.25	Q6NLQ7	476	5.8	52199.79
Riboflavin	A rabidop sis	3.5.4.25	F4KJA1	543	5.8	60176.6
Riboflavin	Arabidopsis	4.1.99.12; 3.5.4.25	P47924	543	5.1	53093.25
Riboflavin	Sorghum	3.5.4.25	C5XVM3	554	5.92	59885.25
Riboflavin	Sorghum	3.5.4.25	C5YJR6	547	5.54	59397.41
Riboflavin	Sorghum	3.5.4.25	C5YZA3	603	5.92	65823.04
Riboflavin	Saccha rom yces	3.5.4.25	P38066	345	5.9	38331.95
Riboflavin	Glossina	3.5.4.26	TMPEC1.1.1.193-648456	325	8.31	35652.32
Riboflavin	Wigglesworthia	3.5.4.26	H6Q5T9	380	9.84	42681.84
Riboflavin	Sodalis	3.5.4.26	Q2NV99	375	6.76	40511.45
Riboflavin	Wolbachia	3.5.4.26	Q73H62	360	8.58	39424.8
Riboflavin	Escherichia	3.5.4.26; 1.1.1.193	P25539	367	7.22	40338.31
Riboflavin	Bacillus	3.5.4.26; 1.1.1.193	P17618	361	6.09	39305.31
Riboflavin	A rabidop sis	3.5.4.26	Q8GWP5	426	6.04	46673.67
Riboflavin	Sorghum	3.5.4.26	C5X102	396	7.14	42288.43
Riboflavin	Wigglesworthia	2.5.1.78	H6Q5T8	154	9.3	17108.2
Riboflavin	Sodalis	2.5.1.78	Q2NV98	156	5.35	16056.5
Riboflavin	Wolbachia	2.5.1.78	P61729	142	6.96	15467.93
Riboflavin	Escherichia	2.5.1.78	P61714	156	5.15	16156.51
Riboflavin	Bacillus	2.5.1.78	P11998	154	5.35	16286.62
Riboflavin	Arabidopsis	2.5.1.78	O80575	227	6.22	16542.98
Riboflavin	Sorghum	2.5.1.78	C5Y9F9	215	8.93	22270.55
Riboflavin	Saccha rom yces	2.5.1.78	P50861	169	6.06	18555.52
Riboflavin	Glossina	2.5.1.9	TMPEC2.5.1.9-638809	198	5.83	22287.44
Riboflavin	Wigglesworthia	2.5.1.9	H6Q4Y2	204	8.83	22654.47
Riboflavin	Sodalis	2.5.1.9	Q2NT11	205	6.16	22361.99
Riboflavin	Wolbachia	2.5.1.9	Q73IM7	198	5.82	22380.53
Riboflavin	Escherichia	2.5.1.9	P0AFU8	213	5.64	23444.9
Riboflavin	Bacillus	2.5.1.9	P16440	215	5.87	23480.96
Riboflavin	Arabidopsis	2.5.1.9	Q9SKU8	271	7.62	29639.25
Riboflavin	Saccharom yces	2.5.1.9	P38145	238	5.04	26195.78
Riboflavin	Glossina	2.7.1.26	TMP011242	165	5.2	18617.98
Riboflavin	Glossina	2.7.1.26	TMPEC2.7.1.26-642265	315	8.55	36223.76
Riboflavin	Drosophilla	2.7.1.26	O76206	153	5.92	16985.5
Riboflavin	Tribolium	2.7.1.26	660247/XP_971589.1	148	5.41	16937.28
Riboflavin	Wigglesworthia	2.7.1.26	H6Q522	312	10.07	35777.4
Riboflavin	Sodalis	2.7.1.26	Q2NVY7	312	9.68	34360.41
Riboflavin	Wolbachia	2.7.1.26	Q73H17	310	8.09	35559.04
Riboflavin	Escherichia	2.7.1.26; 2.7.7.2	P0AG40	313	9.34	34734.27
Riboflavin	Bacillus	2.7.1.26; 2.7.7.2	P54575	316	8.26	35661.91
Riboflavin	Arabidopsis	2.7.1.26	Q84MD8	379	5.97	42110.43
Riboflavin	Sorghum	2.7.1.26	C5X020	396	5.72	43377.52
Riboflavin	Saccharom yces	2.7.1.26	Q03778	218	5.03	22366.41
Riboflavin	Human	2.7.1.26	Q969G6	155	7.85	17623.17
Riboflavin	Glossina	2.7.7.2	TMP002859a	424	9.34	49225.29
Riboflavin	Glossina	2.7.7.2	TMP010445	247	6.33	28852.25
Riboflavin	Drosophilla	2.7.7.2	Q9VJY1	254	6.02	29722.84
Riboflavin	Drosophilla	2.7.7.2	Q8IR76	294	5.71	33699.19
Riboflavin	Tribolium	2.7.7.2	D6WDE0	455	6.26	52908.77
Riboflavin	Anopheles	2.7.7.2	F5HKN2	188	5.55	21534.47
Riboflavin	Wigglesworthia	2.7.7.2	H6Q522	312	10.07	35777.4
Riboflavin	Sodalis	2.7.7.2	Q2NVY7	312	9.68	34360.41
Riboflavin	Wolbachia	2.7.7.2	Q73H17	310	8.09	35559.04
Riboflavin	Escherichia	2.7.1.26; 2.7.7.2	P0AG40	313	9.34	34734.27
Riboflavin	Bacillus	2.7.1.26; 2.7.7.2	P54575	316	8.26	35661.91
Riboflavin	Saccharom yces	2.7.7.2	P38913	306	5.16	35546.16
Riboflavin	Human	2.7.7.2	Q8NFF5	587	6.49	65265.57
Riboflavin	Glossina	1.5.1.30	TMP005236	202	6.31	22469.84
Riboflavin	Human	1.5.1.30; 1.3.1.24	P30043	206	7.31	21988.16
Pyridoxine	Escherichia	1.2.1.72	P0A9B6	339	6.26	37168.2
Pyridoxine	Glossina	1.1.1.290	TMP003196	318	5.34	35162.5
Pyridoxine	Glossina	1.1.1.290	TMP005771	461	6.31	49747.92
Pyridoxine	Wigglesworthia	1.1.1.290	H6Q509	381	9.76	43516.58
Pyridoxine	Sodalis	1.1.1.290	Q2NSH9	377	5.37	40428.29
Pyridoxine	Escherichia	1.1.1.290	P05459	378	6.23	41367.65
PVHQDXIIIE						

Path wa y	Organism	Enzyme EC	Se quence ID	Length	Isoelectri c Point	Mole cular weight
Pyridoxine	Drosophilla	2.6.1.52	Q9VAN0	364	8.52	39540.36
Pyridoxine	Tribolium	2.6.1.52	D6W9Q3	368	6.55	40495.31
Pyridoxine	Anopheles	2.6.1.52	Q5TRW7	364	7.65	40126.34
Pyridoxine	Wigglesworthia	2.6.1.52	H6Q4Q1	362	9.76	41619.69
Pyridoxine	Sodalis	2.6.1.52	Q2NUB0	361	5.54	39898.45
Pyridoxine	Escherichia	2.6.1.52	P23721	362	5.37	39652.12
Pyridoxine	Bacillus	2.6.1.52	P80862	359	5.62	40135.64
Pyridoxine	Arabidopsis	2.6.1.52	Q9SHP0	422	8.26	46633.52
Pyridoxine	Arabidopsis	2.6.1.52	Q96255	430	8.25	47359.32
Pyridoxine	Saccharom yces	^2.6.1.52	P33330	63	6.08	43415.57
Pyridoxine	Human	2.6.1.52	Q9Y617	370	7.56	40422.68
Pyridoxine	Glossina	1.1.1.262	TMP003625	573	5.81	62239.73
Pyridoxine	Wigglesworthia	1.1.1.262	H6Q499	328	9.21	36364
Pyridoxine	Sodalis	1.1.1.262	Q2NVX5	330	5.63	35035.26
Pyridoxine	Escherichia	1.1.1.262	P19624	329	5.87	35113.78
Pyridoxine	Wigglesworthia	2.6.99.2	H6Q5B7	244	9.22	27299.95
Pyridoxine	Sodalis	2.6.99.2	Q2NS16	243	5.61	26336.13
Pyridoxine	Wolbachia	2.6.99.2	Q3V8B3	235	6.31	26347.36
Pyridoxine	Escherichia	2.6.99.2	P0A794	243	5.61	26253.09
Pyridoxine	Bacillus	4.3.3.6	P37527	294	5.26	31480.36
Pyridoxine	A rabidop sis	4.3.3.6	O80448	309	5.73	32861.92
Pyridoxine	A rabidop sis	4.3.3.6	Q9ZNR6	314	5.45	33835.54
Pyridoxine	Arabidopsis	4.3.3.6	Q8L940	309	5.77	33216.31
Pyridoxine	Sorghum	4.3.3.6	C5X768	317	6.33	33621.61
Pyridoxine	Saccharom yces	4.3.3.6	P43545	298	5.4	32019.02
Pyridoxine	Saccharom yces	4.3.3.6	Q03148	297	5.4	31816.86
Pyridoxine	Glossina	2.7.1.35	TMP005733	304	5.71	33836.8
Pyridoxine	Glossina	2.7.1.35	TMPEC2.7.1.35-639530	47	6.76	5328.18
Pyridoxine	Drosophilla	2.7.1.35	Q7KUC2	304	6.46	33428.42
Pyridoxine	Tribolium	2.7.1.35	D6WEG5	294	6.66	32131.05
Pyridoxine	Anopheles	2.7.1.35	Q7Q6C1	309	6.46	34124.2
Pyridoxine	Escherichia	2.7.1.35	P77150	287	6.04	31322.2
Pyridoxine	Escherichia	2.7.1.35	P40191	283	5.14	30847.4
Pyridoxine	Bacillus	2.7.1.35	P39610	271	5.09	29017.26
Pyridoxine	A rabidop sis	2.7.1.35	Q8W1X2	309	5.55	34043.06
Pyridoxine	Saccharom yces	2.7.1.35	P39988	312	6.11	35559.19
Pyridoxine	Saccharom yces	2.7.1.35	P53727	317	6.32	35366.8
Pyridoxine	Human	2.7.1.35	O00764	312	5.75	35102.3
Pyridoxine	Glossina	3.1.3	TMP011872	275	8.53	31928.82
Pyridoxine	Drosophilla	3.1.3	Q9VWF0	306	7.64	34621.44
Pyridoxine	Tribolium	3.1.3.74	D6WJQ0	245	5.98	27714.86
Pyridoxine	Anopheles	3.1.3.74	Q7QCX1	250	5.91	28279.16
Pyridoxine	Human	3.1.3.74	Q8TCD6	241	6.3	27768.91
Pyridoxine	Human	3.1.3.3; 3.1.3.74	Q96GD0	296	6.11	31698.15
Pyridoxine	Glossina	1.4.3.5	TMP007245	254	8.82	29217.53
Pyridoxine	Drosophilla	1.4.3.5	Q7KSW3	237	6.36	26787.35
Pyridoxine	Drosophilla	1.4.3.5	Q8INR5	257	9.12	29294.2
Pyridoxine	Tribolium	1.4.3.5	660386/XP_971715.1	226	7.68	26079.43
Pyridoxine	Anopheles	1.4.3.5	Q7QK95	241	6.88	27844.83
Pyridoxine	Wigglesworthia	1.4.3.5	H6Q4X8	216	10.51	26161.89
Pyridoxine	Sodalis	1.4.3.5	Q2NT03	216	9.66	25029.63
Pyridoxine	Wolbachia	1.4.3.5	Q73G09	216	8.71	25349.29
Pyridoxine	Escherichia	1.4.3.5	P0AFI7	218	9.18	25413.96
Pyridoxine	Saccharom yces	1.4.3.5	P38075	228	6.94	26908.26
Pyridoxine	Human	1.4.3.5	Q9NVS9	261	6.61	29988
Niacin	Sodalis	1.4.3.16	Q2NS06	533	6.16	59283.35
Niacin	Escherichia	1.4.3.16	P10902	540	5.89	60337.41
Niacin	Bacillus	1.4.3.16	P38032	531	6.43	58239.33
Niacin	Arabidopsis	1.4.3.16	Q94AY1	651	6.67	71411.71
Niacin	Sorghum	1.4.3.16	C5XTX1	654	6.33	72032.89
Niacin	Wigglesworthia	NadA(2.5.1.72)	H6Q5F4	344	9.18	38546.26
Niacin	Sodalis	NadA(2.5.1.72)	Q2NUL1	348	5.71	37817.57
Niacin	Escherichia	NadA(2.5.1.72)	P1 1458	347	5.19	38240.8
Niacin	Bacillus	NadA(2.5.1.72)	Q9KWZ1	368	5.76	41492.63
Niacin	Arabidopsis	NadA(2.5.1.72)	Q9FGS4	718	6.42	78933.76
Niacin	Sorghum	NadA(2.5.1.72)	C5YNE5	580	6.02	63322.3
Niacin	Glossina	3.5.1.19	TMP008696	357	4.74	40183.25
Niacin	Escherichia	3.5.1; 3.5.1.19	P21369	213	4.6	23362.05
Niacin	Saccharom yces	3.5.1.19	P53184	216	5.81	24993.31
Niacin	Glossina	2.4.2.11	TMP011160	480	9.01	53256.65
Niacin	Glossina	2.4.2.11	TMP003848	204	5.11	23006.01
Niacin	Drosophilla	2.4.2.11	Q9VQX4	555	6.32	62165.2

Path way	Organism	Enzyme EC	Se quence ID	Length	Isoelectri c Point	Mole cular weight
Niacin	Anopheles	2.4.2.11	Q7PJC3	519	5.72	58111.45
Niacin	Sodalis	2.4.2.11	Q2NU84	402	8.93	46361.33
Niacin	Escherichia	2.4.2.11	P18133	400	6.2	45766.09
Niacin	Bacillus	2.4.2.11	O32090	490	5.25	56179.69
Niacin	A rabidop sis	2.4.2.11	Q84WV8	557	5.86	62273.28
Niacin	A rabidop sis	2.4.2.11	Q8RWM2	559	5.91	62420.6
Niacin	Sorghum	2.4.2.11	C5WTX0	557	6.55	62125.16
Niacin	Sorghum	2.4.2.11	C5YGH6	536	6.38	59840.79
Niacin	Saccharom yces	2.4.2.11	P39683	429	6.44	49018.6
Niacin	Human	2.4.2.11	Q6XQN6	538	5.51	57578.23
Niacin	Glossina	2.7.7.1/2.7.7.18	TMP004826	359	8.69	40801.81
Niacin	Drosophilla	2.7.7.1	Q7KS06	297	9	33455.29
Niacin	Tribolium	2.7.7.1/2.7.7.18	D6X0P6	400	8.26	45350.68
Niacin	Anopheles	2.7.7.1/2.7.7.18	Q7QG76	246	8.39	27836.85
Niacin	Wigglesworthia	2.7.7.18	H6Q5E3	210	9.56	24279.72
Niacin	Sodalis	2.7.7.18	Q2NUV0	218	7.74	24505.11
Niacin	Escherichia	2.7.7.18	P0A752	213	5.46	24527.95
Niacin	Bacillus	2.7.7.18	P54455	189	5.28	22156.5
Niacin	Arabidopsis	2.7.7.1/2.7.7.18	F4K687	238	5.77	26922.89
Niacin	Sorghum	2.7.7.1/2.7.7.18	C5XVU3	251	5.75	28006.25
Niacin	Saccharomyces	2.7.7.1	P53204	395	5.57	44909.07
Niacin	Saccharom yces	2.7.7.1	Q06178	401	6.4	45859.05
Niacin	Human	2.7.7.1; 2.7.7.18	09BZO4	307	6.59	34438.63
Niacin	Human	2.7.7.18; 2.7.7.1	Q96T66	252	9.28	28321.67
Niacin	Human	2.7.7.1; 2.7.7.18	O9HAN9	279	8.98	31932.46
Niacin	Glossina	6.3.5.1	TMP010364	865	6.76	97065.02
Niacin	Glossina Glossina	6.3.5.1	TMPEC6.3.1.5-641666	180	3.75	21131.73
Niacin	Drosophilla	6.3.5.1	09VYA0	787	6.23	87614.79
Niacin	Tribolium	6.3.5.1	D1ZZT1	724	7.71	81438.39
Niacin	Anopheles	6.3.5.1	07PS02	825	6.51	89358.16
Niacin	Wigglesworthia	6.3.1.5		823 267	8.91	30241.89
Niacin	Sodalis	6.3.1.5	H6Q4X3	207	5.25	30241.89
	Escherichia	6.3.1.5	Q2NRT4 P18843	274	5.25 5.41	30636.83
Niacin						
Niacin	Bacillus	6.3.1.5	P08164	272	5.07	30264.02
Niacin	Arabidopsis	6.3.5.1	Q9C723	725 732	5.61	80900.44
Niacin	Sorghum	6.3.5.1	C5X4A1	732 714	5.99	82114.41
Niacin	Saccharom yces	6.3.5.1	P38795		6.11	80685.69
Niacin	Human	6.3.5.1	Q6IA69	706	6.02	79284.73
Niacin	Glossina	2.7.1.23	TMP012832	544	6.05	61252.41
Niacin	Glossina	2.7.1.23	TMPEC2.7.1.23-650872	173	6.06	19195
Niacin	Glossina	2.7.1.23	TMPEC2.7.1.23-641851	112	6.1	11994.79
Niacin	Drosophilla	2.7.1.23	A1Z9F4	490	6.65	54793.36
Niacin	Tribolium	2.7.1.23	663340/XP_974485.1	497	7.61	55549.89
Niacin	Anopheles	2.7.1.23	Q7QHC1	535	6.25	59588.73
Niacin	Wigglesworthia	2.7.1.23	H6Q5S1	293	9.83	33370.76
Niacin	Sodalis	2.7.1.23	Q2NS01	292	5.69	32060.62
Niacin	Wolbachia	2.7.1.23	Q73GR1	264	6.8	30059.3
Niacin	Escherichia	2.7.1.23	P0A7B3	292	6.3	32566.38
Niacin	Bacillus	2.7.1.23	O31612	266	6	30012.34
Niacin	Bacillus	2.7.1.23	O34934	267	6.45	30253.4
Niacin	Arabidopsis	2.7.1.23; 2.7.1.86	Q56YN3	524	6.04	58244.99
Niacin	Sorghum	2.7.1.23	C5XIJ6	462	6.64	51378.59
Niacin	Sorghum	2.7.1.23	C5YXF6	498	6.37	54805.42
Niacin	Human	2.7.1.23	O95544	446	6.03	49228.21
Niacin	Wigglesworthia	2.4.2.19	H6Q4Z3	288	9.27	32568.95
Niacin	Sodalis	2.4.2.19	Q2NVT6	296	5.2	31571.13
Niacin	Escherichia	2.4.2.19	P30011	297	5.07	32630.87
Niacin	Bacillus	2.4.2.19	P39666	289	5.31	31392.93
Niacin	Arabidopsis	2.4.2.19	A8MRX1	342	5.77	37124.94
Niacin	Sorghum	2.4.2.19	C5X7Q7	375	8.65	40261.56
Niacin	Sorghum Saccharomyces	2.4.2.19	P43619	295	5.55	32364.96
Niacin	Human	2.4.2.19	Q15274	295	5.81	30845.63
Pantot henate	Glossina	2.6.1.42	TMP003476	450	8.48	50779.37
Pantot henate	Glossina Glossina	2.6.1.42	TMPEC2.6.1.42-641671	430	5.19	12877.94
Pantothenate	Drosophilla	2.6.1.42		443	6.61	49536.87
	1		Q9VYD5			
Pantot henate	Tribolium Anopholos	2.6.1.42	D6WAG1	417	7.66	47211.36
Pantot henate	Anopheles	2.6.1.42	Q7QEI9	443	6.82	50155.74
Pantothenate	Sodalis	2.6.1.42	Q2NQA5	309	5.86	33649.44
Pantothenate	Escherichia	2.6.1.42	P0AB80	309	5.54	33962.46
Pantothenate	Bacillus	2.6.1.42	O31461	356	5.14	39676.23
Pantothenate	Bacillus	2.6.1.42	P39576	363	5.13	40160.9
		0 (1 40	0023/22	384	5.78	20074 42
Pantot henat e	Arabidopsis	2.6.1.42	Q93Y32	364	5.78	39874.43

Path wa y	Organism	En zyme EC	Se quence ID	Length	Isoelectri c Point	Mole cular weight
Pantothenate	Arabidopsis	2.6.1.42	Q9LPM8	367	5.69	39998.6
Pantot henate	Arabidopsis	2.6.1.42	Q9LPM9	356	6.2	38861.43
Pantothenate	Arabidopsis	2.6.1.88	Q9LE06	354	5.9	39018.71
Pantot henat e	Arabidopsis	2.6.1.42	Q9M401	413	5.77	38529.21
Pantot henat e	Arabidopsis	2.6.1.42	Q8L493	373	6.13	34463.2
Pantothenate	Arabidopsis	2.6.1.42	Q9FYA6	415	5.24	38321.79
Pantothenate	Sorghum	2.6.1.42	C5XZZ4	402	6.37	42901.09
Pantot henat e	Sorghum	2.6.1.42	C5YDX1	435	8.86	47423.44
Pantothenate	Sorghum	2.6.1.42	C5YVA1	330	5.56	35292.54
Pantothenate	Saccharom yces	2.6.1.42	P38891	393	8.48	41698.74
Pantothenate	Saccharom yces	2.6.1.42	P47176	376	6.91	41624.72
Pantothenate	Human	2.6.1.42	P54687	386	5.17	42966.15
Pantothenate	Human	2.6.1.42	O15382	392	8.21	41264.03
Pantothenate	Wigglesworthia	2.1.2.11	H6Q5V2	264	9.16	29256.36
Pantothenate	Sodalis	2.1.2.11	Q2NVR2	262	5.66	27817.95
Pantothenate	Escherichia	2.1.2.11	P31057	264	5.15	28237.44
Pantothenate	Bacillus	2.1.2.11	P52996	277	5.4	29758.4
Pantothenate	Arabidopsis	2.1.2.11	082357	347	8.6	36693.33
Pantothenate	A rabidop sis	2.1.2.11	Q9M315	354	6.86	37363.86
Pantothenate	Sorghum	2.1.2.11	C5XKA7	404	8.24	41553.38
Pantothenate	Sorghum	2.1.2.11	C5XKA8	370	6.36	38127.59
Pantothenate	Sorghum	2.1.2.11	C5XKA9	353	8.14	36885.3
Pantothenate	Saccharomyces	2.1.2.11	P38122	312	8.35	34464.91
Pantothenate	Wigglesworthia	1.1.1.169	H6Q5G7	294	9.7	34632.38
Pantothenate	Sodalis	1.1.1.169	Q2NV89	303	8.74	33752.66
Pantothenate	Escherichia	1.1.1.169	P0A9J4	303	5.62	33870.76
Pantothenate	Bacillus	1.1.1	031717	303	6.14	33572.42
Pantothenate	Bacillus	1.1.1	O34661	298	5.88	33287.04
Pantothenate	Saccharomyces	1.1.1.169	P38787	379	6.21	42821.28
Pantothenate	Glossina	1.3.1.2	TMP002436	1035	7.52	112669.9
Pantothenate	Drosophilla	1.3.1.2; 1.3.1.1; 1.3.3.1	Q9W374	1031	6.42	111225.6
Pantothenate	Tribolium	1.3.1.2	D6WGA9	1016	8.13	109951.8
Pantothenate	Anopheles	1.3.1.2	Q7QHY0	1039	6.72	112361.1
Pantothenate	Arabidopsis	1.3.1.2	Q9LVI9	426	6.37	46846.61
Pantothenate	Sorghum	1.3.1.2	C5XZ92	420	5.92	45922.58
Pantothenate	Human	1.3.1.2	Q12882	1025	6.84	111102
Pantothenate	Glossina	3.5.2.2	TMP006803	594	6.13	65129.07
Pantothenate	Drosophilla	3.5.2.2	Q8IPQ2	594	6.23	65101.28
Pantothenate	Tribolium	3.5.2.2	662209/XP_973416.2	587	5.94	64851.84
Pantothenate	Anopheles	3.5.2.2	Q7QBK9	333	6.3	65415.12
Pantothenate	Escherichia	3.5.2	Q46806	461	6.18	51025.15
Pantothenate	Arabidopsis	3.5.2.2	Q9FMP3	531	5.58	57991.22
Pantothenate	Sorghum	3.5.2.2	C5XMK0	536	6.02	57550.93
Pantothenate	Human	3.5.2.2	Q14117	519	6.81	56629.78
Pantothenate	Glossina	3.5.1.6	TMP008479	386	6.84	43771.66
Pantothenate	Dro sophilla	3.5.1.6	Q9VI04	386	6.4	43799.76
Pantothenate	Tribolium	3.5.1.6	D2A4C0	383	6.28	43450.4
Pantothenate	Anopheles	3.5.1.6	Q7Q0P4	386	6.03	43520.4
Pantothenate	Arabidopsis	3.5.1.6	Q8H183	408	5.92	45552.61
Pantothenate	Sorghum	3.5.1.6	C5X8L4	413	5.86	45686.84
Pantothenate	Human	3.5.1.6	Q9UBR1	384	6.09	43166.07
Pantothenate	Sodalis	4.1.1.11	Q2NVR4	126	6.02	14089.01
Pantothenate	Escherichia Basillus	4.1.1.11	P0A790	126	5.75	13833.73
Pantothenate	Bacillus	4.1.1.11	P52999	127	5.65	13899.98
Pantot henate Pantot henate	Wigglesworthia Sodalis	6.3.2.1 6.3.2.1	H6Q5V3 O2NVP3	290 284	9.85 5.79	33654.15 31705.48
			Q2NVR3			
Pantothenate	Escherichia Basillus	6.3.2.1	P31663	283	5.92	31597.67
Pantothenate	Bacillus	6.3.2.1	P52998	286	4.82	31958.34
Pantothenate	Arabidopsis	6.3.2.1	Q9FKB3	310	6.05	34137.07
Pantothenate	Sorghum	6.3.2.1	C5WS23	315	5.45	34062.76
Pantothenate	Saccharomyces	6.3.2.1	P40459	309	5.27	35032.24
Pantothenate	Glossina	2.7.1.33	TMP008185	391	6.25	44714.39
Pantot henate	Glossina	2.7.1.33	TMP002949	495	8.94	55586.42
Pantothenate	Drosophilla	2.7.1.33	D8FT20	342	6.02	37672.79
Pantothenate	Drosophilla	2.7.1.33	Q9VMU2	361	5.36	40442.2
Pantothenate	Tribolium Tribolium	2.7.1.33	D6WCF9	367	7.51	41020.01
Pantothenate	Tribolium	2.7.1.33	D6WMP7	355	5.18	40072.85
Pantothenate	Anopheles	2.7.1.33	Q7Q0Y3	372	5.82	42210.46
Pantothenate	Wigglesworthia	2.7.1.33	H6Q4M3	272	9.8 7.02	32222.29
Pantothenate	Sodalis Each anishin	2.7.1.33	Q2NWS4	316	7.92	35856.92
Pantot henat e	Escherichia	2.7.1.33	P0A6I3	316	6.32	36359.78
N				750	5 00	10576 15
Pantot henat e Pantot henat e	Bacillus Bacillus	2.7.1.33 2.7.1.33	P37564 P54556	258 319	5.89 5.92	28576.15 36639.75


Path wa y	Organism	En zyme EC	Sequence ID	Length	Isoelectri c Point	Mole cular weight
Pantot henat e	Arabidopsis	2.7.1.33	Q8L5Y9	901	5.6	99639.65
Pantot henat e	Sorghum	2.7.1.33	C5X682	902	5.67	99469.79
Pantot henat e	Saccharom yces	2.7.1.33	Q04430	367	5.93	40903.17
Pantot henate	Human	2.7.1.33	Q8TE04	598	7.51	64339.34
Pantot henate	Human	2.7.1.33	Q9NVE7	773	5.87	85990.95
Pantothenate	Human	2.7.1.33	Q9H999	370	6.13	41094.07
Pantot henate	Human	2.7.1.33	Q9BZ23	570	9.05	57488.55
antot henate	Glossina	6.3.2.5	TMP004399	306	6.5	35272.39
Pantothenate	Drosophilla	6.3.2.5	O7KN99	313	5.85	35751.85
Pantot henate	Tribolium	6.3.2.5	D6X537	311	6.39	35308.63
Pantot henate	Anopheles	6.3.2.5	Q7QAC3	316	6.24	36103.29
Pantot henate	Wigglesworthia	6.3.2.5/4.1.1.36	H6Q4R3	407	9.65	45181.7
Pantot henate	Sodalis	6.3.2.5/4.1.1.36	Q2NQU1	404	6	43157.56
Pantot henate	Escherichia	4.1.1.36; 6.3.2.5	POABQ0	406	7.04	43306.95
Pantot henate	Bacillus	4.1.1.36; 6.3.2.5	O35033	406	6.04	43977.75
Pantot henate	Arabidopsis	6.3.2.5	Q8GXR5	317	0.04 7.54	35368.8
Pantot henate	Arabidopsis	6.3.2.5	Q9LZM3	309	6.34	34823.91
Pantothenate	•	6.3.2.5	C5XVP2	332	8.66	36820.29
	Sorghum					
Pantothenate	Sorghum	6.3.2.5	C5YHW1	321	7.05	35629.07
Pantothenate	Saccharom yces	6.3.2.5	P40506	365	8.26	41866.95
Pantothenate	Human	6.3.2.5	Q9HAB8	311	6.26	34005.13
Pantothenate	Glossina	4.1.1.36	TMP011430	189	6.2	21115.92
Pantot henate	Glossina	4.1.1.36	TMPEC4.1.1.36-651746	55	5.16	6675.68
Pantot henate	Drosophilla	4.1.1.36	Q8MKK3	191	6.21	21542.24
Pantot henat e	Tribolium	4.1.1.36	D2CFX2	188	6.04	20755.32
Pantot henate	Anopheles	4.1.1.36	Q7PZN2	191	5.77	21124.66
Pantot henat e	Wigglesworthia	4.1.1.36	H6Q4R3	407	9.65	45181.7
Pantot henat e	Sodalis	4.1.1.36	Q2NQU1	404	6	43157.56
Pantot henate	Escherichia	4.1.1.36	P0ABQ0	406	7.04	43306.95
Pantot henate	Bacillus	4.1.1.36	O35033	406	6.04	43977.75
Pantothenate	Arabidopsis	4.1.1.36	P94063	201	6.82	22414.94
Pantot henate	Arabidopsis	4.1.1.36	Q9SWE5	209	6.21	23354.87
Pantot henate	Sorghum	4.1.1.36	C5XLV1	200	6.51	21777.04
Pantot henate	Sorghum	4.1.1.36	C5Z606	193	5.46	21705.29
Pantot henate	Sorghum	4.1.1.36	C5Z607	220	5.94	24224.71
antothenate		4.1.1.36	P36076	571	4.91	
	Saccharom yces			204	4.91 5.72	65238.26
Pantothenate	Human	4.1.1.36	Q96CD2			22395.18
Pantothenate	Glossina	2.7.7.3/2.7.1.24	TMP002599	553	7.62	62847.5
Pantothenate	Glossina	2.7.7.3/2.7.1.24	TMP009026	240	9.13	27711.45
Pantothenate	Drosophilla	2.7.1.24; 2.7.7; 2.7.7.3	Q9VRP4	518	6.72	57641.15
Pantot henat e	Tribolium	2.7.7.3/2.7.1.24	664060/XP_975172.1	513	6.17	57291.94
Pantothenate	Anopheles	^2.7.7.3/2.7.1.24	Q7Q774	521	6.18	58338.73
Pantothenate	Wigglesworthia	2.7.7.3	H6Q528	161	9.76	18853.42
Pantot henate	Sodalis	2.7.7.3	Q2NQU5	160	7.02	17661.6
Pantothenate	Wolbachia	2.7.7.3	Q73HM7	168	5.46	18828.66
Pantothenate	Escherichia	2.7.7.3	P0A6I6	159	6.49	17836.63
Pantothenate	Bacillus	2.7.7.3	O34797	161	5.75	18178.8
Pantot henate	Arabidopsis	2.7.7.3	Q9ZPV8	176	6.19	19167.95
Pantot henat e	Sorghum	2.7.7.3	C5XB13	188	5.13	20182.95
Pantot henat e	Sorghum	2.7.7.3	C5XTW9	225	5.47	23986.26
Pantot henate	Saccharomyces	2.7.7.3	P53332	305	5.89	34306.52
Pantothenate	Human	2.7.7.3; 2.7.1.24	Q13057	564	6.51	62328.84
Pantot henate	Glossina	2.7.7.3/2.7.1.24	TMP002599	553	7.62	62847.5
Pantothenate	Glossina	2.7.7.3/2.7.1.24	TMP009026	240	9.13	27711.45
Pantot henate	Drosophilla	2.7.1.24; 2.7.7; 2.7.7.3	O9VRP4	518	6.72	57641.15
antothenate	Tribolium	2.7.7.3/2.7.1.24	664060/XP_975172.1	513	6.17	57291.94
Pantothenate		2.7.7.3/2.7.1.24	_	521	6.18	
	Anopheles Wigglesworthig		Q7Q774			58338.73
Pantothenate	Wigglesworthia	2.7.1.24	H6Q5C1	195	9.97	23135.52
Pantot henate	Sodalis	2.7.1.24	Q2NVT9	208	9.41	22876.07
Pantot henate	Wolbachia	2.7.1.24	Q73IH9	195	5.28	22297.74
Pantot henate	Escherichia	2.7.1.24	P0A6I9	206	5.77	22621.71
Pantot henat e	Bacillus	2.7.1.24	O34932	197	5.05	22013.44
Pantothenate	Arabidopsis	2.7.1.24	Q9ZQH0	232	9.54	25747.09
Pantot henat e	Sorghum	2.7.1.24	C5XKI1	232	9.51	26170.38
Pantot henat e	Sorghum	2.7.1.24	C5YLK2	230	9.17	25634.9
Pantot henate	Saccharom yces	2.7.1.24	Q03941	241	8.76	27339.76
Pantothenate	Human	2.7.1.24	Q13057	564	6.51	62328.84
Folate	Glossina	3.5.4.16	TMP011539	384	6.49	42590.79
Folate	Dro sophilla	3.5.4.16	P48596	324	6.16	35541.46
	1			324 256	0.10 7.11	28824.27
Folate	Tribolium Anopholos	3.5.4.16	D2CFW6			
Folate	Anopheles	3.5.4.16	A7UU97	285	6.86	31486.81
				(1/11	0.05	15501 77
Folate Folate	Wigglesworthia Sodalis	3.5.4.16 3.5.4.16	H6Q500 Q2NUE3	221 221	9.95 7.06	25581.22 24829.71


Pathway	Organism	Enzyme EC	Se quence ID	Length	Isoelectri c Point	Mole cular weight
Folate	Escherichia	3.5.4.16	P0A6T5	222	6.93	24699.43
Folate	Bacillus	3.5.4.16	P19465	190	6.31	21219.41
Folate	A rabidop sis	3.5.4.16	F4JED5	466	6.96	51483.25
Folate	Saccharomyces	3.5.4.16	P51601	243	6.72	27769.05
Folate	Human	3.5.4.16	P30793	250	8.73	27903.07
Folate	Glossina	3.1.3.1	TMP006886	539	6.44	59616.45
Folate	Glossina	3.1.3.1	TMP002067	547	6.26	60537.32
Folate	Glossina	3.1.3.1	TMP012132	526	5.08	58599.75
Folate	Glossina	3.1.3.1	TMP009009	541	5.74	60217.31
Folate	Glossina	3.1.3.1	TMP006977	589	6.19	65269.87
Folate	Glossina	3.1.3.1	TMP009468	611	6.58	67402.05
Folate	Drosophilla	3.1.3.1	Q9VRM8	524	5.17	58140.67
Folate	Drosophilla	3.1.3.1	09VDG4	522	5.04	57295.03
Folate	Drosophilla	3.1.3.1	Q24238	596	5.71	60657.64
Folate	Drosophilla	3.1.3.1	Q9VIW9	596	5.25	65470.27
Folate	Drosophilla	3.1.3.1	Q7K3X8	515	5.33	56545.88
Folate	Drosophilla	3.1.3.1	Q9W273	533	4.93	57407.37
Folate	Drosophilla	3.1.3.1	Q9W274	538	5.76	58227.48
Folate	Drosophilla	3.1.3.1	09W275	543	4.97	58258.28
Folate	Drosophilla	3.1.3.1	09VRM9	517	5.53	56641.84
Folate	Drosophilla	3.1.3.1	Q9VH28	450	5.15	50530.71
Folate	Drosophilla	3.1.3.1	Q9VP35	523	6.21	57646.58
Folate	Drosophilla	3.1.3.1	Q9VXS8	483	6.12	52593.5
Folate	Drosophilla	3.1.3.1	Q9VHD0	483 546	5.95	52595.5 59504.61
Folate	Tribolium	3.1.3.1	657368/XP_968925.2	520	6.29	57575.83
Folate	Tribolium Trib a linna	3.1.3.1	660001/XP_971358.2	508	5.41	55499.41
Folate	Tribolium Trib a linna	3.1.3.1	D6W Y51 D6W Y52	529	5.43	58438.26
Folate	Tribolium Trib a linna	3.1.3.1		503	5.32	55131.34
Folate	Tribolium	3.1.3.1	661869/XP_973094.1	574	6.68	62608.74
Folate	Tribolium	3.1.3.1	D2A3C2	545	5.24	60610.26
Folate	Anopheles	3.1.3.1	Q7PY02	548	5.82	60708.6
Folate	Anopheles	3.1.3.1	Q7QJ58	571	6.06	62203.09
Folate	Anopheles	3.1.3.1	Q7Q8R8	574	6.33	63339.72
Folate	Anopheles	3.1.3.1	Q7QHQ7	531	5.47	59191.22
Folate	Anopheles	3.1.3.1	A7US49	571	5.26	62845.26
Folate	Escherichia	3.1.3.1	P00634	471	5.54	47199.79
Folate	Bacillus	3.1.3.1	P42251	583	8.63	59704.72
Folate	Bacillus	3.1.3.1	P19405	462	5.62	47235.85
Folate	Bacillus	3.1.3.1	P19406	461	9.39	45939
Folate	Arabidopsis	3.1.3.1	F4K1J1	453	8.99	51131.87
Folate	Sorghum	3.1.3.1	C5XWF9	449	8.89	50787.35
Folate	Saccharom yces	3.1.3.1; 3.1.7.6	P11491	566	5.31	63004.11
Folate	Human	3.1.3.1	P09923	528	5.39	52444.81
Folate	Human	3.1.3.1	P05186	524	6.19	53390.01
Folate	Human	3.1.3.1	P05187	535	5.73	52745.31
Folate	Human	3.1.3.1	P10696	532	5.78	52573.1
Folate	Wigglesworthia	4.1.2.25	H6Q5S8	120	9.33	13843.57
Folate	Sodalis	4.1.2.25	Q2NWE4	119	5.39	13502.74
Folate	Escherichia	4.1.2.25	P0AC16	122	4.68	13619.53
Folate	Bacillus	4.1.2.25	P28823	120	5.37	13516.5
Folate	Arabidopsis	4.1.2.25	Q9SF23	146	6.31	16280.65
Folate	Arabidopsis	4.1.2.25	F4IYU3	156	6.31	17630.56
Folate	Arabidopsis	4.1.2.25	09FM54	131	5.85	14685.19
Folate	Sorghum	4.1.2.25	C5YNA8	133	5.82	14378.54
Folate	Saccharomyces	4.1.2.25; 2.7.6.3; 2.5.1.15	P53848	824	6.01	93119.94
Folate	Glossina	2.7.6.3	TMPEC2.7.6.3-641167	360	4.94	40108.18
Folate	Glossina	2.7.6.3	TMPEC2.7.6.3-642052	92	8.64	10547.27
Folate	Wigglesworthia	2.7.6.3	H6Q551	161	9.75	18797.04
Folate	Sodalis	2.7.6.3	Q2NVR1	168	5.48	19020.66
			-			
Folate	Wolbachia	2.7.6.3/2.5.1.15	Q73GQ3	198	5.54	22240.33
Folate	Escherichia	2.7.6.3	P26281	159	5.34	17947.6
Folate	Bacillus	2.7.6.3	P29252	167	4.73	19058.46
Folate	Arabidopsis	2.5.1.15; 2.7.6.3	Q1ENB6	484	5.79	54110.34
Folate	Arabidopsis	2.5.1.15; 2.7.6.3	F4JPH1	561	6.42	61426.53
Folate	Sorghum	2.7.6.3/2.5.1.15	C5X2E7	505	9.04	55233.78
Folate	Sorghum	2.7.6.3/2.5.1.15	C5XIR9	615	8.87	66086.63
Folate	Saccharom yces	4.1.2.25; 2.7.6.3; 2.5.1.15	P53848	824	6.01	93119.94
Folate	Wigglesworthia	2.6.1.85	H6Q5R8	459	9.43	52696.5
Folate	Sodalis	2.6.1.85	Q2NTC1	456	5.58	49912.04
Folate	Sodalis	2.6.1.85	Q2NQJ8	193	6.75	21335.53
Folate	Escherichia	2.6.1.85	P05041	453	5.08	50969.55
Folate	Escherichia	2.6.1.85	P00903	187	6.11	20771.86
				470	5.37	

Pathway	Organism	Enzyme EC	Se quence ID	Length	Isoelectri c Point	Mole cular weight
Folate	Bacillus	2.6.1.85; 4.1.3.27	P28819	194	4.96	21684.9
Folate	Arabidopsis	2.6.1.85	Q8LPN3	919	6.18	102919.7
Folate	Sorghum	2.6.1.85	C5Z8W2	858	6.54	95511.84
Folate	Saccharom yces	2.6.1.85	P37254	787	5.52	88544.14
Folate	Wigglesworthia	4.1.3.38	H6Q5Q3	267	10.09	31323.26
Folate	Sodalis	4.1.3.38	Q2NU37	265	7.1	29179.58
Folate	Escherichia	4.1.3.38	P28305	269	6.08	29715.06
Folate	Bacillus	4.1.3.38	P28821	293	6.14	33515.46
Folate	Wigglesworthia	2.5.1.15	H6Q587	280	8.83	31617.16
Folate	Sodalis	2.5.1.15	Q2NW28	281	5.59	29929.56
Folate Folate	Wolbachia Escherichia	2.5.1.15/2.7.6.3 2.5.1.15	Q73GQ3 P0AC13	198 282	5.54 5.67	22240.33 30615.11
Folate	Bacillus	2.5.1.15	P28822	282	5.46	31001.64
Folate	Arabidopsis	2.5.1.15; 2.7.6.3	Q1ENB6	484	5.79	54110.34
Folate	Arabidopsis	2.5.1.15; 2.7.6.3	F4JPH1	561	6.42	61426.53
Folate	Sorghum	2.5.1.15/2.7.6.3	C5X2E7	505	9.04	55233.78
Folate	Sorghum	2.5.1.15/2.7.6.3	C5XIR9	615	8.87	66086.63
Folate	Saccharomyces	4.1.2.25; 2.7.6.3; 2.5.1.15	P53848	824	6.01	93119.94
Folate	Glossina	6.3.2.17	TMP007575	524	7.57	59985.72
Folate	Glossina	6.3.2.17	TMP007308	310	6.85	35371.33
Folate	Glossina	6.3.2.17	TMP002232	333	7.56	37937.5
Folate	Glossina	6.3.2.17	TMPEC6.3.2.17-641167	303	5.58	33397.6
Folate	Drosophilla	6.3.2.17	Q9VYL1	572	7.65	64317.16
Folate	Dro sophilla	6.3.2.17	Q9VQW0	758	9.43	84355.99
Folate	Tribolium	6.3.2.17	D6W9Q8	464	8.3	52504.32
Folate	Anopheles	6.3.2.17	Q5T SB4	530	8.11	60369.45
Folate	Wigglesworthia	6.3.2.12/6.3.2.17	H6Q506	418	9.74	47621.09
Folate	Sodalis Wells a chief	6.3.2.12/6.3.2.17	Q2NSI4	421	5.85	45252.82
Folate	Wolbachia Each ani al in	6.3.2.17	Q73GA7 P08192	429 422	6.33	47370.65
Folate Folate	Escherichia Bacillus	6.3.2.17; 6.3.2.12 6.3.2.17	Q05865	422 430	5.5 5.84	45405.7 48164.89
Folate	Arabidopsis	6.3.2.17	F4J2K2	430 625	3.84 8.69	68920.64
Folate	Arabidopsis	6.3.2.17	Q8W035	492	7.55	55167.32
Folate	Arabidopsis	6.3.2.17	F4K2A1	571	6.08	63345.39
Folate	Arabidopsis	6.3.2.17	F4JYE9	530	6.72	56904.06
Folate	Sorghum	6.3.2.17	C5WWE5	588	7.05	64578.87
Folate	Saccharom yces	6.3.2.17	P36001	430	6.75	48143.42
Folate	Saccharomyces	6.3.2.17	Q12676	427	6.36	47851.15
Folate	Saccharomyces	6.3.2.17	Q08645	548	8.92	62151.44
Folate	Human	6.3.2.17	Q05932	587	6.85	60166.97
Folate	Glossina	1.5.1.3	TMP010615	343	7.81	38347.4
Folate	Glossina	1.5.1.3	TMPEC1.5.1.3-639395	187	8.97	21469.04
Folate	Glossina	1.5.1.3	TMPEC1.5.1.3-641167	159	9.15	18265.45
Folate	Drosophilla	1.5.1.3	P17719	182	6.18	20775.01
Folate	Anopheles	1.5.1.3	Q7Q0L5	187	6.22	21376.31
Folate	Wigglesworthia	15.1.3	H6Q4A2 Q2NVX9	166	9.76	19821.37
Folate Folate	Sodalis Wolbachia	1.5.1.3 1.5.1.3	Q2NVX9 Q73GQ2	161 159	4.99 8.75	18019.44 18237.39
Folate	Escherichia	1.5.1.3	P0AB04	159	4.84	17999.38
Folate	Bacillus	1.5.1.3	P11045	168	5.35	19175.68
Folate	Arabidopsis	1.5.1.3; 2.1.1.45	Q05762	519	5.55	58143.4
Folate	Arabidopsis	1.5.1.3; 2.1.1.45	Q05763	565	8.13	63208.68
Folate	Sorghum	1.5.1.3/2.5.1.15	C5Y2E9	521	6.05	58819.23
Folate	Saccharom vces	1.5.1.3	P07807	211	7.67	24261
Folate	Human	1.5.1.3	P00374	187	7.01	21321.54
Folate	Human	1.5.1.3	Q86XF0	187	7.75	21620.05
Biotin	Wigglesworthia	BioC	H6Q5U6	262	9.35	30511.07
Biotin	Sodalis	BioC	Q2NUJ5	259	9.79	28764.89
Biotin	Escherichia	BioC	P12999	251	7.93	28276.2
Biotin	Wigglesworthia	FabB	H6Q5Z4	404	8.99	43437
Biotin	Sodalis	FabB	Q2NSH7	403	5.42	42476.25
Biotin	Escherichia	FabB	P0A953	406	5.34	42613.32
Biotin	Glossina	2.3.1.41	TMP003897	423	6.54	45135.38
Biotin	Glossina	2.3.1.41	TMP007107	449	8.65	48384.53
Biotin	Drosophilla	2.3.1.41	Q9VNF5	438	8.04	46378.86
Biotin	Tribolium	2.3.1.41	D6X1D1	421	7.57	43887.2
Biotin	Anopheles	2.3.1.41	Q7QCU6	459	7.61	48966.85
Biotin	Sodalis	2.3.1.179	Q2NU38	413	5.82	43032.69
Biotin	Wolbachia	2.3.1.179	Q73FX9	423	6.28	45200.41
Biotin	Escherichia Bacillus	2.3.1.179	P0AAI5	413	5.71	42914.57
Biotin	Bacillus Annhiden eis	2.3.1.179	O34340	413	4.95	44004.73
Biotin	Arabidopsis	2.3.1.41	Q9C9P4	541	6.09	46759.48
Biotin	Arabidopsis	2.3.1.41	Q8L3X9	461	6.08	46134.41

Path way	Organism	Enzyme EC	Se quence ID	Length	Isoelectri c Point	Mole cula r weight
Biotin	Sorghum	2.3.1.41	C5XE14	496	7.84	53031.88
Biotin	Sorghum	2.3.1.41	C5X456	471	8.55	49204.93
Biotin	Sorghum	2.3.1.41	C5XXH6	464	6.65	48360.82
Biotin	Sorghum	2.3.1.41	C5Z5Z9	461	7.07	48710.56
Biotin	Saccharomyces	2.3.1.41	P39525	442	8.44	47555.21
Biotin	Human	2.3.1.41	Q9NWU1	459	6.53	45703.12
Biotin	Wigglesworthia	1.1.1.100	H6Q5Q1	244	9.71	26717.27
Biotin	Sodalis	1.1.1.100	Q2NU40	244	6.18	25618.44
				244 244		
Biotin	Wolbachia	1.1.1.100	Q73HB7		8.22	26353.63
Biotin	Escherichia	1.1.1.100	P0AEK2	244	6.76	25560.29
Biotin	Bacillus	1.1.1.100	P51831	246	7.76	26282.17
Biotin	Bacillus	1.1.1.100	O31767	242	5.36	25541.09
Biotin	Bacillus	1.1.1.100	O34308	255	6.91	27974.13
Biotin	Arabidopsis	1.1.1.100	P33207	319	8.38	27138.4
Biotin	Arabidopsis	1.1.1.100	Q9SQR4	270	6.13	28146.14
Biotin	A rabidop sis	1.1.1.100	Q9SQR2	272	6.84	28434.64
Biotin	Arabidopsis	1.1.1.100	Q9SVQ9	263	6.33	27656.63
Biotin	Arabidopsis	1.1.1.100	F4JWJ4	277	9.16	29206.57
Biotin	Sorghum	1.1.1.100	C5WZI4	256	7.77	26282.91
Biotin	Sorghum	1.1.1.100	C5WZI4	261	5.69	27029.72
			C5WZI7			
Biotin	Sorghum	1.1.1.100		261	6.76	26957.68
Biotin	Sorghum	1.1.1.100	C5WWL1	275	5.61	27788.32
Biotin	Sorghum	1.1.1.100	C5XAC7	275	5.49	27469.1
Biotin	Sorghum	1.1.1.100	C5X9U6	274	5.96	28185.02
Biotin	Sorghum	1.1.1.100	C5XSJ4	316	9.37	32714.93
Biotin	Sorghum	1.1.1.100	C5XUE9	294	6.06	29699.53
Biotin	Sorghum	1.1.1.100	C5YE75	316	9.26	32515.5
Biotin	Glossina	4.2.1.59	TMPEC4.2.1.59-650627	143	8.72	15747.57
Biotin	Wigglesworthia	4.2.1.59	H6Q4T3	155	9.46	17534.44
Biotin	Sodalis	4.2.1.59	Q2NRL8	151	7.81	17039.93
Biotin	Wolbachia	4.2.1.59	P61455	143	8.36	15802.6
Biotin	Escherichia	4.2.1.59	P0A6Q6	151	6.84	17032.95
Biotin	Bacillus	4.2.1.59	P94584	141	5.95	15740.23
Biotin	Arabidopsis	4.2.1.59	Q9SIE3	220	8.61	24242.1
Biotin	Arabidopsis	4.2.1.59	Q9LX13	219	9.33	24123.27
Biotin	Sorghum	4.2.1.59	Č5YIY2	224	9.27	24323.48
Biotin	Sorghum	4.2.1.59	C5YYP0	216	9.82	23780.04
Biotin	Wigglesworthia	1.3.1.9	H6Q4V4	262	9.49	29368.91
Biotin	Sodalis	1.3.1.9	Q2NSF7	262	5.36	27906.76
Biotin	Wolbachia	1.3.1.9	Q73IR6	261	5.7	28482.6
Biotin	Escherichia	1.3.1.9	P0AEK4	262	5.58	27732.75
Biotin	Bacillus	1.3.1.9	P54616	258	5.67	27873.74
Biotin	A rabidop sis	1.3.1.9	Q9SLA8	390	5.85	33361.83
Biotin	Wigglesworthia	3.1.1.85	H6Q4F0	259	10	29735.4
Biotin	Sodalis	3.1.1.85	Q2NQH6	257	6.75	27985.2
Biotin	Escherichia	3.1.1.85	P13001	256	6.5	28505.01
Biotin	Wigglesworthia	2.3.1.47	H6Q5U7	404	9.91	46304.13
Biotin	Sodalis	2.3.1.47	Q2NUJ6	388	7.82	41762.51
Biotin	Escherichia	2.3.1.47	P12998	384	6.63	41463.07
	Bacillus	2.3.1.47	P53556	389	6.27	
Biotin						42581.46
Biotin	A rabidopsis	2.3.1.47	Q2QKD2	476	8.27	52171.06
Biotin	Sorghum	2.3.1.47	C5WSC4	456	6.25	49859.11
Biotin	Wigglesworthia	2.6.1.62	H6Q5U9	432	9.6	49033.87
Biotin	Sodalis	2.6.1.62	Q2NUJ8	429	6.59	46891.04
Biotin	Escherichia	2.6.1.62	P12995	429	5.53	47335.59
Biotin	Bacillus	2.6.1	P53555	448	5.43	50111.55
Biotin	Arabidopsis	6.3.3.3; 2.6.1.62	B0F481	833	5.77	89031.87
Biotin	Sorghum	2.6.1.62	C5WTT1	825	6.06	90402.01
Biotin		2.6.1.62	P50277	480	5.98	53708.69
	Saccharom yces					
Biotin	Wigglesworthia	6.3.3.3	H6Q5U5	226	9.81	25710.48
Biotin	Sodalis	6.3.3.3	Q2NUJ4	228	5.92	24131.76
Biotin	Sodalis	6.3.3.3	Q2NSY4	361	7.71	39000.92
Biotin	Escherichia	6.3.3.3	P13000	225	5.56	24008.4
Biotin	Escherichia	6.3.3.3	P0A6E9	231	6.11	24980.98
Biotin	Bacillus	6.3.3.3	P53558	231	6.19	25160.18
Biotin	Saccharom yces	6.3.3.3	P53630	237	5.01	26256.86
Biotin	Wigglesworthia	2.8.1.6	H6Q5U8	333	9.67	37871.2
	00					
Biotin	Sodalis	2.8.1.6	Q2NUJ7	345	6.19	38358.74
Biotin	Escherichia	2.8.1.6	P12996	346	5.32	38648.09
Biotin	Bacillus	2.8.1.6	P53557	335	5.63	36927.15
Biotin	A rabidop sis	2.8.1.6	P54967	378	6.52	41681.52
			D20451	275	0.5.1	
Biotin	Saccharom yces	2.8.1.6	P32451	375	8.54	40053.94

Path way	Organism	Enzyme EC	Sequence ID	Length	Isoelectri c Point	Mole cula r weight
Biotin	Glossina	6.3.4.15	TMP012924	173	4.93	19679.71
Biotin	Drosophilla	6.3.4.15	Q9VNC3	1041	6.62	115924.3
Biotin	Tribolium	6.3.4.15	D2A4T2	893	8.12	101244.8
Biotin	Wigglesworthia	6.3.4.15	H6Q4M4	263	9.41	30464.99
Biotin	Sodalis	6.3.4.15	Q2NW S5	319	6.46	34762.02
Biotin	Wolbachia	6.3.4.15	Q73GI4	347	8.44	39245.97
Biotin	Escherichia	6.3.4.15	P06709	321	7.76	35312
Biotin	Bacillus	6.3.4.15	P0CI75	325	6.68	36182.48
Biotin	Saccharom yces	6.3.4; 6.3.4.9; 6.3.4.10; 6.3.4.11; 6.3.4.15	P48445	690	6.45	76362.96
Biotin	Human	6.3.4; 6.3.4.9; 6.3.4.10; 6.3.4.11; 6.3.4.15	P50747	726	5.4	80759.98

0.54

Figure S1. Phylogenetic trees showing clustering of *Glossina* genes with close orthologs.

Pannel A represent gene GMOY009677 (Phy004DIM6) and panel B gene GMOY000849 (Phy004DGQX). Both were obtained from PhylomeDB (http://phylomedb.org)