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ABSTRACT 

A sampling design that provides estimates of population mean and abundance with small 

variance is important to researchers. Estimates that are accurate even with minimal sampling 

efforts allow researchers to easily and confidently investigate rare populations. In the 

determination of efficient sampling design for rare and clustered population, mean square errors 

have been applied in many previous research works. However, this method only captures the 

variability of the estimator and fails to capture their reliability. This study obtained the interval 

estimates based on the design based estimators, the HT and HH estimators. The study examined 

the behavior of the Horvitz Thompson (HT) and Hansen Hurwitz (HH) estimators under the 

ordinary adaptive cluster sampling design (ACS) and adaptive cluster sampling with data driven 

stopping rule (ACS’) design using artificial population that is designed to have all the 

characteristics of a rare and clustered population and another population that does not have those 

characteristics. The efficiency of HT and HH estimators were used to determine the most 

efficient design in estimation of population mean in rare and clustered population. The coverage 

probability confidence intervals of population mean based on HT estimators and the HH 

estimators were examined.  Results of the simulated data show that the adaptive cluster sampling 

with stopping rule is the more efficient sampling design for estimation of rare and clustered 

population than ordinary adaptive cluster sampling. 
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CHAPTER ONE 

INTRODUCTION 

1.1Background information 

In research, efficiently sampling rare species is a challenging task. Conventional 

sampling designs may require substantial effort in order to achieve even moderate precision 

(Evans and Viengkham, 2001). Accurate estimates of abundance are often most needed for rare 

species. Adaptive cluster sampling is attractive because it can perform more efficiently than 

conventional designs for geographically rare, clustered populations (Gattone and Batista, 

2010;Esha and Jesse, 2012). Adaptive cluster sampling is a sampling design that can be used to 

estimate the population parameters of interest for rare, clustered and endangered populations 

(Thompson, 1990).The sampling design is termed as adaptive if the samplingprocedure depends 

on the selection rather than the assumption of the population. The basic idea behind this 

sampling plan is to decide on an initial sample from a defined population by some probability 

sampling method such as simple random sampling and to keep on sampling within the vicinity of 

the units that satisfy the conditions that are defined. The requisites of adaptive cluster sampling 

design comprise of an initial selection of units, a condition that determines when additional units 

should be added to the sample from the neighborhood of that unit and a clear definition of the 

neighborhood of every unit. 

There is an increase in sampling efficiency under Adaptive cluster sampling design 

(ACS) resulting in more precise estimates of the population mean. Adaptive cluster sampling 

leads to an increase in the number of observations of the target species that may result in more 

reliable estimates of other population parameters such as species richness in information, 

population composition and relative abundance (Smith et al., 2003). These advantages are more 

evident in rare and clustered populations (Noon et al., 2006). 

 The major disadvantage of adaptive cluster sampling in estimation of population 

parameters is the uncertainty of the final sample size. Much attention has been focused to limit 

the size of the final sample in ACS (Brown, 2003).However, prior knowledge of the population 

is required to limit the final sample size (Turki and Barkowski, 2005). 

A restrictive adaptive cluster sampling was proposed to control sample size prior to 

sampling (Brown and Marley, 1998).  ACS with stopping rule that determine when the sampling 
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process is ended once an optimal sample size is obtained was proposed.Such a sampling criterion 

based on the data makes adaptive sampling more realistic by ensuring that neither too many nor 

too few adaptive units are sampled since the criterion for adaptive sampling changes at every 

stage of adaptive sampling (Su and Quinn,2003). Another ACS with stopping rule was proposed 

where the prior knowledge of the population is not required (Gattone and Battista, 2010). 

If all units in the realized adaptive sample received equal weight, classical equal 

probability abundance estimators would be positively biased. Similarly under the classical based 

inferential approach, the unbiased estimators do not utilize all the information provided by the 

final sample of the design. The modified versions of the Horvitz-Thompson and Hansen-Hurwitz 

estimators could account for the unequal probabilities of selection imposed by the adaptive 

design (Thompson, 1990). These estimators are design-unbiased (they are unbiased without 

relying on any assumptions about the population). Although these estimators are unbiased they 

are not the best since they are not functions of sufficient statistics. 

Better estimators, can be derived through the Rao-blackwell idea of taking conditional 

expectation of the estimator given the minimal sufficient statistics.Thompson did not present 

analytical expression for the Rao-blackwell estimator but only used the averages of the 

estimators over all the initial samples giving rise tothe obtained final sample. Various researchers 

have come up with different analytical expressions of the Rao-blackwell estimators. Another 

alternative mathematical formula for the two Rao-blackwell estimators derived by taking 

expected value of the usual estimators given sufficient statistics was provided by Dryver and 

Thompson (2005). 

Efficiency of ACS is dependent upon the spatial distribution patterns of a given 

population being studied (Weigandet al., 2007).According to him, efficiency of ACS of species 

that exhibit clustering in multiple spatial scales is dependent on the distribution pattern of the 

population. 

1.2 Statement of the problem 

Establishing an efficient sampling scheme for a rare and clustered population is a 

challenging task. Adaptive cluster sampling design has been shown to be an important design in 

sampling theory and estimation of parameters of rare, endangered and clustered population. Most 

researchers have determined the efficiency of adaptive cluster sampling designs and classical 
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sampling designs by use of mean square errors of the estimators of population parameters 

obtained from either of the sampling designs. The mean square error just measure the variability 

and hence no indication of how likely it is that the value is close to the true population 

parameter. For a complete estimation of the population attribute of interest, confidence intervals 

are always recommended as they areable to present some indication of reliability of the 

estimators associated with confidence level. This study computed the estimates of population 

mean and constructed the confidence intervals using the samples obtained through ordinary 

adaptive cluster sampling design, and adaptive cluster sampling with data driven stopping rule 

design. The study also obtained the coverage probability of the confidence intervals on HT 

estimator and the HH estimators. The study compared the most efficient estimate of population 

mean and also the best sampling design for rare and clustered population.  

1.3 Objectives 

1.3.1 General objective 

The purpose of this study was to determine the efficiency of adaptive cluster sampling designs 

and simple random sampling design in estimation of population mean from rare and clustered 

population.  

1.3.2 Specific objectives 

1.To estimate the population mean by simple random sample mean, modified Hansen 

     Hurwitz estimator and modified Horvitz-Thompson estimator  

2. To construct the confidence interval of population mean based on; simple random 

samplemean, modified Hansen-Hurwitz estimator and modified Horvitz-Thompson 

estimator. 

3. To determine the most efficient estimate of population mean for different populations 

byMonte Carlo simulation  

1.4 Assumptions of the study 

1. The criterion of additional sampling was tocontinue sampling in the neighborhood 

 ofevery unit in the initial sample if there is at least one unit in the initial unit.  

2. Initial sample was selected using simple random sampling without replacement. 

3. The neighborhood of any units was defined as the unit itself with adjacent units to 

thenorth, east, west and south. 
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1.5 Justification 

There has been considerable investment in the designing of a sampling scheme that is 

effective for estimating population parameters from rare and clustered populations.Adaptive 

cluster sampling designs have been found to be more efficient than classical sampling designs in 

the estimation of parameters of rare and clustered populations. The adaptive design increases the 

efficiency thus leading to precise estimates of population parameters and high number of species 

of interest. The biggest drawbackof this design is the uncertainty and inability to control the final 

sample size. Different approaches that require the knowledge of prior information have been 

taken into consideration to limit the final sample size. The prior information is not always 

available. Another form of adaptive design the ACS’, was proposed to limit the final sample.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Sampling 

 A sample is a subset of the populationbeing studied. It represents the larger population 

and is used to draw inferences about that population. Sampling is a research technique used as a 

way to gather information about a population without having to measure the entire population. 

There are several different ways of choosing a sample from a population, ranging from simple to 

complex.  

2.2 Simple random sampling 

Simple random sampling is the basis of all other sampling designs. In simple random 

sampling, the estimator of population mean (µ) given a random sample of n primary units from N 

total units is the average of the y-values associated with each unit i included in the sample. In 

this case the y-values will represent the number of individuals within each sampling unit. Under 

the simple random sampling each unit has equal chance of being included, the inclusion 

probability ߨ௜ is the same for all units and is equivalent to the fraction of the total sample space 

being sampled. The SRS estimate of the population mean can be expressed as 

= ௦௥௦ߤ̂  ଵ
௡
∑ ௜௡ݕ
௜ୀଵ          (1) 

The sample variance of this estimator can be expressed as; 

(௦௥௦ߤ̂)ݎܽݒ = (ேି௡)
௡ே

× ଵ
ேିଵ

∑ ௜ݕ) − ଶே(ߤ̂
௜ୀଵ

  
     (2) 

where, µ is the population mean, or the average number of individuals per unit  

1

1 N

i
i

Y
N




             (3) 

Since inclusion probabilities are not equal for every unit selected in the adaptive cluster sample, 

classical estimators such as µsrsare biased. Two design-unbiased estimators the Horvitz-

Thompson and Hansen-Hurwitz estimators were proposed for estimation of population mean 

(Thompson, 1990). 
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2.3 Adaptive cluster sampling design 

Sampling scheme is said to be adaptive if the sample selection procedure depends on the 

values of the variable of interest observed in the sample rather than the assumption of the 

population (Thompson, 1990). The basic idea behind this sampling design is to take an initial 

sample from a defined population by some probability sampling procedure such as simple 

random sampling and to continue sampling within the neighborhood of the units that satisfy the 

conditions that are defined previously. The basic essentials of adaptive cluster sampling design 

consist of an initial selection of units, a condition that determines when additional units should 

be added to the sample from the neighborhood of the unit selected in the initial sample and a 

clear definition of the neighborhood of every unit.  This design was introduced for estimation of 

population mean of rare and clustered populations (Thompson, 1990). Since the introduction of 

this design many researchers have had a lot of interest in the use of this design in estimation of 

parameters of highly clustered and rare populations (Smith, et. al., 2004,Gattone and Battista, 

2010). It then operates under the rule that if any of these initially selected units satisfies a certain 

condition of interest, C, additional units in the neighborhood of that unit will be added to the 

sample. In area-based sampling, neighborhoods are usually defined based on spatial proximity, 

such as all units sharing an edge with the initially selected unit. In sampling biological 

populations, the condition to include additional units in a sample (C) is usually based on the 

count of individuals of the target population within the initial sample of units. Thus, any initially 

sampled units containing enough individuals to satisfy the condition C will cause additional units 

in their neighborhood to be added to the sample. If any of these additional units also satisfy C, 

further sampling of their neighborhoods occurs as well. This process continues until no further 

neighborhood units satisfy C. Through this process, ACS takes advantage of clustering within a 

population to make units containing interesting information more likely to be included in the 

sample.The main objective of ACS is to increase accuracy of estimators of population mean or 

total of rare and clustered populations (Thompson and Seber, 1996).  

The ways of forming the criterion for selection of additional neighboring units, depends 

on the nature of study (Thompson, 1990). The criterion is either interval or says a set Cin the 

range of the variable of interest. Thus a unit i is said to satisfy the condition for additional 

neighboring units if yi∈C.For each population unit, the neighborhood of a unit i is identified as a 

set of units which includes unit i such that the relationship of the neighborhood is symmetrical, 



18 
 

that is, if unitjis in the neighborhood of unit i then unit ݅ is in the neighborhood of unit ݆.The 

neighborhoods do not depend on thepopulation values. The set of all units that are observed 

under the design as a result ofinitial selection of unit iis termed as a cluster. A unit that does not 

satisfy the inclusion condition is referred to as an edge unit. A cluster whose all its edge unit are 

excluded is referred to as a network. This therefore defines a unit not satisfying the criteria C, a 

network of size one.  

An ACS in which the initial sample is selected by simple random sampling, with or 

without replacement was defined to increase the precision of the estimator (Thompson, 1990). In 

other ACS designsdescribed in the literature the initial sample is selected by unequal probability 

with replacement and applied in determination of efficiency of ACS in estimating density of 

winter waterfowl (Smith et al, 1995).ACS in which initial sample is selected by systematic and 

cluster sampling and where the initial sample is selected by stratified sampling design was 

proposed when the population has a defined pattern (Thompson, 1991a, 1991b). ACS with 

networks selected without replacement where the ACS is modified by ensuring that networks are 

sampled once in the estimation of forest population(Salehi and Seber,1997a).  

After introduction of ACS in 1990, much applications have been  performed in biological 

settings. In addition, some recent studies have found ACS to live up well to its promising 

potential, the majority of studies have had either mixed or fully negative results regarding the 

applicability of ACS to real biological systems. Acharya et al. (2000) sampled rare tree species 

in Nepal and found ACS to work well for some but not for others, concluding that the 

applicability had to do with distribution characteristics of the different species (some were more 

clustered than others). When ACS was used to sample rockfish off Alaska it provided more 

precise estimates, but these gains in precision were offset by increasing costs due to adaptively 

adding sampling units, especially edge units (Hanselman et al, 2003). ACS has performed poorly 

for other researchers. A study of comparing sampling designs with an aggregated winter annual 

plant, led them to conclude that the population’s distribution was simply inappropriate for ACS 

(Morrison et al. 2008). ACS was better at detecting a higher fraction of individuals within the 

population, but found that it uniformly failed to provide more precise estimates of population 

size (Smith et al. 2003, Noon et al. 2006, and Goldberg et al. 2007). 

The specific problems that samplers have had with ACS are in general due to either 

excessive realized sample sizes, a disproportionately high fraction of the sample being edge 
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units, or bias of estimates resulting from the use of devices to curb excessive sample sizes. These 

general problems have been for the most part anticipated or duly noted by theoreticians over the 

years, and a number of articles have been published offering modifications of either the original 

basic design or estimators. Because the final size of the realized adaptive sample is unknown, it 

can be difficult to control the total sampling effort and accurately plan the cost of a survey in 

advance. Thompson (1996) discussed a design that allows researchers to control the number of 

units added to a sample by ordering the values of the completed initial sample and using a certain 

percentile to choose the condition to further add units to the sample. Unfortunately, it is not 

always possible in real-world situations to completely finish the initial sample before adding 

units adaptively. Another downside of the ACS design is that the information from edge units is 

not incorporated into estimators unless they are encountered in the initial sample. Thus the ratio 

of edge units to network units can have a strong effect on the efficiency of ACS.  

While most applications of ACS have been ineffective in some way, there have also been 

multiple examples of success. In an inventory of sparse forest populations, Talvitie et al. (2006) 

found ACS to be “considerably more effective” than SRS. In estimating the abundance of local 

populations of low abundance plants,(Philippi,2005) successfully used ACS, Skibo et al. (2008) 

employed a modified ACS design to efficiently sample red sea urchin populations and Sullivan 

et al. (2008) found ACS to work well for a large proportion of the sea lamprey populations they 

examined. These successes were predicted in multiple simulation studies by (Christman 1997, 

Christman& Pontius, 2000). In these examples, performance has typically been based on the 

precision of estimates provided by ACS relative to those from other, more conventional designs 

given an equal effort. Regardless of the precision of estimates, a frequently acknowledged 

benefit provided by ACS is its tendency to sample a higher fraction of occupied sample units, 

allowing additional information to be collected concurrent to the sample (Lo et al. 1997, Noon et 

al. 2006, Smith et al. 2003). This can be especially useful when studying rare or endangered 

species for which such additional information is frequently lacking. 

Overall there seems to be a gap between the theoretical potential of ACS and its realized 

performance in the field. In part, this is due to a characteristic of the ACS design that can be 

considered both an advantage and disadvantage. While ACS is in general recommended for rare, 

clustered populations, samplers have a considerable degree of flexibility in constructing a 

specific sample, potentially allowing it to be tailored to a wide variety of different situations and 
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distributions. At the same time, it is the existence of so many different options that makes 

determining an optimal strategy so difficult. 

There are multiple alternatives for neighborhood type, the condition C, the size of the 

initial sample, the initial method of selecting the sample, the size of the basic sampling unit, and 

the estimator that utilizes the collected information. There have been several neighborhood 

definitions described for ACS (Christman, 2000) but the most common definition used in grid-

based sampling is the first-order neighborhood, which includes the four immediately adjacent 

quadrats. Setting an appropriate C can be very important in designing an efficient adaptive 

cluster sample. If more restrictive C is used substantially less sampling with very little loss of 

estimation precision would be achieved (Hanselman et al., 2003). The initial sample size (n1) 

must be set high enough to ensure the inclusion of some networks, but if set too high it may lead 

to excessive sizes of the realized adaptive sample. There are also a number of different options 

for selection of the initial sample, such as simple random sampling with or without replacement 

(Thompson, 1990), strip sampling, systematic sampling (Thompson, 1991a), stratified sampling 

(Thompson, 1991b) and simple Latin square sampling (Borkowski, 1999). Both the modified 

Hansen-Hurwitz and Horvitz-Thompson estimators suggested by Thompson (1990) have seen 

use in applied situations, and both have had advantages and disadvantages identified with them 

(Phillipi 2005, Salehi 2003). 

Researchers have also consistently noted that the efficiency of ACS is dependant upon 

the spatial distribution patterns of the particular population being studied, but surprisingly little 

attention has been paid to sample design parameters that are fully under the control of samplers 

and significantly affect the distribution of point populations across grid-based sampling 

universes. In particular, White (2004) showed that for members of the Astragalusgenus, an 

herbaceous member of the plant family Fabaceae, distributions in a grid-based setting can be 

highly influenced by both the placement of the grid and the size of the grid cells. Thus by 

coordinating the size of the basic sampling unit with the scale of clustering within the target 

population researchers can have a great deal of control over the effectiveness of ACS. 

A restrictive adaptive cluster sampling was proposed to control sample size prior to 

sampling and units are selected consecutively for the initial sample size (Brown and Marley, 

1998). Ratio estimators in ACS were proposed by Chao and Dryver (2007) while Chao et al. 

(2008) described improved ratio estimators under ACS. Model-based inference from ACS where 
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knowledge of the population is used to inform both the sampling design and inference was 

described by Rapley and Welsh (2008). The final sample size depending on the choice of the 

criterion for additional neighboring units is important(Talvitieet al.,2006). Inappropriate 

selection of criterion will lead to selection of higher number of edge units and the final sample 

size will be excessively large (Brown, 2003).  

The major disadvantage of adaptive cluster sampling in estimation of population 

parameters is the uncertainty of the final sample size.The biggest challenge to limit the final 

sample size is that Prior knowledge of the population is required (Turki and Barkowski, 2005). 

This prior knowledge is not always available. Much attention has been focused to limit the size 

of the final sample in ACS (Brown, 2003).   

A stopping rule that is fixed in advance defining a stopping level S where the sampling 

process is terminated at the Sth step of the neighboring unit search was developed(Su and Quinn, 

2003). However, the best choice of the stopping rule requires some prior knowledge about the 

population structure. A data driven stopping rule that changes at each step of the `aggregative 

procedure and for each unit in the initial sample was developed by Gattone and Battista (2010). 

This procedure controlled the final sample size and it does not require prior knowledge of the 

population structure. 

2.3.1 Adaptive cluster sampling with data driven stopping rule 

Let n1={1,2,…, n} be an initial sample of size n . For each unit i∈n, (Gattone and 

Battista, 2010) described ACS’ design as a set of steps. The initial step K = 0 is composed of the 

initial sampleand if unit i  in the initial sample satisfies the condition C, adaptive sampling 

procedure is carried out in the neighborhood of that unit. In the second step K= 1 adaptive 

sampling procedure is carried out in the neighborhood of the units added at step K= 0. Thus at 

step K= 1 there is just the ordinary ACS. In the second step, neighboring units satisfying the 

condition C at step K= 1 are added to the sample forming units for step K= 2. The procedure 

continues until there are no units satisfying condition C but, from step K= 2, units in the network 

associated with unit i will be sampled if and only if  

Si
k =ቐ ௦೔

మ(಼)

௦೔
(ೖషభ)

ଵି భ

೘భ
(ೖషభ)

ଵି భ

೘೔
(ೖ)

ቑ> 1         (4) 
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where si
2(K) is the within network variance estimate for the Kth step for the ith initial unit and mi

(k) 

is the cardinality of the set of units adaptively sampled after the kth step(Gattone and Battista, 

2010). 

2.4 Estimator 

In this section, the design based estimators will be reviewed. These estimators are design based, 

that is, their biasedness depends on the selection of sample rather than the assumption of the 

population. 

2.4.1 Hansen- Hurwitz estimator 

 The Hansen-Hurwitz estimator is based on draw-by-draw selection probability of 

selecting a primary sampling unit on any given draw. Since draw-by-draw selection probability 

cannot be known for all primary units in the sample but can be established for the networks that 

are encountered (Thompson, 1990). The modified Hansen-Hurwitz estimator is expressed as 
1

11

1 n

HH i
i

v
n




             (5) 

where iv is the average of the yivalues in the network (Ai) that include the ith unit of the initial 

sample of size n1 and ݉௜is the number of units in that network given as; 

1

i

i i
i Ai

v y
m 

             (6) 

the sampling variance of the Hansen-Hurwitz estimator is expressed as 

21
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n

 


 
   

         (8) 

2.4.2 Horvitz-Thompson estimator 

The Horvitz-Thompson estimator is based on inclusion probabilities ( ௜ߨ ), but on 

application of ACS the inclusion probabilities for every sampling unit selected in the sample 

cannot be established.  Nevertheless, it is possible to establish the probability of including a 

network in the sample selected. A network is a subset of distinct units within a cluster, such that 

selection of any unit within the network would lead to the inclusion of all other units in the 
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network. Units that fail to satisfy C but are in the neighborhood of one that satisfy are referred to 

as edge units. Thus, all units selected in the initial sample and fail to satisfy C will be considered 

to be networks of size one (Thompson, 1990). On partitioning the adaptive cluster sample into 

distinct networks rather than basic sampling units, the HT estimators for the population mean can 

be expressed as 

*

1

1 N

HH k
k

y
N




            (9) 

where yk* is total number of individuals in the kthnetwork, k is the number of distinct networks 

in the sample, and the ߨ௞ is the probability of including any unit in the network k. If there are mk 

units in the kth network, then the inclusion probability can be expressed as 

௞=1−ቀேି௠ೖߨ
௡భ

ቁ/ቀே௡భቁ         (10) 

and the sampling variance of the HT estimator is expressed as 
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where ߨ௞௛ is the probability of including both network k and h in the adaptive sample and is 

expressed as 

௞௛=1 −ቄቀேି௠೓ߨ
௡భ

ቁ + ቀேି௠ೖ
௡భ

ቁ − ቀேି௠ೖି௠೓
௡భ

ቁቅ/ቀே௡భቁ   (12) 

2.5 Improvement of the estimators by Rao-blackwell method 

Although the three estimators, µHH, µHT, and µsrsare unbiased they are not function of 

minimal sufficient statistics, and hence each may be improved by Rao-Blackwell theorem by 

taking conditional expectation of each of the given minimal sufficient statistic. The minimal 

sufficient statistic D is the unordered set of distinct, labeled observations, that is 

D={(k,yk); k ∈s }          (13) 

Let ‘t’ be any of the unbiased estimator , then tRB = E(t|D) is also unbiased estimator and a 

function of minimal sufficient statistics (Basu, 1969). 

Let ݊ଵ  denote a number of distinct units in the final adaptive sample  ݊. If the initial 

sample n1 is selected without replacement, we define G= ቀ
݊
݊ଵቁ , the number of possible 
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combinations are indexed in an arbitrary way by the label g (g=1, 2,…,G). Let tg denote the value 

of t when n1 consist of combination g and let varg (t) denote the value of unbiased estimator var 

(t), when computed using the gth combination. An initial sample that gives rise through the 

design to the given value D of the minimal sufficient statistic is compatible with D. Let the 

gthindicator variable (Ig) takes the value 1 if the gthcombination could give rise to D (i.e., is 

compatible with D), and 0 otherwise. The number of compatible combinations is therefore given 

as 

1

G

g
g

I


            (14) 

But the estimator t may be improved using Rao-Blackwell theorem and is the average of the 

values of t obtained over all those initial samples that are compatible with D. The improved 

estimator tRB is given as 
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1 G

RB g g
g

t t I
 

            (15) 

and its variance is given by 

var( ) var( ) [var( | )]RBt t E t D          (16) 

The unbiased estimator of the variance of tRB is given by 
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2.6 Confidence interval 

Confidence interval is an interval estimate of population parameter and is used to indicate 

the reliability of an estimate. An estimator that is consistent and asymptotically normal can be 

used to construct asymptotic confidence interval. The greatest factor that determines the length 

of the confidence interval is the sample size. 

In ACS design, the design based unbiased estimators; HT estimator and HH estimator 

based on small sample have skewed distribution thus provide interval estimates with very low 

coverage probability. In this case the asymptotic normalityapproximation is used for all large 

samplesestimators always tend to have same characteristics as the normal distribution. Thus, 

ݖ =  ቀ(௧೙ିఓ)√௡
௦೙

ቁhas approximate normal distribution standard and we may write. 

Pr (|Z| < c) = (18)        ߛ  
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where,ߛ  is the desired confidence level and c is the critical value. 

Then if ݐ௡ is a consistence sequence of estimators of sample mean then the desired confidence 

interval is given as 

௡ݐ − c ୱ౤
√୬

< ߤ < ௡ݐ + ܿ ௦೙
√௡

       (19) 

where, ݏ௡ is the asymptotic standard deviation of ݐ௡ and n is the sample size. 

2.7 Summary 

Most research work have dealt with the efficiency of adaptive cluster sampling designs 

and classical sampling designs by use of mean square errors of the estimators of population 

parameters obtained from either of the sampling designs. The mean square error just measure the 

variability and hence no indication of how likely it is that the value is close to the true population 

parameter. Confidence intervals are always recommended as they are able to present some 

indication of reliability of the estimators associated with confidence level. This study will 

construct the confidence interval under adaptive cluster sampling. 
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1Source of data 

The described study was conducted on artificial population (simulated population) that 

was generated from a Poisson cluster process as described by Diggle (1983). The Poisson cluster 

process is such that for any population the realization is from a Poisson process with parameter 

µ1. Under Poisson cluster process, the parents are randomly located within the study area. For 

every parent, the number of children was generated according to a Poisson random variable with 

mean µ2.  The children are placed around their parents at a random angle uniformly distributed 

between 0 and 360 degrees and at a distance taken from an exponential distribution with mean λ. 

The parameters of the Poisson model are as follows: 

ଵߤ − mean number of the parents (clusters) 

ଶߤ − mean number of offspring of the cluster (children) 

λ -mean of the exponential distribution. 

In this study, the parameters in population 1 are ߤଵ = 3, ଶߤ = 40, λ = 0.9  and in 

population 2are ߤଵ = ଶߤ,3 = 60, λ = 0.1. The study area will be divided into 40 40 N  units. 

For control of the edge effect of Poisson cluster process a 20 20  units was selected as the study 

area. Each population was sampled 180 times with SRS, ordinary ACS and ACS with data 

driven stopping rule. The ACS and ACS’ designs were carried out by using an initial sample size 

of ݊ଵ = 3. The condition of adaptive sampling was set to be: 

ܿ = ௜ݕ} ≥ 1}, that is, at least one of the offspring is observed in the initial sample. 

The estimators’ were computed using the statistical package R version 2.13.0 (Smith et. 

al, 2010), while Poisson clustered population be simulated by MATLAB version (2010) Service 

Pack 1. 

3.2 Data analysis 

The confidence interval of population mean based on; modified Hansen-

Hurwitzestimator, Horvitz-Thompson estimator and simple random sample estimator willbe 

constructed. The efficiency of the adaptive designs was analyzed using two approaches. First, 

relative efficiency of the estimates of the population mean from both ACS and ACS’. The 
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relative efficiency was obtained as follows ܴ.ܧ஺஼ௌ = ெௌாಲ಴ೄ
ெௌாೄೃೄ

 and ܴ.ܧ௔௖௦ᇱ = ெௌாಲ಴ೄᇲ
ெௌாೄೃೄ

. Secondly, 

bycomparing the confidence intervals computed based on estimatesof the population mean for 

both the ACS and ACS’ by evaluating their coverage probabilities. 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.0 Introduction 
In this section, the population of the rare and clustered which is in the figure one and the 
population that is not rare and clustered this is population two. 

 

Figure 1: The spatial point pattern for a rare and clustered population with parameters 
μ_1=3,μ_2=45,λ=0.9 

 

 

Figure 2: The spatial point pattern for general population that is not rare and clustered 
with parameters  μ_1=3,μ_2=60,λ=0.1 
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4.1 The relative efficiency 

The results of relative efficiency of the design based HT and HH estimators for 

population 1 and population 2 are represented in table 1 and table 2 respectively. For rare and 

clustered population 1 the relative efficiency of the HT and HH estimator was better under the 

ACS’ design than under ordinary ACS design. Under the ordinary ACS, the HT estimator had a 

higher efficiency than the HH estimator. Thus, under the ordinary ACS the HT estimator is a 

better estimate of the population mean of rare and clustered population. Under the ACS’, the HT 

estimator had a higher efficiency than the HH estimator. Thus, under the ACS’ the HT estimator 

is a better estimate of mean of rare and clustered population than the HH estimator.  

When the final sample size is increased, the relative efficiency of the HT estimator and HH 

estimator increases. The increase in relative efficiency of the HT estimator and the HH estimator 

was much significant under the ACS’ design.  

For the two populations examined (figure 1 and 2) in this study there were multiple 

conditions under which one or both design based estimators were relatively more efficient than 

the classical estimator given an equal final sample size. The Hansen-Hurwitz estimator 

performed uniformly worse than the Horvitz-Thompson estimator and rarely better than the SRS 

mean. Complete tables of the relative efficiencies of both the HT and HH estimators under all 

conditions are presented in table 1 and 2. 

As the final sample size increased, some interesting characteristics were observed. The 

efficiency of both adaptive cluster sampling estimators in ACS and ACS’ increased as the final 

sample size increased. Interestingly, the HT estimators showed intense increase in efficiency 

with only modest increase in the sample size. For example the efficiency of the HT estimator at 

sampling of the population 1, from results in table 1 increases by 0.1413 folds for ACS and by 

0.0505 for ACS’ as the final sample size increases from 20 to 90. The above results are caused 

by the increase of the final sample size as the probability of including the large networks 

increases and hence resulting into low variances. 

As the rarity and the clustering of the population decreases, the efficiency of design based 

estimators (HT and HH estimators) relative to classical estimator (SRS mean) reduces. The 

results of the efficiency of the HT and HH estimators from population 2 as shown in table 2 

indicate a reduction in efficiency. This indicates that the design based estimators are only 
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efficient for population that is rare and clustered. The classical estimator perform better than the 

design base estimators (HT and HH estimators) for population 2 which was not rare and 

clustered.These findings are consistent with the findings of Esha and Jesse (2012). 
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Table 1:Relative efficiency for rare and clustered population 

N                   ACS                     ACS’ 

R.EHT =
 ௠௦௘(ு்)
௠௦௘(ௌோௌ)

 R.EHH =
௠௦௘(ுு)
௠௦௘(ௌோௌ)

 R.EHT =
௠௦௘(ு்)

  ௠௦௘(ௌோௌ)
 R.EHH =  ௠௦௘(ுு)

௠௦௘(ௌோௌ)
 

20 0.2780 0.8034 0.0963 0.3635 

30 0.2683 0.5435 0.1642 0.3246 

40 0.2242 0.4206 0.1478 0.2412 

50 0.2163 0.2946 0.1326 0.1466 

60 0.1733 0.1509 0.0867 0.1211 

70 0.1633 0.1372 0.0739 0.1088 

80 0.1592 0.1093 0.0604 0.0662 

90 0.1367 0.0851 0.0458 0.0838 

 
 

Table 2: Relative efficiency for a general population that is not rare and clustered 

N ACS ACS’ 

R.EHT =
 ௠௦௘(ு்)
௠௦௘(ௌோௌ)

 R.EHH =
௠௦௘(ுு)
௠௦௘(ௌோௌ)

 R.EHT =
௠௦௘(ு்)

  ௠௦௘(ௌோௌ)
 R.EHH =  ௠௦௘(ுு)

௠௦௘(ௌோௌ)
 

20 2.1604 1.6723 2.781 2.6636 

30 2.7464 1.9659 2.4570 2.4736 

40 2.3546 2.0001 2.3622 2.3339 

50 3.6010 3.5232 2.1110 2.1954 

60 3.9401 2.4648 2.2970 2.2682 

70 3.6765 3.7524 1.948 1.9059 

80 3.4817 3.9153 1.8689 1.7907 

90 4.8170 4.1216 1.6294 1.7907 

 

4.2 Variance 

Results of variance of the estimators are given in table 3 and 4. From the tables, a 

great reduction in variance of the HT estimator and HH estimator when they were 

computed from samples obtained under a rare and clustered population 1 was observed. 
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For the rare and clustered population, the HT estimator had the smallest variance than 

HH estimator and the SRS mean under the ACS design and the ACS’ design. However, 

the HH estimator had a smaller variance than the SRS mean. This indicates that, the 

design based estimators are better than the classical estimators in estimation of population 

mean of a rare and clustered population.  

When the variance of the two adaptive design estimators are evaluated, the 

variance of HT estimator is smaller than the variance of HH estimator under both ACS 

design and ACS’ design. However, the variances of HT estimator and HH estimator 

under the ACS’ were smaller than under the ACS design.  

When the design based estimator are applied on the population that is not rare and 

clustered, it was observed that the classical estimator, that is, the simple random sample 

mean had a smaller variance than the design based estimators, the HT estimator and the 

HH estimators. for example when the final sample size is 20 the SRS mean had a 

variance of 2.585, while under ACS’ the HT estimator had a variance of 7.1889 and HH 

estimator had a variance of 6.8854. When the sample size increases to 70, the SRS mean 

had a variance of 0.8554, while under ACS’ the HT estimator had a variance of 1.6978 

and HH estimator had a variance of 1.6303. This indicates that the SRS mean is more 

efficient than HT estimator and HH estimator in estimation of population mean under a 

population 2 (figure 2) that is not rare and clustered which is consistent with the findings 

of Gattone and Batista (2010). 
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Table 3: Results of variance of the estimators under the population that is rare and 
clustered 

N                   ACS   ACS’ 

Var(HT) Var(HH) Var(SRS) Var(HT) Var(HH) 

20 0.7509 2.1701 2.7011 0.1872 0.9818 

30 0.5656 1.1457 2.108 0.3461 0.6843 

40 0.4397 0.8247 1.9610 0.2898 0.4730 

50 0.2676 0.3644 1.2370 0.1640 0.1813 

60 .01440 01254 0.8312 0.0721 0.1007 

70 0.1197 0.1006 0.7331 0.0542 0.0798 

Table 4: Results of variance of the estimators under the population that is not rare and 
clustered 

N ACS ACS’  

Var(HT) Var(HH) Var(HT) Var(HH) Var(SRS) 

20 5.5846 4.3229 7.1889 6.8854 2.585 

30 5.7158 4.0914 5.1135 5.1481 2.0812 

40 3.9181 3.3282 3.9307 3.8836 1.6640 

50 5.0126 4.9043 2.9385 3.0560 1.3920 

60 3.8897 2.4332 2.2676 2.2392 0.9872 

70 3.1449 3.2098 1.6978 1.6303 0.8554 

 

4.3 Confidence interval and coverage probability 

In this section, we are focusing on the properties of confidence intervals of population 

mean based on the HT estimator, HH estimator, and SRS mean. The results of confidence 

intervals are given in table 5, table 6, table 7, table 8, table 9, and table 10. The results of 

confidence interval of population mean under the population that is not rare and clustered are 

given in Table 5, table 6, and table 7. From these results, we observe that the both HT estimator 

and HH estimator under the ACS and ACS’ have larger width than the SRS mean.  This implies 

that estimator under classical sampling is better than the design based estimators for a population 

that is not rare and clustered. For example, under ACS design, when the final sample is 20, the 

width of confidence interval of population mean based on HT estimator is 9.2636, the width of 
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HH estimator is 8.1503, while the width of the SRS mean is 6.3026. Under the ACS’, the width 

of confidence interval of HT estimator is 10.5104, and the width of HH estimator is 10.2861. 

When the final sample is.60, the width of confidence interval of population mean based on HT 

estimator is 7.7312, the width of HH estimator is 6.1147, while the width of the SRS mean is 

3.8948. Under the ACS’, the width of confidence interval of population mean based on HT 

estimator is 5.8514, and the width of HH estimator is 8.8659.This indicates that the confidence 

interval of population mean based on SRS mean has the smallest width than the confidence 

interval of population mean based on HT estimator and HH estimator.Despite that, in 

comparison of the design based estimators, the HH estimator has a narrow width than the HT 

estimator in a population that is not rare and clustered. This indicates that the HH estimator is 

better than the HT estimator under a population that is not rare and clustered. As the final sample 

size increases, the width of the confidence interval also decreases. Table 8, table 9 and table 10 

give the results of confidence interval of HT estimator, HH estimator and SRS mean under the 

population that is rare and clustered. From the results, the HT estimator and the HH estimator 

have smaller confidence width than SRS mean in all situations. This implies that the ACS design 

and ACS’ design sampling is better than Simple random sampling. For example, under ACS 

design, when the final sample is 20, the width of confidence interval of population mean based 

on HT estimator is 3.3969, the width of HH estimator is 5.7747, while the width of the SRS 

mean is 6.4425. Under the ACS’, the width of confidence interval of population mean based on 

HT estimator is 1.6961, and the width of HH estimator is 3.8842. When the final sample is60, the 

width of confidence interval of population mean based on HT estimator is 0.4704, the width of 

HH estimator is 1.2433, while the width of the SRS mean is 3.5739. Under the ACS’, the width 

of confidence interval of population mean based on HT estimator is 1.0526, and the width of HH 

estimator is 1.2439.This indicates that the confidence interval of population mean based onHT 

estimator has the lowest confidence width than HH estimator in both ACS design and ACS’ 

design. This implies that the HT estimator is a better estimator than HH estimator in sampling a 

rare and clustered population. 
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Table 5: Confidence interval for HT estimator, HH estimator under a population that is 
not rare and clustered considering the adaptive cluster sampling 

 ACS 

 HT HH 

N L.L U.L Width L.L U.L Width 

20 -1.7318 7.5318 9.2636 -1.1752 6.9752 8.1503 

30 -1.7859 7.5859 9.3718 -1.0645 6.8645 7.9291 

40 -0.9797 6.7797 7.7593 -0.6757 6.4757 7.1514 

50 -1.4882 7.2882 8.7764 -1.4405 7.2405 8.6811 

60 -0.9656 6.7656 7.7312 -0.1573 5.9573 6.1147 

 

Table 6: Confidence interval for SRS mean under a population that is not rare and 
clustered 

 SRS 

N L.L U.L Width 

20 -0.2513 6.0513 6.3026 

30 0.0724 5.7276 5.6551 

40 0.3717 5.4283 5.0566 

50 0.5875 5.2125 4.6249 

60 0.9526 4.8474 3.8948 
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Table 7: Confidence interval for HT estimator, and HH estimator under a population that 
is not rare and clustered considering the adaptive cluster sampling with stopping rule 

 ACS’ 

                    HT HH 

N L.L U.L Width L.L U.L width 

20 -2.3552 8.1552 10.5104 -2.2430 8.0430 10.2861 

30 -1.5322 7.3322 8.8643 -1.5471 7.3471 8.8943 

40 -0.9859 6.7859 7.7718 -0.9625 6.7625 7.7251 

50 -0.4598 6.2598 6.7197 -0.5264 6.3264 6.8527 

60 -0.0515 5.8515 5.9030 -0.0329 5.8329 5.8659 

 

Table 8: Confidence interval of HT estimator, HH estimator and under a population that is 
rare and clustered 

 ACS’ 

 HT HH 

N L.L U.L Width L.L U.L Width 

20 1.2016 4.5984 3.3969 0.0127 5.7873 5.7747 

30 1.4260 4.3740 2.9481 0.8021 4.9979 4.1959 

40 1.6003 4.1997 2.5993 1.1201 4.6799 3.5599 

50 1.8861 3.9139 2.0278 1.7168 4.0832 2.3663 

60 2.6648 3.1352 0.4704 2.2783 3.5217 1.2433 
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Table 9: Confidence interval for SRS mean under a population that is rare and clustered 

 SRS 

N L.L U.L Width 

20 -0.3213 6.1213 6.4425 

30 0.0543 5.7457 5.6914 

40 0.1553 5.6447 5.4894 

50 0.7201 5.0799 4.3598 

60 1.1131 4.6869 3.5739 

 

Table 10: Confidence interval of HT estimator, HH estimator and SRS mean under a 
population that is rare and clustered 

 ACS 

 HT HH 

N L.L U.L Width L.L U.L width 

20 2.0520 3.7480 1.6961 0.9579 4.8421 3.8842 

30 1.7469 4.0531 2.3061 1.2786 4.5214 3.2427 

40 1.8449 3.9551 2.1103 1.5520 4.2480 2.6960 

50 2.1063 3.6937 1.5875 2.0654 3.7346 1.6691 

60 2.3737 3.4263 1.0526 2.2780 3.5220 1.2439 

 

Results of the coverage probabilities are given in tables 11 and 12. From these results, the 

coverage probability performance of confidence interval of HT estimator and HH estimator 

under adaptive designs was investigated. The confidence intervals of population mean based on 

HT estimator under ordinary ACS and ACS’ performed better than the HH estimator based on 

their coverage probabilities. As observed from table 11, increasing the final sample size caused 

the coverage probability of the confidence intervals to go up gradually for the two estimators. 

The coverage probability performance of the confidence intervals HT estimator and HH 

estimator under the ordinary ACS in population 1 that is rare and clustered indicated that the HT 

estimator performed better than the HH estimator in the same population.  
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Interestingly, the coverage probability of confidence interval ofpopulation mean based on 

HT estimator in the two designs and in both population appeared to perform better than the 

coverage probability of confidence interval ofpopulation mean based on HH estimator in both 

the design. For example, when the final sample size was 20 in table 11, the coverage probability 

of confidence interval ofpopulation mean based on HT estimator and HH estimator were 0.9238 

and 0.9142 respectively under the ordinary ACS. Under the ACS’, when the final sample size 

was 20 in table 11, the coverage probability of confidence interval of population mean HT 

estimator and HH estimator 0.9488 and 0.9392 respectively. From this example, the coverage 

probability of confidence interval of population mean based on HT estimator was better under 

the ACS and ACS’ than the coverage probability of HH estimator in both designs. When the 

final sample size was raised to 60 in table 11, the coverage probability of confidence interval of 

population mean based on HT estimator and the HH estimator raised to 0.9397 and 0.9338 

respectively under the ordinary ACS. When the final sample size was raised to 60 in table 11, the 

coverage probability of confidence interval of population mean based on HT estimator and the 

HH estimator raised to 0.9511 and 0.9477 respectively under the ACS’. From the observation of 

the coverage probability in table 11, both the HT estimator and the HH estimator were 

performing better under the ACS’ than ordinary ACS.  

When degree of rarity and clustering of the population decreases, the performance of the 

coverage probability decreases in both ACS’ and ordinary ACS. For example, when the final 

sample size is equal to 20, the coverage probability of confidence interval ofpopulation mean 

based on HT estimator changes from 0.9238 to 0.8901 in population1 that is rare and clustered to 

population 2 which is not rare and clustered under ordinary ACS. The coverage probability of 

confidence intervalof population mean based on HH estimator also changes from 0.9142 to 

0.8869 in population 1 that is rare and clustered to population 2 which is not rare and clustered 

under ordinary ACS. From above observation of the two populations, the coverage probability is 

better under the rare and clustered population than a population that is not rare and clustered. 

When the ACS’ is used, the coverage probability of confidence interval ofpopulation mean based 

on HT estimator changes from 0.9488 to 0.9016 from population 1 that is rare and clustered to 

population 2 which is not rare and clustered, while the coverage probability of confidence 

interval ofpopulation mean based on HH estimator also changes from 0.9392 to 0.8864 from 

population 1 that is rare and clustered to population 2 which is not rare and clustered.  
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From the results below, the coverage probability of confidence interval ofpopulation 

mean based on HT estimator and HH estimator is uniformly better under the population 1 as 

show in table 11 than inpopulation 2 as show in table 12. The results of coverage probability of 

confidence interval of population mean based on HT estimator and the HH estimator indicate 

that the two estimators perform better in a rare and clustered population. The coverage 

probability of confidence interval of population mean based on HT and HH estimators also 

indicate that the ACS’ is a better design in sampling of a rare and clustered population than the 

ordinary cluster sampling.  

Table 11: Coverage probability for a general population that is not rare and clustered 

 

Table 12: Coverage probability for a population that is rare and clustered 

 

When the population is not rare and clustered, we observe that the coverage probability reduces. 

In both the population, sampling is based on the network. Unlike the design based estimator that 

uses the inclusion probability and the draw by draw probabilities that are based on the network, 

N                 ACS                   ACS’  

  (HT)  (HH)  (HT)  (HH) SRS  

20 0.8901 0.8863 0.9016 0.8864 0.7118 

30 0.8928 0.8869 0.9068 0.8859 0.7910 

40 0.8986 0.8864 0.9035 0.8928 0.7993 

50 0.8989 0.8918 0.9043 0.8986 0.7976 

60 0.9100 0.9012 0.9039 0.8992 0.7958 

                            ACS                  ACS’  

N  (HT)  (HH) (HH) (HT) SRS 

20 0.9238 0.9142 0.9392 0.9488 0.8845 

30 0.9278 0.9194 0.9423 0.9492 0.8870 

40 0.9345 0.9221 0.9415 0.9495 0.8952 

50 0.9393 0.9232 0.9474 0.9508 0.8926 

60 0.9397 0.9338 0.9477 0.9511 0.8908 
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the SRS mean uses theprobability that are based on the assumption of the population. In this 

study, since the sampling is done based on the networks, the sample size of the population 

species that is used in simple random is actually higher than the final sample size achieved when 

sampling using the network. The large sample size of the population species under the simple 

random sample causes the standard error of the SRS mean to be small hence leading to small 

confidence width. When the confidence width is smaller, most of the confidence intervals could 

not contain the true value of the population mean. This effect of the large sample size under the 

simple random sample causes the coverage probability to reduce.  
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusion 

 It clear that efficiency of adaptive cluster sampling designs is influenced by a number of 

factors. Good results of efficiency are achieved when the within-network variance has a large 

proportion of the total variance as well as when the final sample size is slightly higher than the 

initial sample size (Smith et al. 1995, Thompson&Seber 1996, Brown 2003, Christman, 

1997),but achieving a condition when the final sample size is slightly higher than the initial 

sample size and within network variance has a large proportion of total variance is difficult at the 

same time. The efficiency of an adaptive cluster sample is a function of the interaction between 

the within-network variance and final sample size and ultimately depends upon the spatial 

distribution of the target population (Smith et al. 2004). The results of this study show thatthe 

design based estimators (HT estimator and HH estimator) are better than the classical estimators 

like SRS mean in estimation of population mean of rare and clustered population.From the 

results obtained, the HT estimator and the HH estimator did better for the population that was 

rare and clustered than the SRS mean. In comparison of the performance of the two designs 

based estimators under the ACS design and the ACS’ design, the HT estimator performed better 

than the HH estimator. The ACS’ design is better than the ACS design since it was able to 

minimize the within network variance as the final sample since increased.We thus conclude that 

the ACS’ design is a better design in estimation of population parameter of rare and clustered 

population.  

5.2 Recommendation and further research 

 Most of research work uses the design based estimators that are based on the networks 

rather that the entire population. These design based estimators are sensitive to size of the final 

sample and the within-network variance.Applications of these estimators in adaptive cluster 

sampling (ACS) have had inconsistent results in real-world settings, leading to increasing 

scrutiny of the factors that influence the efficiency of this design. Much more work still needs to 

be done in order to provide samplers with the knowledge of when adaptive cluster sampling 

design is appropriate and how to maximize its effectiveness.Further research work is 

recommended;  
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1. Determination of design based estimators that are based on the entire population rather 

than the networks. 

2. Determination of design based estimators that are not sensitive to both final sample size 

and the within network variance  
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