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ABSTRACT 

Group testing is an economical screening strategy that is beneficial in terms of efficiency and 

cost-cutting. The idea dates back to World War II, and it entails amalgamating individual 

specimens into pools that are tested for the presence of a trait of interest. Since its inception, 

group testing literature has branched into two research areas: classification and estimation. 

Research work in group testing has concentrated on designs without errors and has mainly 

developed under the binomial model. However, a combination of inverse sampling and group 

testing has been established to be useful when there is a need to report estimates early in the 

screening process. The main focus under the negative binomial group testing designs has been 

to develop more efficient estimators and to determine optimum group sizes under the 

assumption that the testing process has no misclassification. However, errors associated with 

labelling, and misclassification are prone to occur in an experimental design. Retesting of pools 

has been established to improve the efficiency of an estimator and increase the precision of a 

test. This research has constructed and analyzed a two-stage negative binomial group testing 

model for estimating the prevalence of a rare trait when imperfect tests with known sensitivity 

and specificity are used. The study utilized the Maximum Likelihood Estimation (MLE) 

method to obtain the estimator and the Cramer-Rao bound method to compute the Fischer 

information of the estimator. The properties of the constructed estimator were examined. The 

efficiency of the constructed estimator relative to other estimators in pool testing designs was 

determined by computing the Asymptotic Relative Efficiency (ARE) and the Relative Mean 

Squared Error (RMSE). The procedure was illustrated, and the model was verified by 

performing Monte Carlo simulations using R programming language version 3.5.2. The 

research findings showed that the model was superior to the one-stage negative binomial group 

testing model with misclassification as low variances were obtained as the proportion p 

increased. Also, the constructed estimator performed more efficiently for higher values of p. 

Furthermore, the study can be used for surveillance of pathogens and monitoring the prevalence 

of infectious diseases such as the Coronavirus disease 2019 (COVID-19) to prevent another 

pandemic resurgence. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background Information 

     Group testing, also known as pool testing, occurs when individual specimens (e.g., blood, 

plasma, urine, swabs, etc.) from a population are pooled and then tested for the presence of a 

trait of interest. The idea of pool testing is credited to Dorfman's (1943) seminar work and was 

used as a testing strategy to weed out all the syphilitic men who were called for army induction 

during World War II. In this testing strategy, a portion of the individual samples to be tested 

are first amalgamated into groups of equal size before they are subjected to testing. If a pool 

tests negative, further tests are discontinued, and all the members within that group are declared 

free from the trait of interest. Otherwise, each item is tested individually because a positive test 

result on a group indicates that at least one member has the trait of interest. When the proportion 

of a trait of interest is low, group testing unlike the standard method of testing each individual, 

offers a feasible and economical method that is not prohibitive in terms of cost and time.  

     The research work in group testing is two-fold, namely classification and estimation. In 

classification, the aim is to identify the positive members having a trait of interest from their 

counterparts. The first documented work in classification was applied to reduce the screening 

cost and to identify all the syphilitic-positive recruits that were called for army induction 

(Dorfman, 1943). On the other hand, the goal of estimation is to approximate the proportion of 

a trait of interest without labelling any individual as positive or negative, which is the focus of 

this study.  

     Previous research work in group testing has mainly been developed under the binomial 

model where the number of pools to be tested for a trait of interest is fixed in advance 

(Nyongesa & Syaywa, 2010; Nyongesa, 2011; Tamba et al., 2012). However, other 

probabilistic models in group testing have also been considered, including the hypergeometric 

model (Bar-lev et al., 2003), the beta-binomial model (Turechek & Madden, 2003), and the 

Geometric model (Pritchard, 2008). Furthermore, Bayesian approaches have also been 

considered in estimation (Pritchard & Tebbs, 2011a; Tebbs et al., 2003).  The regression model 

was proposed when screening for multiple infections (Tebbs et al., 2013). The regression 

models were extended to produce the covariate-adjusted estimates using the individual 

covariate information for pooled responses (Delaigle & Zhou, 2015; Tebbs et al., 2013; Wang 

et al., 2015).  



2 

 

     When the prevalence of a trait of interest is small, and there is a need to report estimates 

early in the screening process, the negative binomial model has been suggested to be viable in 

estimation (Pritchard & Tebbs, 2011b). In this model, the number of positive pools having a 

trait of interest is fixed in advance, and the testing process is deemed complete when the fixed 

number of positive pools is observed. This model has been applied to emergencies such as 

disease outbreaks (Solomon et al., 2003), natural disasters (Foppa et al., 2007), and biological 

attacks (Thavaselvam & Vijayaraghavan, 2010). In recent studies developed under this model, 

different authors have examined point estimates (Pritchard & Tebbs, 2011b), Confidence 

intervals (Thong & Shan, 2015; Yu et al., 2016), Optimum pool sizes when imperfect tests are 

used (Montesinos-López et al., 2013; Xiong, 2016), improved estimators that are almost 

unbiased by applying a suitable correction factor (Hepworth, 2013), and Bayesian approaches 

(Pritchard & Tebbs, 2011a). 

     An aspect of concern when using group testing is errors associated with labelling and 

misclassification of items (Xie et al., 2001) and the dilution effect (Mokalled et al., 2021). 

Since the first work in estimation that considered imperfect tests, other scholars have also 

considered this concept in estimation (Matiri et al., 2017; Okoth et al., 2017a; Wanyonyi et al., 

2015a). Their main focus has been to determine more efficient estimators and optimal group 

sizes when imperfect tests are used. The efficiency of an estimator is of great significance 

during estimation, and the retesting of pools has been considered to improve the efficiency of 

an estimator and also improves the precision of a test when the test kits are imperfect 

(Nyongesa, 2005; Nyongesa, 2011). Until now, no group testing design has been developed 

under the negative binomial model that has incorporated the sequential retesting of positive 

pools when imperfect tests are used. Therefore, this study proposes to develop a two-stage 

group testing procedure for estimating the prevalence of a trait using the Negative Binomial 

model by incorporating imperfect tests.  

1.2 Statement of the Problem 

     The standard method of screening individuals’ samples for the presence of a rare trait in a 

large population is both uneconomical and time-consuming. A viable way is to use group 

testing, which offers a cost-effective screening strategy. Research in public health highlights 

the significance of estimating the prevalence, even if disease identification is the main objective 

of a study. Most research conducted in group testing has concentrated on designs where pools 

are not misclassified and have largely presumed a binomial model where a fixed number of 
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pools are tested for a rare trait. However, a combination of inverse sampling and group testing 

is desirable when there is a need to report estimates early in the screening process. Unlike the 

binomial model, the negative binomial group testing model is an appealing strategy where 

samples are continuously screened until a predetermined number of positive groups containing 

a rare trait are observed. Estimation work under the binomial model has focused on examining 

efficient estimators, determining the desired sample size, and estimating the proportion 

of a rare trait when imperfect tests are used. Different authors have considered group testing 

designs with errors associated with labelling and misclassification. Retesting of pools under 

the binomial model in group testing was shown to reduce misclassification and improve the 

efficiency of the estimator. The estimation work in the negative binomial group testing model 

has developed under the postulation that the testing process is perfect. Alternative estimators 

that reduced the bias were developed. When imperfect tests are used, the optimal group size in 

the negative binomial group testing model has been considered.  To the author's knowledge, 

estimation procedures that incorporate imperfect tests and the sequential retesting of a pool that 

tests positive in the negative binomial group testing model are lacking in the statistical 

literature. The purpose of this study is to construct and analyse a two-stage negative binomial 

group testing procedure for estimating the prevalence of a rare trait when imperfect tests with 

known sensitivity and specificity are used. A pool that tests positive for a rare trait in the initial 

stage is sequentially given a retest, and the testing process continues until a predefined number 

of positive pools that test positive on a retest are observed. 

1.3 Objectives 

1.3.1 General Objective 

To construct and analyze a two-stage negative binomial group testing procedure for estimating 

the prevalence of a rare trait. 

1.3.2 Specific Objectives 

i. To obtain an estimator for the prevalence of a rare trait using the Two-stage Negative 

binomial model in group testing. 

ii. To determine the properties of the derived estimator such as the bias, and Mean Squared 

Error. 

iii. To compare the proposed model with the one-stage negative binomial group testing 

model with misclassification. 

iv. To apply the proposed model to West Nile Virus data. 
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1.4 Significance of the Study 

     When there was a need for an efficient procedure of screening for a rare disease in a 

population, Dorfman (1943) proposed group testing. In the procedure, tests are carried out on 

pooled samples and all individuals in a group that tests positive are retested. Since his seminal 

work, most of the current and recent past research in group testing has been developed under 

the assumption that the tests used are perfect. When imperfect tests are used, errors in 

experiments that are associated with labelling and misclassification are susceptible to occur, 

and thus the need to perform a confirmatory test. This has become an area of interest, and 

different scholars have adopted this concept when estimating the prevalence of a trait. Unlike 

the binomial model in group testing which is limited to a fixed number of pools to be tested for 

a rare trait. A combination of Inverse sampling and group testing is more appealing when there 

is a need to report estimates early in the screening process. This is because an early and accurate 

assessment of the prevalence level of a disease can prompt mitigation measures against an 

outbreak. The main focus under the Inverse binomial pool testing has been to develop more 

efficient estimators and optimum group sizes under the assumption that assays used for 

screening are perfect. However, one can envision an experimental situation where inverse 

sampling has been applied, and experimental errors occur as a result of imperfect tests used. 

To increase the precision of a test during estimation, there is a need for retesting pools. It has 

been established that retesting of pools improves the efficiency of an estimator, and it recovers 

lost sensitivity and specificity. The benefits of this study outweigh the disadvantages of one at 

a time testing when estimating the proportion of a trait in a low prevalent population. The study 

also contributes to the existing literature on group testing when negative binomial group testing 

models with retesting are used in estimation. Furthermore, the study can be used to screen and 

monitor the prevalence of infectious diseases such as the Coronavirus disease 2019 (COVID-

19) to prevent another pandemic resurgence. 

1.5 Assumptions  

i. The sensitivity and specificity of the test are held constant throughout the testing period. 

ii. Individual outcomes are independent and identically distributed. 

iii. There were no dilution or shielding effects due to the pooling of samples. 
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1.6 Definition of terms 

i. Rare trait 

A characteristic or an attribute that is not commonly observed within a specific 

population 

ii. Pool/ Group 

A set of individuals or specimens combined for testing 

iii. Sensitivity 

This is the probability of a test to correctly classifying a positive pool or individual. 

iv. Specificity 

This is the probability of a test to correctly classify a negative pool or individual. 

v. Group Testing 

A technique where test subjects or samples are combined to form pools, before being 

subjected to testing as a group rather than testing the subjects or samples individually.  

vi. Re-testing 

This refers to the testing of a group or individual more than once. 

vii. Parameter 

This is a characteristic that defines and describes a population. 

viii. Estimation 

A specified procedure that computes the value of some property of the population 

ix. Prevalence 

This is the proportion of a population who have a rare trait in a given period. 

x. Confidence interval 

This refers to the probability that a population parameter will fall between a set of 

values for a certain proportion of times. 

xi. Coverage probability 

The proportion of the number of times a confidence interval contains the true value of 

the parameter. 

xii. Statistic 

A statistic is a function of observable random variables, which is itself an observable 

random variable, which does not contain any unknown parameters. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Foundation of Group Testing 

     When screening for the presence of a trait of interest (e.g., infection) in a large population, 

a countless number of individual samples need to be tested. When the prevalence of a trait is 

low, group testing offers an appealing testing strategy that is not prohibitive in terms of cost 

and time. Group testing entails amalgamating specimens (e.g., blood, plasma, urine, swabs, 

etc.) from a population into pools and then screening the pools for a trait of interest. The idea 

of group testing is credited to Dorfman (1943), who used it as a strategy to weed out all 

syphilitic men who were called for army induction during World War II. In this testing strategy, 

individuals’ samples were amalgamated into pools and then tested as a unit. If a pool tested 

negative, all individuals within were declared free from infection. Otherwise, a positive reading 

on a pool meant that at least one individual was infected, instigating the need for individual 

testing to decode positive individuals from negative ones. In this testing strategy, Dorfman 

(1943) recorded a reduction in the expected number of tests and the overall cost of screening 

when disease prevalence was low.  

     To further reduce the expected number of tests and the testing cost when the prevalence is 

small, a modification of the Dorfman testing scheme has been examined and extended to multi-

stage (Bilder et al., 2010). This testing scheme involved testing of pooled samples derived from 

a population of interest. A negative reading on a pool inferred that all members within the pool 

were free from infection and further tests were discontinued. Otherwise, members within the 

pool were randomly selected and then retested one by one until the first positive individual was 

identified. The remaining members would then be combined to form a new pool before they 

are subjected to another test.  If the new pool tests positive, the same procedure would be 

repeated until all the members were classified as positive or negative.  

     In multiple stages of group testing, the halving algorithm has been developed, where the 

individual covariates information was applied to accomplish information retesting (Black et 

al., 2012). In the halving algorithm, pools that test positive are split into two halves before 

being subjected to a retest. The procedure only stops when a pool tests negative or until 

individual testing occurs. Other subsequent works have been reviewed because the individual 

covariate information was used to estimate the probability that an individual tests positive 

(Saker, 2016). It was noted that an informative approach based on the Dorfman pooling scheme 
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is superior to those not considering individual heterogeneity (McMahan et al., 2012). The risk 

probability of an individual is given preference in that a positive pool that is to be subjected to 

a retest has to have the highest probability of being positive.  

     An improved testing scheme based on Dorfman's (1943) testing protocol was later 

developed when screening for the presence of Human Immuno-deficiency Virus (HIV) and 

acquired immunodeficiency syndrome (AIDS) in a population (Monzon et al., 1992). In their 

testing design, pools of individual samples were drawn from the population and then tested.  

Further tests were discontinued for a pool that tested negative, and all members within that 

pool were declared free from infection. Otherwise, pools that tested positive were retested. In 

a pool that tested negative after a retest, members within that pool were declared free from 

infection. Otherwise, the standard method of individual testing was applied. 

2.2 Pool Testing Schemes 

     Based on the number of possible stages in group testing procedures, two forms of pool 

testing schemes have been proposed, namely hierarchical (adaptive) and non-hierarchical (non-

adaptive) testing schemes (Okoth et al., 2017a). The hierarchical testing procedure utilizes the 

information from the previous stage to determine the testing pattern of the subsequent stages. 

An example of a two-stage adaptive stage is the Dorfman (1943) pool testing strategy. Besides, 

Sterrett's (1957) pool strategy scheme is also a hierarchical procedure with an unknown number 

of stages. 

     The test result of a group is dichotomous, meaning it can either be a positive or a negative 

result. Non-hierarchical models are constructed by utilizing the test results of a group. The 

standard individual testing which takes a single step to identify individuals who are either 

positive or negative, falls under this testing scheme. Array (matrix) testing is also an example 

of a non-hierarchical model that has considered imperfect tests (Kim et al., 2007). It involves 

organizing specimens into a square grid before pooling the samples for testing based on rows 

and columns. Individual testing would be conducted on specimens that fell on the intersection 

of a positive row and a positive column. Other succeeding works in array testing have also been 

developed, for instance, array testing in more than one directional (Berger et al., 2000), and 

three-dimensional array procedure with testing errors (Kim & Hudgens, 2009). 

2.3 Estimation in Group Testing 

     The research work in group testing literature has branched into two distinct areas, namely 

classification and estimation. The two areas have received substantial attention under the 

binomial model, which presumes a fixed sampling design where pools are screened for the 
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absence or presence of a trait of interest. Alternatively, other experimental designs in group 

testing have been suggested where sampling and testing occur sequentially until a 

predetermined number of positive pools are observed (Haber et al., 2018). This research 

focuses on the latter by considering the negative binomial model in group testing that 

incorporates the retesting of pools that test positive in the initial test when imperfect tests are 

used. 

     The binomial model was first considered in the insect-vector problem to estimate the 

proportion of insect vectors capable of transmitting the aster-yellow virus (Thompson, 1962). 

The method of Maximum Likelihood was used to obtain the estimator and to examine its 

properties such as bias and best asymptotic normal (BAN). The estimator was noted to be 

positively biased as the prevalence increased. Other subsequent work in estimation followed, 

including estimating prevalence based on a pool testing scheme with retesting (Nyongesa, 

2011). It was established that pool testing offered a cost-effective method, and retesting of 

pools improved the estimator’s efficiency and recovered the sensitivity of the testing scheme.  

     Group testing designs have been applied in different situations, and the focus has been to 

develop more efficient estimators and optimal group sizes. The test assays have a threshold of 

detecting a trait of interest, and a group testing procedure has been applied in genetically 

modified organisms (GMOs) to examine the required sample size (Yamamura & Hino, 2007). 

It was noted that even if a threshold of detection exists, it was possible to estimate the 

proportion of defective items for any group size. If a group is large and the proportion of 

infection is small, a group can easily be misclassified as one that is free of infection, and this 

is termed the dilution effect. The required group size has been examined by considering the 

dilution effect when detecting the adventitious presence (AP) of transgenic plants (Hernández-

Suárez et al., 2008).  

     If individuals in a population are grouped into n pools each of size k, out of which x pools 

test positive. Then x has a binomial distribution with parameters n and 1 − (1 − 𝑝)𝑘 or simply 

written as 𝑥~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛, 1 − (1 − 𝑝)𝐾  ). 

The MLE of the prevalence, p was obtained by Nyongesa (2011) to be  

 �̂� = 1 − (1 −
𝑥

𝑛
)

1
𝑘
 . (1) 

     When group testing is applied in the presence of misclassification, the optimum properties 

of group testing strategies were considered by Liu et al. (2012). The exact range of disease 

prevalence was computed for which the testing strategy provided more efficient estimators as 
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the group sizes increased. Recently, assays have been developed which can detect multiple 

diseases simultaneously. Regression models have been proposed to address the challenge when 

screening for multiple diseases concurrently (Zhang et al., 2013). It was pointed out that this 

was attributed to a likely correlation between the unobserved individual's disease statuses. 

When considering hierarchical testing schemes, a multi-stage pooling strategy in estimation 

was established by Brookmeyer (1999). In this pooling strategy, pools formed were first tested 

then a retest was performed on pools that tested positive. This was achieved by sequentially 

subdividing the positive pools before they are retested. A reduction in the variance associated 

with each additional stage in the multi-stage pooling studies was noted. Besides, the obtained 

results were extended to estimate the disease incidence rate, and the method was applied to 

screen for HIV.  

     When the assay used is not 100% accurate, previous research points out a loss of sensitivity 

during estimation (Nyongesa, 2011). Retesting of pools has been shown to improve the 

efficiency of the estimator and reduce misclassifications (Nyongesa, 2018). When the 

sensitivity and specificity of the tests are held constant throughout the testing scheme, a 

retesting model in estimation was developed by Nyongesa and Syaywa (2010). They 

established that retesting of negative pools improved the efficiency of the estimator, and the 

model suggested a practical use in blood donation. Elsewhere, retesting of the positive pools 

was established to recover the sensitivity when imperfect tests were used in the Monzon et al. 

(1992) testing scheme. A statistical pool testing model with retesting has been developed based 

on the Monzon et al. (1992) testing scheme, and the work has been extended to a multi-stage 

pooling strategy (Nyongesa, 2018; Okoth et al., 2017b). The Asymptotic Relative Error (ARE) 

was computed, and the results confirmed that retesting improved the efficiency of the estimator.  

     The idea of pool testing in the presence of testing errors was earlier introduced by Nyongesa 

and Syaywa (2010) and Nyongesa (2011). If the probability that a pool tests positive is 𝜋𝑏(𝑝), 

and that 𝑥 out of n groups of size k test positive, then 𝑥 was shown to have a binomial 

distribution given as  

 𝑥~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛, 𝜋𝑏(𝑝)),  

where  

   𝜋𝑏(𝑝) = 𝜋1(1 − (1 − 𝑝)
𝑘) + (1 − 𝜋0)(1 − 𝑝)

𝑘 , (2) 

 and 𝜋1 and 𝜋0 are the sensitivity and specificity of the test respectively. 

Using the model, the MLE of p was obtained as 



10 

 

 �̂� = 1 − [
1 −

𝑥
𝑛

𝜋0 + 𝜋1 − 1
]

1
𝑘

. (3) 

     A comparison was made between individual testing and pool testing in the presence of 

testing errors to ascertain which provided a better estimator, and the results showed that pool 

testing improved the efficiency of the estimator Nyongesa (2011). A computational statistical 

model for pool testing that incorporated retesting was also examined by Tamba et al. (2012). 

The number of misclassifications and the cost incurred in the testing scheme were examined, 

and it was established that pool testing is economical in a low prevalence population and that 

retesting of pools reduced misclassification.  

     Group testing has also found its application in the quality control process and has been 

applied in the contamination of GMOs when there are inspection errors (Wanyonyi et al., 

2015b). It was noted that when the proportion of a trait of interest is relatively high, the batch-

testing model was superior to other existing models.  In other research, the cut of values in 

relation to batch testing has been examined (Matiri et al., 2017; Wanyonyi et al., 2015a). The 

probability of detecting a positive batch was noted to be affected by the batch size and the cut-

off values (Wanyonyi et al., 2015a). Moreover, by comparing their model with that of 

Brookmeyer (1999), they noted that at high prevalence, their model improved the efficiency of 

the estimator over other existing estimators. 

     Elsewhere, a statistical model has been constructed to select a combination of two or three 

experiments when imperfect tests are used in batch testing (Matiri et al., 2017). The MLE and 

cut-off values were obtained, and the results of Fischer information were compared for the 

different experimental models. Through comparison, the proposed joint model was spotted to 

be more efficient than the other two existing models for any range of prevalence when the 

sensitivity and specificity were held constant. Re-testing of batch testing models based on the 

quality control process has been examined by Wanyonyi et al. (2021). Batches that tested 

positive were given a retest, and the results indicated that retesting improved the estimator’s 

efficiency over the one-stage batch testing in a quality control process. Moreover, the model 

was established to be superior to the classical two-stage batch testing in that the estimator 

recorded smaller variance for relatively high values of the proportion. 

     The binomial model in group testing has been explored extensively by different authors. 

The drawback of the model is that it utilizes a fixed number of pools set by the researcher to 

test for a trait of interest. The model may not be helpful in situations that require quick 
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responses like in an emergency, and disease outbreaks, where sampling and testing are done 

until a predetermined number of pools having a trait of interest are observed. This calls for a 

combination of Inverse sampling and group testing to be examined. It has been established that 

the negative binomial model is more appealing when estimating the prevalence of a rare trait 

(Hepworth, 2013; Pritchard & Tebbs, 2011b; Xiong, 2016). 

2.4 Inverse Binomial Model in Group Testing 

     When sampling biological samples, inverse binomial sampling is of great importance. If the 

proportion of individuals possessing a character trait is p, and sampling is done until a specified 

number say, r individuals are observed. Then, the number of individuals sampled follows a 

negative binomial distribution. A combination of inverse sampling and group testing offers an 

appealing strategy when reporting estimates early in the screening process (Hepworth, 2013).  

     The model assumes that the number of pools with a trait of interest is fixed in advance and 

that the testing continues until the desired number of positive pools is observed. Inverse 

binomial sampling was first used in the estimation of frequencies of an attribute in a population 

to deduce the unbiased estimator and to investigate the properties of the variance (Haldane, 

1945). It was pointed out that most of the experimental errors arise from the sampling process 

and not from the pooling scheme (Katholi & Unnasch, 2006).  

     The MLE was used to obtain the point estimator and to discuss the confidence intervals for 

equal pool sizes by Katholi and Unnasch (2006).  The work was extended by examining the 

point estimators and alternative estimators that reduced the bias for equal and unequal pool 

sizes (Pritchard & Tebbs, 2011b). The Bayesian approach has also been considered by 

incorporating the prior knowledge of the incidence rate and different loss functions (Pritchard 

& Tebbs, 2011a). The results were used to examine point estimators and credible intervals.  An 

improved estimator has been considered by applying a suitable correction factor to obtain an 

almost unbiased estimator by Hepworth (2013). The score-based method with a correction for 

skewness and the exact method with a mid-p correction factor were recommended for their 

exceptional coverage properties. 

     The optimal group sizes under the negative binomial group testing model have been 

investigated in detecting the adventitious presence (AP) of transgenic plants in a population 

(Montesinos-L’opez et al., 2013). The three proposed methods i.e. two computational and one 

analytical methods were noted to provide a good approximation and ensured precision in the 

estimated proportion that guaranteed narrow confidence width.  The use of a negative binomial 

model in group testing was applied during the screening of Onchocerciasis volvulus, 
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responsible for causing ocular and skin disease (Rodriguez-Perez et al., 2006). The Method of 

Maximum Likelihood was used by Pritchard and Tebbs (2011b) to show that if 𝑋 = 𝑥 is the 

total number of pools tested until the 𝑟th positive pool is observed, then x follows a Negative 

binomial distribution with waiting parameter r, and success probability 𝜋(𝑝) = 1 − (1 − 𝑝)𝑘. 

The probability density function is given by 

 𝑓(𝑥 | 𝑝, 𝑟, 𝑘) = (
𝑥 − 1

𝑟 − 1
) (1 − (1 − 𝑝)𝑘)𝑟  (1 − 𝑝)𝑘(𝑥−𝑟). (4) 

The Maximum Likelihood Estimate (MLE) of p was shown to be  

 �̂� = 1 − [1 −
𝑟

𝑥
]

1
𝑘
. (5) 

The variance of the estimate can be obtained from the information function given by 

 𝐼 (𝑝) =  
𝑟 𝑘2 (1 − 𝑝)𝑘−2

(1 −  ( 1 − 𝑝 )𝑘)2
 . (6) 

     The MLE obtained in the binomial model was shown to be positively biased, especially for 

group size  𝑘 > 1 (Muhua, 2010). The MLE of the negative binomial model has the same form 

as that of the binomial model, and alternative estimators that reduce the bias of the estimator 

were examined by Pritchard and Tebbs (2011b). Simulation studies indicated that both the shift 

and combined estimator reduced the bias. This was performed assuming that perfect tests are 

used in the testing scheme. 

     The first work in estimation that considered imperfect tests was pioneered by Litvak et al. 

(1994), who applied the procedure to screen for HIV. The results indicated that the testing 

scheme improved the accuracy of the estimator and lowered the number of false positives. The 

concept that the tests may not be 100% perfect i.e. the sensitivity and specificity value is less 

than a unit, was incorporated in the testing scheme. Recent scholarly works have also 

considered this concept in estimation under the binomial model in group testing (Matiri et al., 

2017; Okoth et al., 2017a; Wanyonyi et al., 2015a). Their studies have mainly focused on 

determining more efficient estimators and optimal group sizes when imperfect tests are used. 

The optimal group size under the negative binomial model, which has considered an imperfect 

test to estimate optimal group sizes was examined by Xiong (2016). The MLE and the variance 

of prevalence p were obtained  
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 �̂� = 1 − {
𝜋1

2 −
𝑟
𝑥

𝜋0 + 𝜋1 − 1
}

1
𝑘

 (7) 

and 

 

𝑣𝑎𝑟(�̂�)

= {
[𝜋1 − (𝜋0 + 𝜋1 − 1) × (1 − 𝑝)

𝑘]2 × [1 − 𝜋1 + (𝜋0 + 𝜋1 − 1) × (1 − 𝑝)
𝑘]

𝑟𝑘2(𝜋0 + 𝜋1 − 1)2 × (1 − 𝑝)2𝑘−2
}  

(8) 

where k is the group size, n is the waiting parameter denoting the predetermined number of 

positive pools, and  𝜋1 and 𝜋0 denote the sensitivity and specificity of the tests respectively. 

     Surveillance of pathogens plays a vital role in public health and risk assessment. The early 

detection of infectious diseases is paramount to reducing the severity of an outbreak. Although 

vaccination for infectious diseases like foot and mouth disease (FMD) exists, an outbreak can 

have a catastrophic effect on the meat and milk industry (Callahan et al., 2002). The impacts 

of technological advancement cannot be undermined, and one of the looming crises is 

bioterrorism, which is a deliberate act of releasing biological toxins and agents as an act of war 

(Zilinskas, 1997). The FMD was suggested as a possible biological agent, hence the need for 

early and accurate detection to prevent an outbreak and limit the spread of infection (Koda, 

2002). Pritchard and Tebbs (2011b) suggested that their methodologies can be modified to suit 

the testing scheme when imperfect tests are used in the negative binomial group testing model. 

The retesting of pools under the binomial model was established to improve the efficiency of 

an estimator and to recover the sensitivity of the test during estimation (Nyongesa, 2011; 

Nyongesa, 2018; Wanyonyi et al., 2021). The estimation procedures in group testing design 

that incorporates the sequential retesting of positive pools in the negative binomial model are 

still lacking.  

     Therefore, the problem motivating this study is constructing and analyzing a two-stage 

negative binomial group testing procedure for estimating the prevalence of a rare trait. In this 

procedure, sampling and testing occur sequentially, whereby a pool that tests positive is 

retested. The testing process continues until the desired number of pools that test positive on 

retesting are observed. The only drawback of the negative binomial model is that depending 

on the pool size and the prevalence of a trait of interest, countless tests have to be performed 

to observe a few positive pools. Thus, the number of positive pools with a rare trait was 

suggested to be small for practicability (Pritchard & Tebbs, 2011b). If the sampling process is 

done seamlessly, the procedure can save on cost. It can be used for rapid and accurate 
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estimation of infectious diseases such as the Coronavirus disease of 2019 (COVID-19) which 

is a global pandemic.  

2.5 Interval Estimation 

     One of the basic methodologies in statistics is interval estimation. There are different 

approaches to constructing confidence intervals that have been reviewed by different authors 

(Luchen, 2012; Pritchard & Tebbs, 2011a; Thong & Shan, 2015; Yu et al., 2016). The Wald 

confidence interval is the most common in practice and statistical literature. When the 

probability distribution of the estimator is known, the confidence interval contains the unknown 

parameter within its bounds with a high pre-specified probability. The standard Wald 

confidence interval based on the normal approximation of the MLE of p is given by  

 �̂� ± 𝑍𝛼
2⁄
√𝑣𝑎𝑟(�̂�) (9) 

where 𝑍𝛼
2⁄
 denotes the upper 𝛼 2⁄  quantile from the 𝒩(0, 1) distribution and 𝑣𝑎𝑟(�̂�) = (1 −

(1 − 𝑝)𝑘)/(𝑛𝑘2(1 − 𝑝)𝑘−2 is the asymptotic variance of p, recommended by Thompson 

(1962). The Wald confidence intervals were observed to suffer from problems associated with 

overshooting and zero confidence width (Orawo, 2021). The Wilson interval of the binomial 

proportion p was pointed to be asymmetric and can be derived from inverting the z-test for p. 

The two-tailed Wilson interval is of the form 

 

�̂� +
(𝑍𝛼

2⁄
)
2

2𝑛 ± 𝑍𝛼
2⁄
√�̂�(1 − �̂�)

𝑛 +
(𝑍𝛼

2⁄
)
2

4𝑛2

(1 +
(𝑍𝛼

2⁄
)
2

𝑛 )

 (10) 

where n is the number of groups tested, and  𝑍𝛼
2⁄
 denotes the upper 𝛼 2⁄  quantile from the 

𝒩(0, 1) distribution. The generalized two-sided Agresti-Coull interval for the binomial 

distribution with parameters (𝑛, 𝑝) has been reviewed by Brown et al. (2001) and takes the 

form  

 �̂� ± 𝑍𝛼
2⁄
√
�̂�(1 − �̂�)

�̃�
 (11) 

where �̃� = 𝑛 + 4 and �̂� = (
𝑥+2

𝑛+4
) is a re-centered estimator of the proportion p.  It was pointed 

out that the confidence interval has good coverage probabilities, but it is more conservative for 

the proportion p close to 0 (Brown et al., 2001). An Exact interval for the negative binomial 
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group testing proportion p has been examined by Pritchard and Tebbs (2011a). When pools of 

size k are used 𝑥~ negative binomial (𝑟, 𝜃) where 𝜃 = (1 − (1 − 𝑝)𝑘). An exact interval for 

𝜃 was derived by Lui (1995) using the relationship between negative binomial distribution and 

the incomplete beta function. The lower and upper confidence limits are 𝜃𝐿 = 𝐵1−𝛾 2 ⁄ ,𝑟,   𝑥−𝑟+1 

and 𝜃𝑈 = 𝐵𝛾
2 ⁄ ,   𝑟,   𝑥−𝑟   respectively where 𝑥 = ∑ 𝐺𝑖

𝑟
𝑖=1 , and 𝐵𝛾,   𝑎,   𝑏 denotes the upper 𝛾 

quantile of the two-parameter beta(𝑎, 𝑏) distribution and 𝐺𝑖follows a geometric distribution. 

The exact interval was obtained by transforming the endpoints of the 𝜃 interval which reduced 

to 𝑝𝐿 = 1 − (1 − 𝐵1−𝛾 2 ⁄ ,𝑟,   𝑥−𝑟+1)

1

𝑘
and 𝑝𝑈 = 1 − (1 − 𝐵𝛾

2 ⁄ ,𝑟,   𝑥−𝑟)

1

𝑘
. 

2.6 Application of Group Testing 

     Group testing has been applied in a variety of different fields since the inception of 

Dorfman's (1943) seminar work. In industrial applications, group testing has been applied in 

making a “leak test” on a large number of electrical devices filled with a gas (say, helium) as 

outlined by Mundel (1984). Any number of units say x can be tested using a single test, and the 

result of the test is that either all the x units are good or at least one of the x is defective. 

Electrical devices such as condensers, resistors, etc. are tested in a similar manner. 

     Group testing has also been applied in the Infertility Prevention Project (IPP), a national 

project funded by the Centers for Disease Control and Prevention (CDC) and the Department 

of Health and Human Services (HHS) (Tebbs et al., 2013). The objective of the project was to 

identify infected individuals with Chlamydia, or gonorrhoea through screening. The trends in 

prevalence were monitored and treatment was offered to the infected individuals.  

     Similarly, group testing was earlier applied to screen for chlamydia and gonorrhoea (Lindan 

et al., 2005). The two bacterial infections were pointed out to be responsible for causing pelvic 

inflammatory diseases, ectopic pregnancies, sterility, and infertility. Elsewhere, research 

showed that the two bacterial infections were also responsible for the transmission of other 

sexually transmitted diseases (STDs) like HIV and Human papillomavirus (HPV) (Lewis et 

al., 2012). Group screening has also been applied for a variety of STDs, including HIV (Pilcher 

et al., 2005), hepatitis B, and hepatitis C (Cardoso et al., 1998). 

     Red Cross organizations in Japan and Germany used this technique to screen for blood 

samples (Mine et al., 2003). To curb the spread of HIV infection, group testing was used to 

screen for the presence of HIV antibodies (Kline et al., 1989; Monzon et al., 1992). It was 

shown that group testing lowered misclassification when screening for HIV in a low-risk 

population (Litvak et al., 1994). This testing strategy was suggested to be useful when 
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concealing the identity of the subjects tested due to the stigma associated with the HIV/AIDS 

virus (Gastwirth & Hammick, 1989). 

     Pool testing has also been applied in the early stages of drug discovery (Xie et al., 2001). 

The results demonstrated a reduction in the cost incurred, unlike when the standard testing 

protocol is applied. Elsewhere, it has been applied in arbovirus literature to screen for WNV 

(Busch et al., 2005; Rutledge et al., 2003) and to screen for the H1N1 influenza virus (Van et 

al., 2012). Furthermore, group testing has also been applied in quality control processes (Fang 

et al., 2007; Wanyonyi et al., 2015b), and in industrial experimentation (Vine et al., 2008).                                                  
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Probability Theory 

     Under the Probability Theory, the Indicator function and the Theorem of total probability 

were used to derive the probabilities of interest.  

3.1.1 Indicator Function 

     A random variable that takes the value 1 when an event happens and 0 when the event does 

not happen is called an indicator function of an event. If we let 𝛺 be a sample space and 𝐸 ⊆

𝛺 be an event. The indicator function (or indicator random variable) of the event E denoted by 

𝐼𝐸  is a random variable defined by 

 𝐼𝐸 = {
1, 𝑖𝑓 𝜔 ∈  𝐸
0, 𝑖𝑓 𝜔 ∉ 𝐸

 . (12) 

The following indicator functions were used in the development of the proposed model to 

simplify the notations: 

Define: 

𝑇𝑖 = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑔𝑟𝑜𝑢𝑝 𝑖𝑠 𝑡𝑒𝑠𝑡𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒.
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

𝑇∗𝑖 = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑔𝑟𝑜𝑢𝑝 𝑡𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑟𝑒𝑡𝑒𝑠𝑡

 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

𝐷𝑖 = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑔𝑟𝑜𝑢𝑝 𝑖𝑠 𝑡𝑟𝑢𝑙𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒.
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

𝑇∗𝑖𝑗 = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑗𝑡ℎ  𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑔𝑟𝑜𝑢𝑝 𝑡𝑒𝑠𝑡𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑟𝑒𝑡𝑒𝑠𝑡

 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

3.1.2 Theorem of Total Probability 

     A partition is a collection of non-empty, non-overlapping subsets of a sample space whose 

union is the sample space itself (Mood et al., 1974). If we let 𝐴1, 𝐴2, … , 𝐴𝑛 be a collection of 

events that partition the sample space 𝑆 and B is an arbitrary event within 𝑆, then 𝐵 can be 

expressed as a union of subsets as follows 

 𝐵 = (𝐵 ∩ 𝐴1) ∪ (𝐵 ∩ 𝐴2)  ∪ … ∪ (𝐵 ∩ 𝐴𝑛) (13) 

where the bracketed events (𝐵 ∩ 𝐴𝑖) 𝑓𝑜𝑟 𝑖 = 1, 2,… , 𝑛 are mutually exclusive events. Using 

the additional law of probability for mutually exclusive events 
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 𝑃(𝐵) = 𝑃(𝐵 ∩ 𝐴1) +  𝑃(𝐵 ∩ 𝐴2) + ⋯+ 𝑃(𝐵 ∩ 𝐴𝑛). (14) 

Each partition on the right-hand side may be expressed in terms of conditional probabilities as 

follows 

 𝑃(𝐵 ∩ 𝐴𝑖) = 𝑃(𝐵 ∕ 𝐴𝑖) 𝑃( 𝐴𝑖). (15) 

Using the expression in equation (15) into (14) we have 

 

𝑃(𝐵) = 𝑃(𝐵 ∕ 𝐴1) 𝑃( 𝐴1) + 𝑃(𝐵 ∕  𝐴2) 𝑃( 𝐴2) + ⋯+ 𝑃(𝐵 ∕ 𝐴𝑛) 𝑃( 𝐴𝑛) 

= ∑𝑃(𝐵 ∕  𝐴𝑖) 𝑃( 𝐴𝑖).

𝑛

𝑖=1

 
(16) 

The theorem of total probability and the indicator functions were of great importance in the 

development of the proposed model to simplify notations and compute conditional 

probabilities. 

3.2 Parametric Point Estimation 

     The Method of Maximum Likelihood Estimation and asymptotic variance were considered 

in parametric point estimation. 

3.2.1 Method of Maximum Likelihood  

     This study utilized the method of maximum likelihood because it is convenient, and it gives 

estimators with good statistical properties. Suppose that 𝑌𝑖 = 𝑦𝑖 denotes the number of groups 

with size k that are tested for a trait of interest until the rth positive pool on a retest is observed. 

Therefore, 𝑌𝑖 has a geometric distribution. If x is the total number of pools tested is denoted by 

𝑥 = ∑ 𝑌𝑖
𝑟
𝑖=1  , then x follows a negative binomial distribution with a with waiting parameters r 

and success probability 𝜋∗(𝑝). The likelihood function is given by 

 𝐿(𝑥| 𝑝) =∏ 𝜋∗(𝑝)

𝑟

𝑖=1

(1 −  𝜋∗(𝑝))𝑦𝑖−1 (17) 

The maximum likelihood estimate of p was obtained as the solution to the equation, 

 
∂

∂𝑝
log 𝐿(𝑝) = 0. (18) 

3.2.2 Asymptotic Variance 

     The asymptotic variance of the estimate p was obtained by computing the Fishers 

information given by; 
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 𝑣𝑎𝑟(�̂�) =  𝐸 {−(
𝜕2

𝜕𝑝2
log 𝐿(𝑝))}

−1

.  (19) 

3.3 Model Comparison 

     The properties of the derived estimator such as the bias, and Mean Squared Error (MSE), 

were computed as follows; 

 𝐵𝑖𝑎𝑠(�̂�) = ∑(�̂� − 𝑝) (
𝑥 − 1

𝑟 − 1
)

𝑡∗

𝑡=𝑛

𝜋∗(𝑝)𝑟(1 − 𝜋∗(𝑝))𝑥−𝑟 (20) 

and 

 𝑀𝑆𝐸(�̂�) ≈  ∑(�̂� − 𝑝)2 (
𝑥 − 1

𝑟 − 1
)

𝑥∗

𝑥=𝑟

𝜋∗(𝑝)𝑟(1 − 𝜋∗(𝑝))𝑥−𝑟 (21) 

respectively, where 𝜋∗(𝑝) denotes the probability of classifying a group as positive on 

retesting, r is the number of pools that test positive on retesting, and  𝑝𝑟(𝑋 ≥ 𝑥∗) ≤ 0.00001 

for small values of p considered. It was pointed out that if 0.00001 is replaced by a smaller 

number, it makes virtually no difference to the results (Hepworth, 2013). Thus, the constant 

𝑣 = 0.00001 was taken throughout the simulation such that 𝑝𝑟(𝑋 ≤ 𝑥∗) ≥ 1 − 𝑣 making 

these approximations very close to the true values of bias and MSE. 

3.3.1 Asymptotic Relative Error (ARE) 

     If the estimator of the one-stage negative binomial group testing model with 

misclassification as suggested by Xiong (2016) model is denoted by �̂�𝑇  and the proposed 

estimator is denoted by �̂�𝑅 then ARE values were calculated as; 

 𝐴𝑅𝐸 =
𝑣𝑎𝑟(�̂�𝑇)

𝑣𝑎𝑟(�̂�𝑅)
 . (22) 

The proposed model was found to be efficient for 𝐴𝑅𝐸 > 1. 

3.3.2 Relative Mean Squared Error (RMSE) 

The RMSE was given by 

 𝑅𝑀𝑆𝐸 =
𝑀𝑆𝐸(�̂�𝑇)

𝑀𝑆𝐸(�̂�𝑅)
 . (23) 
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3.4 Comparison of Interval Estimates 

     The procedure for comparing the confidence interval was based on the coverage probability. 

In this section, simulation studies were carried out to compare the performances of the Wald, 

Wilson, Agresti- Coull, and Exact intervals based on their coverage probabilities. The true 

coverage probability of an estimator can be approximated in the same manner as its bias and 

the MSE for a given prevalence p, waiting parameter r, and pool size k when the accuracy of 

the assay used for testing is known. It was pointed out that for any confidence interval method 

for estimating the proportion p, the actual coverage probability can be approximated using the 

following equation 

 𝐶(𝑝, 𝑟, 𝑘, 𝜋0, 𝜋1) =  ∑𝐼(�̂�)

𝑥∗

𝑟

(
𝑥 − 1

𝑟 − 1
)𝜋∗(𝑝)𝑟(1 − 𝜋∗(𝑝))𝑥−𝑟 (24) 

where 𝜋∗(𝑝) = 𝜋1
2 + (1 − 𝑝)𝑘((1 − 𝜋0)

2 − 𝜋1
2),  𝐼(�̂�) = 1 if the interval contains 𝑝, or 

𝐼(�̂�) = 0 otherwise. The plots of the coverage probabilities were computed for the values of p 

ranging from 0.00005 to 0.10 by increments of 0.00005 for group sizes 𝑘 = 20 and the waiting 

parameter 𝑟 = 2, 5, 20, 50 at 95% nominal level. Also, a table of coverage probabilities was 

constructed when the proportion was fixed at 𝑝 = 0.001, 0.025, 0.05, 0.10.  

3.5 Simulation 

     R-Programming language version 4.0.3 (2020-10-10) was used to perform simulation 

studies. Simulation describes a numerical technique for conducting experiments on a computer 

that depends on repeated random sampling from probability distributions. A generalised 

Monte-Carlo algorithm used in this study involved the following: 

Step 1: Setting fixed values of r, k, p, sensitivity, and specificity values. 

Step 2: Generate N independent data sets from negative binomial (𝑟, 𝜋∗(𝑝)) that is  

𝑇𝑖~𝑛𝑏𝑖𝑛𝑜𝑚(𝑟, 𝜋
∗(𝑝)) for 𝑖 = 1,… ,𝑁 

Step 3: Compute the numerical value of the test statistics T for each data set 𝑇1, 𝑇2,  … , 𝑇𝑁 

Step 4: If N is large enough, summary statistics 𝑇1, 𝑇2,  … , 𝑇𝑁 should be a good approximation 

to the true sampling properties of the test condition under the conditions of interest. 
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The study simulated different data sets of pool sizes, 𝑘 = 5, 10, 30, and 50 when the waiting 

parameter r was fixed at 𝑟 = 1, 3, 5, 10, and 15. The sensitivity and specificity value of the 

tests were assumed to remain constant throughout the entire study and were examined 

at 99%, 98%, 95%, and 90% respectively. 

3.6 Real Data 

     Data derived from a public health study that described the first documented field 

transmission of the West Nile Virus (WNV) conducted by Rutledge et al. (2003) has been 

utilized. The study used the method of reverse transcription-polymerase chain reaction to 

screen the pools of mosquitos collected through trapping and surveillance programs as a way 

to assess transmission of WNV. Collectively, out of 11,948 mosquitos that were collected, 14 

pools tested positive for WNV. The study was conducted for four days in August of 2001 

following the outbreak of WNV in Jefferson County, Florida. Both equal and unequal pool 

sizes were considered. Inverse sampling was not used by Rutledge et al. (2003), but we use 

this field study as a foundation to illustrate our testing procedures as suggested by Pritchard 

and Tebbs (2011b). 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS  

4.1 Overview of Chapter Four 

     This chapter presents a negative binomial model in group testing that incorporates imperfect 

tests and the retesting of a positive pool. The entire chapter is arranged as follows: Section 4.2 

describes the proposed model, and Section 4.3 describes the formulation of the model using 

the indicator function. Section 4.4 presents the behaviour of  𝜋∗(𝑝) against p. Section 4.5 

presents the method of Maximum Likelihood that has been used to obtain the point estimators 

while section 4.6 examines the characteristics of the estimator. The results of the properties of 

the estimator are presented in section 4.7. The confidence interval and coverage probabilities 

are outlined in Sections 4.8 and 4.9 respectively. Section 4.10 presents the comparison of the 

proposed model with the one-stage negative binomial group testing model when imperfect tests 

are used. The results of this research are applied to WNV prevalence estimation data in Section 

4.11. Lastly, the discussion of the results is presented in section 4.12. 

4.2 The Proposed Model 

     Suppose that 𝐺𝑖 = 𝑔𝑖 denotes the number of pools that are sequentially tested until the first 

positive pool is detected on a retest and 𝐺1, 𝐺2, … , 𝐺𝑟 are observed to contain the rth pool that 

tests positive on a retest. Therefore 𝐺𝑖 has a geometric distribution and the overall number of 

pools that are sequentially tested to obtain r positive pools on a retest is denoted as 𝑥 = ∑ 𝐺𝑖
𝑟
𝑖=1 . 

It is assumed that the pools are of equal size. If the size of the pool is denoted as k and the 

prevalence of a disease is denoted as p, then the sufficient statistic 𝑥 = ∑ 𝐺𝑖
𝑟
𝑖=1  follows a 

negative binomial distribution with waiting parameters r and success probability 𝜋∗(𝑝). The 

model is diagrammatically described below: 
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Figure 4. 1: Diagrammatic description of the Retesting model 

4.3 Indicator Function 

Define the indicator function as follows; 

 

𝑇𝑖 = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑔𝑟𝑜𝑢𝑝 𝑖𝑠 𝑡𝑒𝑠𝑡𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒.
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

𝑇∗𝑖 = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑔𝑟𝑜𝑢𝑝 𝑡𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑟𝑒𝑡𝑒𝑠𝑡

 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

𝐷𝑖 = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑔𝑟𝑜𝑢𝑝 𝑖𝑠 𝑡𝑟𝑢𝑙𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒.
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

(25) 

If the sensitivity and the specificity are defined as  𝜋1 = Pr (𝑋𝑖 = 1| 𝐷𝑖 = 1) and  𝜋0 =

Pr(𝑋𝑖 = 1 |𝐷𝑖 = 0) respectively. The probability that a pool tests positive on retest 𝑖. 𝑒 𝜋∗(𝑝) 

is 

    𝜋∗(𝑝) = 𝑃𝑟(𝑋∗𝑖 = 1 𝑋𝑖 = 1)  

 = 𝑃𝑟(𝑋∗𝑖 = 1 𝑋𝑖 = 1 𝐷𝑖 = 0 𝑜𝑟 𝐷𝑖 = 1)  

             =Pr (𝑋∗𝑖 = 1 𝑋𝑖 = 1 𝐷𝑖𝑛 = 0 ) +  𝑃𝑟(𝑋
∗
𝑖 = 1 𝑋𝑖 = 1 𝐷𝑖𝑛 = 1)  

 
             = Pr(𝑋∗𝑖 = 1|𝐷𝑖 = 0)× Pr (𝑋𝑖 = 1|𝐷𝑖 = 0) × Pr(𝐷𝑖 = 0)

+ Pr(𝑋∗𝑖 = 1|𝐷𝑖 = 1) × Pr(𝑋𝑖 = 1|𝐷𝑖 = 1) × Pr(𝐷𝑖 = 1) 
 

 = (1 − 𝜋0)
2(1 − 𝑝)𝑘 + 𝜋1

2(1 − (1 − 𝑝)𝑘)  

 𝜋∗(𝑝) = 𝜋1
2 + (1 − 𝑝)𝑘((1 − 𝜋0)

2 − 𝜋1
2). (26) 

4.4 Characteristics of 𝝅∗(𝒑) against p 

     In this section, we investigated the relationship between 𝜋∗(𝑝) and p. This was 

accomplished by plotting 𝜋∗(𝑝) against p at different k and when the specificity and sensitivity 
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of a test are known. The specificity and sensitivity values of the tests were established and 

considered equal throughout the testing procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 2: Relationship between 𝝅∗(𝒑) and p for k = 5, 15, 30, and 50 with Sensitivity= 

Specificity = 0.99, 0.95, 0.90 and 0.80 

Figure (4.2) shows the relationship between 𝜋∗(𝑝) and p for various group sizes when the 

accuracy of the assay used is known. The relationship was observed to be monotonic and that 

𝜋∗(𝑝)  ranged between 0 and 1. A steep slope was observed at low p values and large group 

sizes. It was also noted that the probability increased rapidly for low values of p converging 

towards the sensitivity and specificity value of the tests, especially for high sensitivity and 

specificity values. Thus, when the accuracy of the tests is known, the probability of detecting 

a positive pool is sensitive to both the prevalence level and the size of a pool. The relationship 

was also considered when the accuracy of the test was 80%. The value was selected solely to 
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study the relationship, and this is because the assay used for testing has a higher sensitivity and 

specificity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 3: Relationship between 𝝅∗(𝒑) and p for k = 5, 15, 30, and 50 with Sensitivity(𝜼)  

= Specificity(𝜷) = 0.99, 0.95, 0.90 and 0.80 

Figure (4.3) shows the relationship between the probability of classifying a pool positive on 

retesting and prevalence, p at fixed group sizes. A striking characteristic observed was that the 

relationship was monotonic, and the gradient of the plots became steeper at low values of p as 

k increased. It was sufficient to note that in group testing, both the sensitivity and specificity 

of the test kits and the size of the group affected the probability of accurately detecting a rare 

trait. Notably, the probability increased rapidly at low prevalence values to a maximum as k 

increased, after which there was no rate of change. When k was fixed, and the prevalence was 

low, the probability of detecting a trait of interest was highest at high values of the sensitivity 

and specificity of the test. 
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4.5 The Maximum Likelihood Estimator 

     Suppose x is the total number of pools tested to obtain r pools that test positive on retesting. 

If p is the prevalence of a rare trait, and k denotes the size of the group then 𝑥 follows a negative 

binomial distribution with parameters (𝑟, 𝜋∗(𝑝)). 

The model can simply be written as; 

 𝑓(𝑥/𝑝) = (
𝑥 − 1

𝑟 − 1
) [𝜋∗(𝑝)]𝑟[1 − 𝜋∗(𝑝)]𝑥−𝑟 (27) 

In terms of the log-likelihood function, equation (27) can be expressed as; 

 𝐿(𝑝 ∕ 𝑥, 𝑟) = 𝑙𝑜𝑔 (
𝑥 − 1

𝑟 − 1
) + 𝑟 log 𝜋∗(𝑝) + (𝑥 − 𝑟) log[1 − 𝜋∗(𝑝)] (28) 

The first-order derivative of the log maximum likelihood is 

  
∂

∂𝑝
𝐿(𝑝) = (

𝑟

𝜋∗(𝑝)
−

(𝑥 − 𝑟)

1 − 𝜋∗(𝑝)
)(

∂

∂𝑝
𝜋∗(𝑝))  

To obtain the MLE of p, we solve the equation 
∂

∂𝑝
𝐿(𝑝) = 0 which reduces to 

 
𝑟

𝜋∗(𝑝)
=  

𝑥 − 𝑟

1 − 𝜋∗(𝑝)
   

 𝜋∗(𝑝) =
𝑟

𝑥
  (29) 

Substituting the value of 𝜋∗(𝑝) = 𝜋1
2 + (1 − 𝑝)𝑘((1 − 𝜋0)

2 − 𝜋1
2) into equation (29) and 

solving for �̂� we obtain 

 𝜋1
2 + (1 − 𝑝)𝑘((1 − 𝜋0)

2 − 𝜋1
2) =

𝑟

𝑥
  (30) 

 (1 − 𝑝)𝑘((1 − 𝜋0)
2 − 𝜋1

2) =  
𝑟

𝑥
− 𝜋1

2   

 (1 − 𝑝)𝑘 = {

𝑟
𝑥 − 𝜋1

2

(1 − 𝜋0)2 − 𝜋12
} (31) 

 (1 − 𝑝) = {

𝑟
𝑥 − 𝜋1

2

(1 − 𝜋0)2 − 𝜋12
}

1
𝑘
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 �̂� = 1 − {
𝜋1

2 −
𝑟
𝑥

𝜋12 − (1 − 𝜋0)2
}

1
𝑘

. (32) 

To compute the MLE, Monte Carlo simulation was used, and the R code implementing the 

simulation study is annexed in Appendix C. 

Table 4. 1: MLE of p for 𝒌 = 𝟓, 𝟏𝟎, 𝟑𝟎, 𝟓𝟎 and 𝒓 = 𝟏, 𝟑, 𝟓, 𝟏𝟎, 𝟏𝟓 with Sensitivity = 

Specificity = 99% 

 Sensitivity=Specificity=0.99 

r 

p 1 3 5 10 15 

𝑘 = 5 
0.005 0.037083 

 

0.007335 

 

0.006203 

 

0.005540 0.005367 

 
0.01 0.072883 

 

0.014681 

 

0.012411 

 

0.011042 

 

0.010696 

 
0.05 0.277838 

 

0.077258 

 

0.062284 

 

0.055110 

 

0.053197 

 
0.10 0.454758 

 

0.175649 

 

0.128055 

 

0.110799 

 

0.106557 

 
0.20 0.697056 

 

0.419199 

 

0.306039 

 

0.230217 

 

0.215374 

 
0.30 0.837360 

 

0.643550 

 

0.526881 

 

0.392980 

 

0.347869 

 
𝑘 = 10 

0.005 0.060468 

 

0.007355 

 

0.006216 

 

0.005534 

 

0.005351 

0.01 0.108036 

 

0.015609 

 

0.012384 

 

0.011074 

 

0.010694 

0.05 0.421494 

 

0.116445 

 

0.069269 

 

0.055804 

 

0.053448 

0.10 0.658052 

 

0.330505 

 

0.199350 

 

0.120100 

 

0.108827 

0.20 0.885850 

 

0.709192 

 

0.587668 

 

0.403237 

 

0.309704 

0.30 0.957030 

 

0.879560 

 

0.815683 

 

0.696210 

 

0.613936 

𝑘 = 30 
0.005 0.143000 

 

0.010042 

 

0.006235 

 

0.005524 

 

0.005344 

 
0.01 0.267490 

 

0.027645 

 

0.013566 

 

0.011109 

 

0.010681 

 
0.05 0.774480 

 

0.475560 

 

0.302159 

 

0.120312 

 

0.070893 

 
0.10 0.943910 

 

0.833082 

 

0.740952 

 

0.569289 

 

0.442061 

 
0.20 0.978910 

 

0.940975 

 

0.903185 

 

0.824583 

 

0.754329 

 
0.30 0.980270 

 

0.944985 

 

0.908833 

 

0.834533 

 

0.766407 

 
𝑘 = 50 

0.005 0.228030 

 

0.015558 

 

0.006729 

 

0.005549 

 

0.005339 

 
0.01 0.394580 

 

0.067095 

 

0.019821 

 

0.011208 

 

0.010726 

 
0.05 0.911220 

 

0.746833 

 

0.620492 

 

0.394786 

 

0.257628 

 
0.10 0.975650 

 

0.928954 

 

0.883985 

 

0.787707 

 

0.704396 

 
0.20 0.980080 

 

0.944023 

 

0.906544 

 

0.828924 

 

0.756956 

 
0.30 0.980080 

 

0.944120 

 

0.906641 

 

0.829114 

 

0.756958 

 
It was observed from Table (4.1) that as prevalence increased, so did the MLE for any fixed 

value of r and k. When the group size and the waiting parameter r were large, low values of p 

resulted in a small MLE. Further, high values of k and p were sufficient to overestimate the 

prevalence even at large values of r. Thus, when imperfect tests are used with a known 
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accuracy, one can approximate the proportion p using a combination of r and k values. For 

example, when the tests are 99% accurate, a close approximation of 𝑝 = 0.005 was observed 

when 𝑟 = 15 and 𝑘 = 50.  

Table 4. 2: MLE of p for 𝒌 = 𝟓, 𝟏𝟎, 𝟑𝟎, 𝟓𝟎 and 𝒓 = 𝟏, 𝟑, 𝟓, 𝟏𝟎, 𝟏𝟓 with Sensitivity = 

Specificity = 95% 

Sensitivity=Specificity=0.95 

r 

p 1 3 5 10 15 

𝑘 = 5 
0.005 0.038622 0.007610 0.006360 0.005603 0.005395 

0.01 0.071528 0.015042 0.012561 0.011117 0.010732 

0.05 0.265143 0.077676 0.063117 0.055301 0.053403 

0.10 0.431582 0.171177 0.129080 0.111386 0.106820 

0.20 0.654666 0.380445 0.289774 0.242944 0.220649 

0.30 0.783361 0.563529 0.462084 0.435045 0.364367 

𝑘 = 10 
0.005 0.059278 0.007505 0.006288 0.005569 0.005385 

0.01 0.104496 0.015570 0.012492 0.011102 0.010694 

0.05 0.396336 0.109971 0.068458 0.056371 0.053830 

0.10 0.613479 0.283287 0.178538 0.132960 0.112020 

0.20 0.819533 0.590752 0.454833 0.457813 0.327689 

0.30 0.888036 0.720806 0.613523 0.682071 0.550181 

𝑘 = 30 
0.005 0.131180 0.009665 0.006296 0.005564 0.005354 

0.01 0.249600 0.025059 0.013159 0.011157 0.010702 

0.05 0.715270 0.382271 0.216061 0.168315 0.082148 

0.10 0.869140 0.663005 0.520282 0.581617 0.399407 

0.20 0.908870 0.746513 0.625290 0.725650 0.573274 

0.30 0.909650 0.748814 0.628502 0.729691 0.577710 

𝑘 = 50 
0.005 0.211400 0.014051 0.006738 0.005566 0.005356 

0.01 0.366630 0.056549 0.018093 0.011475 0.010757 

0.05 0.835370 0.592239 0.423074 0.454208 0.265026 

0.10 0.903890 0.732667 0.602974 0.702818 0.539048 

0.20 0.908720 0.743264 0.617231 0.721335 0.560229 

0.30 0.908720 0.743360 0.617327 0.721430 0.560235 

Scrutiny of Table (4.2) showed the performance of the MLE when the assay used for testing 

was 95% accurate. When k and r are sufficiently large, the MLE is small for low values of p. 

Conversely, when large group sizes and a sufficiently large waiting parameter r are used, the 

MLE overestimated the prevalence at high values of the proportion p. Furthermore, it was 

observed that when 𝑟 = 1 and 𝑘 = 50, the MLE increased to a maximum value as the p 

increased, and afterward, there was no rate of change observed. Finally, it was noted that at 

any fixed values of k and p, the MLE decreased as the waiting parameter r increased. 
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Table 4. 3: MLE of p for 𝒌 = 𝟓, 𝟏𝟎, 𝟑𝟎, 𝟓𝟎 and 𝒓 = 𝟏, 𝟑, 𝟓, 𝟏𝟎, 𝟏𝟓 with Sensitivity = 

Specificity = 90% 

Sensitivity= Specificity= 0.90 

r 

p 1 3 5 10 15 

𝑘 = 5 
0.005 0.049307 0.008527 0.006815 0.005810 0.005531 

0.01 0.076926 0.016140 0.013089 0.011332 0.010878 

0.05 0.250348 0.079561 0.064613 0.055680 0.053480 

0.10 0.409826 0.170627 0.137896 0.113133 0.107650 

0.20 0.605089 0.354179 0.332336 0.252703 0.228741 

0.30 0.720972 0.505047 0.530204 0.436243 0.390851 

𝑘 = 10 
0.005 0.063313 0.008169 0.006531 0.005687 0.005447 

0.01 0.104177 0.016312 0.012717 0.011231 0.010779 

0.05 0.373008 0.102652 0.076881 0.057527 0.054077 

0.10 0.561554 0.247224 0.230322 0.139804 0.118663 

0.20 0.745903 0.481790 0.549537 0.440285 0.379229 

0.30 0.804308 0.581238 0.682959 0.615026 0.574926 

𝑘 = 30 
0.005 0.125410 0.009260 0.006489 0.005617 0.005383 

0.01 0.234050 0.023474 0.015182 0.011231 0.010771 

0.05 0.646420 0.297767 0.330595 0.172557 0.113522 

0.10 0.782640 0.500725 0.620685 0.512636 0.452614 

0.20 0.814220 0.562920 0.694645 0.623274 0.582967 

0.30 0.815090 0.564349 0.697481 0.626114 0.587064 

𝑘 = 50 
0.005 0.193200 0.012956 0.008029 0.005616 0.005377 

0.01 0.339180 0.046552 0.026416 0.011909 0.010857 

0.05 0.752080 0.439925 0.546659 0.412779 0.334123 

0.10 0.809120 0.544807 0.679821 0.600676 0.555674 

0.20 0.812950 0.552098 0.690189 0.614254 0.571822 

0.30 0.812950 0.552098 0.690189 0.614254 0.571822 

Scrutiny of Table (4.3) shows that when the accuracies of the assays are 90% accurate, the 

MLE was observed to be a monotone increasing function of r, k, and p. Large group sizes 

produced close approximations of p when the waiting parameter r was large. Generally, when 

the waiting parameter r was small, the MLE tended to overestimate the prevalence level, even 

at large group sizes. Therefore, to obtain a close approximation of p, both the waiting parameter 

r and group size k have to be relatively large. 
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4.6 Characteristic of  �̂� 

In this section, the behaviour of the MLE was investigated by plotting �̂� against p at different 

group sizes by varying the waiting parameter r when the sensitivity and specificity of the tests 

were set at 0.99 as illustrated below. 
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Figure 4. 4: Relationship between �̂� and p for k = 5, 15, 30, 50 and r = 2, 5, 10 and 15 when 

Sensitivity = Specificity = 0.99 

Figure (4.4) illustrates the relationship between the MLE and the prevalence level at different 

waiting parameters r when the group sizes are fixed. It was observed that when the accuracy 

of the assay was 99%, the relationship was observed to be monotonic. The relationship 

increased to a maximum and afterward, there was no observable rate of change. Secondly, as 

the group size increased, a steep gradient was observed at low values of the prevalence when 
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the waiting parameter r was small. The plots depict that the MLE overestimated the prevalence 

and it confirmed previous studies that the MLE is positively biased, especially at high 

prevalence. 

The relationship between the MLE and the prevalence level was also considered at different 

group sizes, and different waiting parameters r when the sensitivity and specificity of the 

tests are set at 99% as presented in Figures (4.5) below 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 5: Relationship between �̂� and p for 𝒓 = 𝟐, 𝟓, 𝟏𝟎, 𝟏𝟓 and 𝒌 = 𝟓, 𝟏𝟓, 𝟑𝟎, 𝟓𝟎 with 

Sensitivity = Specificity = 0.99 

When the assays used are 99% accurate, it was observed that the MLE is a non-decreasing 

function of the proportion p, group size k, and the waiting parameter r. The MLE increased to 

a maximum as the prevalence increased, and afterward, no rate of change was observed. Lastly, 

when the group sizes were large, a steep gradient was observed at a low prevalence level for 

any predetermined waiting parameter r.  
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The relationship between the MLE and the prevalence level was also investigated for various 

group sizes and at different sensitivity(𝜂) and specificity(𝛽) values when the waiting 

parameter 𝑟 = 1 as illustrated in Figures (4.6) below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 6: Relationship between �̂� and p for 𝒌 = 𝟓, 𝟏𝟓, 𝟑𝟎, 𝟓𝟎 and 𝒓 = 𝟏 with sensitivity 

= specificity = 0.99, 0.98, 0.95, 0.90 

Figure (4.6) showed that at a certain waiting parameter r, a steep gradient appeared at low 

prevalence values as the group sizes increased. It was also observed that the relationship 

between MLE and the proportion p increased monotonically regardless of the test accuracy. 

The MLE was observed to increase to a maximum and afterward, no rate of change was 

observed. Lastly, it was observed that the MLE is affected by group size, and prevalence level, 
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assuming the accuracy of the testing assay is known. Lastly, as p increased, high sensitivity 

and specificity values were associated with high MLE values. 

Lastly, the relationship between the MLE and the prevalence level was investigated at various 

waiting parameters r and known sensitivity(𝜂) and specificity(𝛽) values of the tests when the 

group size 𝑘 = 5 as illustrated in the figures below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 7: Plots of �̂� against p for 𝒓 = 𝟏, 𝟓, 𝟏𝟎, 𝟏𝟓 and sensitivity = specificity = 0.99, 

0.98, 0.95 and 0.90 with k = 5 

Figure (4.7) exhibits the relationship between the MLE and the proportion p at fixed group 

sizes. It was observed that as the value of r increased, the prevalence level in the interval 0 <

𝑝 < 0.6 showed an almost linear relationship. As r increased, it was observed that the 

behaviour of the gradient became more gradual. High sensitivity and specificity resulted in 

higher MLE values as prevalence increased. In general, the MLE increases as the group size, 
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prevalence level, and waiting parameter r increase, assuming that the accuracy of the assay 

used for testing is known. 

4.7 Properties of the Estimator 

     In this section, the properties of the estimator such as biasedness, asymptotic variance, and 

mean squared error of the estimator were considered. 

4.7.1 Biasedness of the estimator 

     The MLE of the binomial model was shown to be unbiased when 𝑘 = 1, but for 𝑘 ≥ 1, 

Jensen’s inequality was used to show that the estimator overestimated the prevalence (Muhua, 

2010). Jensen’s inequality states that if a function of 𝑓(𝑡) is a convex function, then 𝐸[𝑓(𝑡)] ≥

𝑓[𝐸(𝑡)], and if 𝑓(𝑡) is a concave function, then 𝐸[𝑓(𝑡)] ≤ 𝑓[𝐸(𝑡)], provided that the 

expectations exist and are finite (Billingsley, 1995).  

     A similar approach using Jensen’s inequality was used to prove that the MLE overestimated 

the prevalence level for 𝑘 > 1. 

Preposition 1 

The value of the estimator �̂� given in equation (32) overestimates the prevalence of a rare 

trait when k is greater than one (𝑘 > 1). 

Proof 

To prove this proposition, Jensen’s inequality was used. 

Approach 1: 

From equation (32), if it is assumed that 

 �̂� = 1 − {
𝜋1

2 −
𝑟
𝑥

𝜋12 − (1 − 𝜋0)2
}

1
𝑘

  

is continuous. Then  

 𝜕�̂�

𝜕𝑥
= −

𝑟

𝑘𝑥2
{

𝜋1
2 −

𝑟
𝑥

𝜋12 − (1 − 𝜋0)2
}

1−𝑘
𝑘

× (
1

𝜋12 − (1 − 𝜋0)2
) (33) 

 and  
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𝜕2�̂�

𝜕𝑥2
= 

1

𝑘𝑥3
× (

2𝑟

𝜋12 − (1 − 𝜋0)2
) × {

𝜋1
2 −

𝑟
𝑥

𝜋12 − (1 − 𝜋0)2
}

1−𝑘
𝑘

+
𝑟2

𝑘𝑥4
(
𝑘 − 1

𝑘
) × (

1

𝜋12 − (1 − 𝜋0)2
)
2

× {
𝜋1

2 −
𝑟
𝑥

𝜋12 − (1 − 𝜋0)2
}

1−2𝑘
𝑘

≥ 0.  

Hence, �̂� is convex as long as 𝑘 > 1 and 𝜋1
2 ≥  

𝑟

𝑥
 . 

(34) 

Since �̂� is a function of x, say 𝜙(𝑥), then by Jensen’s inequality, 

𝐸[𝜙(𝑥)] ≥  𝜙[𝐸(𝑥)].  

Therefore, under this condition 

 𝐸(�̂�) = 𝐸

{
 

 

1 − [
𝜋1

2 −
𝑟
𝑥

𝜋1
2 − (1 − 𝜋0)

2
]

1
𝑘

}
 

 

  

 𝐸(�̂�) ≥ 1 − 𝐸 [
𝜋1

2 −
𝑟
𝑥

𝜋12 − (1 − 𝜋0)2
]

1
𝑘

. (35) 

Since 𝐸 (
1

𝑥
) ≥ (

1

𝐸[𝑥]
) by Jensen inequality, then  

 𝐸(�̂�) ≥ 1 − [
𝜋1

2 − 
𝑟

𝐸[𝑥]

𝜋12 − (1 − 𝜋0)2
]

1
𝑘

. (36) 

Substituting  𝐸[𝑥] =
𝑟

𝜋∗(𝑝)
  where 𝜋∗(𝑝) = 𝜋1

2 + (1 − 𝑝)𝑘((1 − 𝜋0)
2 − 𝜋1

2), into equation 

(36) it reduces to 

 𝐸(�̂�) ≥ 1 − [
(𝜋1

2 − (1 − 𝜋0)
2)(1 − 𝑝)𝑘

𝜋12 − (1 − 𝜋0)2
]

1
𝑘

  

  𝐸(�̂�) ≥ 𝑝. (37) 

Hence for 𝑘 > 1 the estimator �̂� overestimates 𝑝. 

Approach 2: 

If we let,  
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 𝑦(𝑥) = {
𝜋1

2 −
𝑟
𝑥

𝜋12 − (1 − 𝜋0)2
}

1
𝑘

 (38) 

 𝜕𝑦(𝑥)

𝜕𝑥
=

𝑟

𝑘𝑥2
(

𝜋1
2 −

𝑟
𝑥

𝜋12 − (1 − 𝜋0)2
)

1−𝑘
𝑘

× (
1

𝜋12 − (1 − 𝜋0)2
). (39) 

 

  
𝜕2𝑦(𝑥)

𝜕𝑥2
=  

{
 
 

 
 
𝑟2

𝑘𝑥4
× (

1 − 𝑘

𝑘
) × (

𝜋1
2 −

𝑟
𝑥

𝜋12 − (1 − 𝜋0)2
)

1−2𝑘
𝑘

× (
1

(𝜋1
2 − (1 − 𝜋0)

2)2
)
2

}
 
 

 
 

−
2𝑟

𝑘𝑥3
× (

𝜋1
2 −

𝑟
𝑥

𝜋12 − (1 − 𝜋0)2
)

1−𝑘
𝑘

× (
1

𝜋12 − (1 − 𝜋0)2
) ≤ 0. 

Therefore, y(𝑥) is concave for 𝑘 > 1 and 𝜋1
2 >  

𝑟

𝑥
 . 

(40) 

Thus, by Jensen inequality 𝐸[𝑦(𝑥)] ≤ 𝑦[𝐸(𝑥)], 

 𝐸 {
𝜋1

2 −
𝑟
𝑥

𝜋12 − (1 − 𝜋0)2
}

1
𝑘

≤ {
𝜋1

2 −
𝑟

𝐸(𝑥)

𝜋12 − (1 − 𝜋0)2
}

1
𝑘

 (42) 

 1 − 𝐸 {
𝜋1

2 −
𝑟
𝑥

𝜋12 − (1 − 𝜋0)2
}

1
𝑘

≥ 1 − {
𝜋1

2 −
𝑟

𝐸(𝑥)

𝜋12 − (1 − 𝜋0)2
}

1
𝑘

. (43) 

Since 𝐸 (
1

𝑥
) ≥ (

1

𝐸[𝑥]
) by Jensen Inequality, and 𝐸(𝑥) =

𝑟

𝜋∗(𝑝)
 , where 𝜋∗(𝑝) = 𝜋1

2 +

(1 − 𝑝)𝑘((1 − 𝜋0)
2 − 𝜋1

2) substituting in equation (38) simplifies to  

 𝐸(�̂�) ≥  {
(𝜋1

2 − (1 − 𝜋0)
2)(1 − 𝑝)𝑘

𝜋12 − (1 − 𝜋0)2
}

1
𝑘

 (44) 

 ≥ 1 − (1 − 𝑝)  

 𝐸(�̂�) ≥ 𝑝. (45) 

Hence for 𝑘 > 1 the estimator �̂� overestimates 𝑝. 
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Approach 3: 

The expectation of equation (32) can be expressed as 

 𝐸(�̂�) = 1 − 𝐸 [(
1

𝜋12 − (1 − 𝜋0)2
) (𝜋1

2 −
𝑟

𝑥
)]

1
𝑘
. (46) 

Let  𝐸(�̂�) = 1 − 𝐸[𝑦(𝑥)]  

where  𝑦(𝑥) = [(
1

𝜋12 − (1 − 𝜋0)2
) (𝜋1

2 −
𝑟

𝑥
)]

1
𝑘
.  

Then,  
𝜕𝑦(𝑥)

𝜕𝑥
=

𝑟

𝑘𝑥2
[

𝜋1
2 −

𝑟
𝑥

𝜋12 − (1 − 𝜋0)2
]

1−𝑘
𝑘

× (
1

𝜋12 − (1 − 𝜋0)2
) . (47) 

 

 
𝜕2𝑦(𝑥)

𝜕𝑥2
=

{
 
 

 
 
𝑟2

𝑘𝑥4
× (

1 − 𝑘

𝑘
) × (

𝜋1
2 −

𝑟
𝑥

𝜋12 − (1 − 𝜋0)2
)

1−2𝑘
𝑘

× (
1

𝜋12 − (1 − 𝜋0)2
)
2

}
 
 

 
 

−
2𝑟

𝑘𝑥3
× (

𝜋1
2 −

𝑟
𝑥

𝜋12 − (1 − 𝜋0)2
)

1−𝑘
𝑘

× (
1

𝜋12 − (1 − 𝜋0)2
) ≤ 0. 

Therefore, y(t) is concave for 𝑘 > 1 and 𝜋1
2 ≥ 

𝑟

𝑥
 . 

(48) 

Therefore, by Jensen's inequality 𝐸[𝑦(𝑥)] ≤ 𝑦[𝐸(𝑥)], 

 𝐸 [(
1

𝜋12 − (1 − 𝜋0)2
) (𝜋1

2 −
𝑟

𝑥
)]

1
𝑘
≤ [(

1

𝜋12 − (1 − 𝜋0)2
) (𝜋1

2 −
𝑟

𝐸(𝑥)
)]

1
𝑘
 (49) 

Substituting 𝐸[𝑇] =
𝑟

𝜋∗(𝑝)
  where 𝜋∗(𝑝) = 𝜋1

2 + (1 − 𝑝)𝑘((1 − 𝜋0)
2 − 𝜋1

2) equation (44) 

reduces to  

 𝐸 [(
1

𝜋12 − (1 − 𝜋0)2
) (𝜋1

2 −
𝑟

𝑥
)]

1
𝑘
≤ {

(1 − 𝑝)𝑘(𝜋1
2
− (1 − 𝜋0)

2)

𝜋12 − (1 − 𝜋0)2
}

1
𝑘

.  

Which implies that 

 −𝐸 [(
1

𝜋1
2 − (1 − 𝜋0)

2
) (𝜋1

2 −
𝑟

𝑥
)]

1
𝑘
≥ −(1 − 𝑝). (50) 
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 1 − 𝐸 [(
1

𝜋1
2 − (1 − 𝜋0)

2
) (𝜋1

2 −
𝑟

𝑥
)]

1
𝑘
≥ 1 − (1 − 𝑝). (51) 

Hence,  

 𝐸(�̂�) ≥ 𝑝 . (52) 

Thus for 𝑘 > 1 and 𝜋1
2 ≥ 

𝑟

𝑥
,  �̂� overestimates 𝑝. 

     The bias of an estimator measures the average error incurred when using the estimate of a 

parameter. It was pointed out that bias was particularly useful in evaluating point estimates 

(Thompson, 1962). The exact bias of an estimator is given by: 

 𝑏𝑖𝑎𝑠(�̂�) = 𝐸(�̂�) − 𝑝. (53) 

Because 𝑥~Negative Binomial (𝑟, 𝜋∗(𝑝)) where 𝜋∗(𝑝) = 𝜋1
2 + (1 − 𝑝)𝑘((1 − 𝜋0)

2 −

𝜋1
2). The exact bias and the MSE can be expressed as an infinite sum. It was noted that the 

sums do not reduce to anything tractable. Thus, the bias and the MSE of an estimator �̂� were 

suggested by Pritchard and Tebbs (2011b) to be approximated as shown in equation (21) given 

as follows 

 𝐵𝑖𝑎𝑠(�̂�) = ∑(�̂� − 𝑝) (
𝑥 − 1

𝑟 − 1
)

𝑥∗

𝑥=𝑟

𝜋∗(𝑝)𝑟(1 − 𝜋∗(𝑝))𝑥−𝑟  

Since the sums do not reduce to anything tractable Monte Carlo simulations were invoked and 

the R code implementing the simulation study that computes the Bias Tables is annexed in 

Appendix C. 
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Table 4. 4: Bias of �̂� for various values of p with 𝒓 = 𝟏, 𝟑, 𝟓, 𝟏𝟎, 𝟏𝟓 and 𝒌 = 𝟓, 𝟏𝟎, 𝟑𝟎, 𝟓𝟎 

at sensitivity = specificity = 99% 

Bias  × 10−4 

r 

p 1 3 5 10 15 

𝑘 = 5 
0.005 362.80610 37.39135 23.41135 14.38200 11.23476 

0.01 653.08290 74.66184 46.54191 28.62074 22.36416 

0.05 2371.60600 418.93271 231.33740 140.27249 109.71514 

0.10 3840.02890 1037.38995 511.51869 279.00437 217.11517 

0.20 5573.34120 2682.07576 1513.74906 650.96485 456.72240 

0.30 6035.75530 4163.31983 2864.88066 1455.92420 925.87968 

0.40 5685.07450 4860.81024 4057.69919 2519.13300 1829.42647 

𝑘 = 10 
0.005 567.82770 38.23104 23.37473 14.36144 11.21754 

0.01 1048.95920 80.94800 46.73266 28.64085 22.37064 

0.05 3856.78190 821.10962 309.72758 145.44342 112.11377 

0.10 5901.92240 2564.13220 1247.39388 391.76074 247.93661 

0.20 7167.71460 5611.21106 4330.80178 2387.50558 1421.94666 

0.30 6777.53620 6278.09096 5776.61834 4625.86607 3656.79622 

0.40 5930.78080 5748.91242 5547.54441 5027.30965 4520.02533 

𝑘 = 30 
0.005 1407.68200 61.49968 24.03181 14.39814 11.23803 

0.01 2572.09800 228.50082 57.97831 29.02309 22.58504 

0.05 7379.39100 4393.14376 2659.68468 818.70792 315.13048 

0.10 8494.38800 7535.94242 6669.32861 4886.44017 3558.92440 

0.20 7868.38400 7599.10928 7331.94058 6691.10470 6096.45891 

0.30 6915.64500 6738.41412 6559.49977 6122.70470 5709.80285 

0.40 5955.53000 5855.73383 5751.20042 5487.76257 5231.61935 

𝑘 = 50 
0.005 2191.00100 135.81610 28.52969 14.49044 11.28822 

0.01 3858.27000 625.75440 131.99412 30.48499 23.01542 

0.05 8629.29400 7095.11760 5821.19533 3537.86433 2194.31129 

0.10 8796.89600 8395.50360 8007.35776 7103.89562 6294.55529 

0.20 7877.70300 7632.13780 7390.91512 6816.34526 6285.50365 

0.30 6917.58000 6749.42800 6582.56056 6181.28160 5807.13767 

0.40 5957.37300 5866.46570 5773.79640 5545.46300 5327.73594 

Table (4.4) showed that for any fixed values of the group size k and the waiting parameter r, 

the absolute bias of the estimator increased to a maximum as the optimal value of the 

prevalence was attained, and afterward decreased as the prevalence increased. Conversely, for 

a given group size and prevalence level, the absolute bias of the estimator decreased as the 

waiting parameter r increased. The results showed that it was possible to get a set of r and k 

values that yield a minimum absolute bias at a particular value of the prevalence. For example, 

when 𝑝 = 0.005, the minimum bias was observed at 𝑟 = 15 and 𝑘 = 10. 
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Table 4. 5: Bias of �̂� for various values of p with 𝒓 = 𝟏, 𝟑, 𝟓, 𝟏𝟎, 𝟏𝟓 and 𝒌 = 𝟓, 𝟏𝟎, 𝟑𝟎, 𝟓𝟎 

at sensitivity = specificity = 95% 

Bias  × 10−4 

r 

p 1 3 5 10 15 

𝑘 = 5 
0.005 380.76220 41.52092 25.95154 15.93273 12.44444 

0.01 653.68000 79.14075 49.22275 30.22827 23.61278 

0.05 2255.26870 419.97179 238.73971 144.13236 112.44601 

0.10 3602.94990 978.32673 521.57424 293.12960 225.82892 

0.20 5175.96070 2294.87368 1354.88762 808.08288 519.35439 

0.30 5677.46480 3303.48420 2321.27912 1906.67545 1137.52123 

0.40 5434.48780 4046.78395 2823.63207 2950.41699 1981.60932 

𝑘 = 10 
0.005 560.99250 40.47671 24.74973 15.17049 11.84578 

0.01 1008.15300 83.12783 48.40546 29.57685 23.08846 

0.05 3593.23780 735.62461 302.91655 153.64969 116.63904 

0.10 5458.47350 2124.49065 1032.87077 524.91204 284.51085 

0.20 6698.41200 4483.44720 3047.88096 2993.50067 1674.04049 

0.30 6418.43550 5219.55184 4137.03897 4614.50812 3137.79043 

0.40 5718.11860 5026.75652 4321.83066 4731.85814 3693.31595 

𝑘 = 30 
0.005 1325.23900 58.81119 24.68150 14.79048 11.52974 

0.01 2396.62500 201.03076 57.00882 29.91896 23.19216 

0.05 6817.86500 3479.66278 1848.61660 1315.15555 442.30362 

0.10 7881.07700 5984.48217 4502.89514 5074.04357 3235.39221 

0.20 7383.34200 6252.38117 5276.53975 6002.40539 4670.04657 

0.30 6585.20200 5799.59064 5103.11115 5617.62121 4654.29024 

0.40 5780.27900 5329.62519 4905.94283 5201.99972 4597.72182 

𝑘 = 50 
0.005 2042.00100 118.19540 28.08787 14.90331 11.57584 

0.01 3573.01200 513.19890 108.85200 33.54519 23.92129 

0.05 7974.66300 5579.64670 3875.45159 4143.91552 2256.64394 

0.10 8167.33000 6701.98660 5484.81003 6367.58059 473092535 

0.20 7400.01500 6325.07340 5414.47400 6117.29080 4889.21737 

0.30 6595.08500 5855.0844 5217.26849 5701.61852 4832.57489 

0.40 5790.07600 5384.89830 5019.79203 5285.59631 4775.47022 

Scrutiny of Table (4.5) showed that when the test kits used were 95% accurate, the absolute 

bias of the estimator increased to a maximum as the optimal prevalence value was attained and 

afterward decreased for fixed group sizes and waiting parameter r. However, when the group 

sizes and the prevalence levels were fixed, the absolute bias decreased to a minimum value as 

the optimal value of the waiting parameter r was attained, and afterward increased. The results 

showed that one can estimate the prevalence level at a predetermined optimal value of the 
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waiting parameter r that would register the least bias when the group sizes are known. For 

example, when 𝑟 = 15 and 𝑘 = 30 the least bias was observed at 𝑝 = 0.005 . 

Table 4. 6: Bias of �̂� for various values of p with 𝒓 = 𝟏, 𝟑, 𝟓, 𝟏𝟎, 𝟏𝟓 and 𝒌 = 𝟓, 𝟏𝟎, 𝟑𝟎, 𝟓𝟎 

with sensitivity and specificity = 90% 

Bias  × 10−4 

r 

p 1 3 5 10 15 

𝑘 = 5 
0.005 467.90050 56.36712 35.08247 21.51645 16.80186 

0.01 714.20770 94.79655 58.57850 35.89432 28.02674 

0.05 2163.61020 444.46113 260.33995 152.67300 118.80335 

0.10 3349.73070 981.77386 621.57221 315.40921 239.84322 

0.20 4694.99310 2105.61612 1829.82767 917.39839 617.72843 

0.30 5232.37050 2894.22145 3058.52693 1988.99850 1477.08288 

0.40 5112.76240 3044.61997 3735.69578 2865.89693 2393.39554 

𝑘 = 10 
0.005 605.22390 48.60525 29.48837 18.02489 14.06701 

0.01 1007.63300 92.46712 53.79461 32.62030 25.43748 

0.05 3309.68030 689.20618 403.12087 165.89926 123.97599 

0.10 4933.90670 1803.39974 1585.10099 613.01676 354.75481 

0.20 6129.29920 3414.35979 4061.27359 2860.10880 2204.29724 

0.30 5977.05470 4019.89376 4898.19411 4077.44902 3561.66834 

0.40 5450.54620 4153.55514 4796.22757 4277.17188 3927.98009 

𝑘 = 30 
0.005 1268.80300 60.38560 27.75081 15.92456 12.39351 

0.01 2223.72000 183.55030 76.01481 31.74067 24.46841 

0.05 6153.52500 2636.61550 2929.40045 1398.82986 761.90235 

0.10 7146.73100 4396.39780 5549.06096 4428.67280 3783.53477 

0.20 6800.14500 4860.69110 5878.30405 5234.381140 4843.02142 

0.30 6186.25000 4810.24840 5534.04576 5069.59304 4782.58953 

0.40 5566.31800 4747.52150 5174.39042 4881.96047 4693.82582 

𝑘 = 50 
0.005 1902.02900 106.72100 37.78836 15.81898 12.23804 

0.01 3262.31600 416.76720 209.42977 37.59929 25.50609 

0.05 7194.70200 4056.87530 5118.21118 3748.93108 2947.16756 

0.10 7414.01000 4992.51820 6242.69631 5441.75945 4962.77907 

0.20 6827.53100 4996.38140 5966.69413 5376.87823 5025.23179 

0.30 6207.59300 4933.63780 5607.01724 5189.20952 4936.42050 

0.40 5587.58400 4870.75320 5247.16406 5001.28083 4847.28771 

Scrutiny of Table (4.6) showed that the absolute bias increases to a maximum value when the 

tests are 90% accurate, irrespective of the waiting parameter r and group size k, then decreases 

as the optimal prevalence value is reached. before decreasing. Also noted was for any fixed 

value of proportion p and the group size k, the absolute bias decreased as the optimal value of 
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the waiting parameter r increased. Generally, an optimized absolute bias of the estimator can 

be obtained from a combination of r and k values at a particular prevalence level. 

4.7.2 The Asymptotic Variance of the Estimator 

     The asymptotic variance of the estimator is obtained by computing the Fisher’s information 

given by  

 𝑣𝑎𝑟(�̂�) = {−𝐸 (
𝜕2ℓ(𝑝)

𝜕𝑝2
)}

−1

. (54) 

It can be shown that 

 
𝑣𝑎𝑟(�̂�) = [

1 − (𝜋1
2 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)

2 − 𝜋1
2))

𝑟𝑘2(1 − 𝑝)2𝑘−2 × ((1 − 𝜋0)2 − 𝜋12)2
]

× (𝜋1
2 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)

2 − 𝜋1
2))2. 

(55) 

 

The Cramer-Rao bound method was used to derive the variance of the estimator and to show 

that when the waiting parameter r was large, the variance of the estimator was best 

asymptotically normally distributed.  

Method Based on Cramer-Rao Bound 

 
Lim
𝑟→∞

𝑣𝑎𝑟(�̂�) =
1

−𝐸 (
𝜕2ℓ(𝑝)
𝜕𝑝2

)
 . 

(56) 

The Likelihood function is given by 

 
𝐿(𝑝) = (

𝑥 − 1

𝑟 − 1
) (𝜋1

2 + (1 − 𝑝)𝑘((1 − 𝜋0)
2 − 𝜋1

2))𝑟  

× (1 − (𝜋1
2 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)

2 − 𝜋1
2)))𝑥−𝑟. 

(57) 

The log-likelihood function ℓ(𝑝) becomes  

 

ℓ(𝑝) = 𝑟 log(𝜋1
2 + (1 − 𝑝)𝑘((1 − 𝜋0)

2 − 𝜋1
2))

+ (𝑥 − 𝑟) log(1 − (𝜋1
2 + (1 − 𝑝)𝑘((1 − 𝜋0)

2 − 𝜋1
2))). 

(58) 

 

   
𝜕ℓ(𝑝)

𝜕𝑝
=
−𝑟𝑘(1 − 𝑝)𝑘−1 × ((1 − 𝜋0)

2 − 𝜋1
2)

𝜋12 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)2 − 𝜋12)

+ (𝑥 − 𝑟)
𝑘(1 − 𝑝)𝑘−1((1 − 𝜋0)

2 − 𝜋1
2)

1 − (𝜋1
2 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)

2 − 𝜋1
2))
  

(59) 

which reduces to 
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𝜕ℓ(𝑝)

𝜕𝑝
=  

𝑘

(1 − 𝑝)
[𝑟 (

𝜋1
2

𝜋12 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)2 − 𝜋12)
 − 1)

− (𝑥 − 𝑟) (1 −
(1 − 𝜋1

2)

1 − (𝜋12 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)2 − 𝜋12))
 )] 

(60) 

 

𝜕2ℓ(𝑝)

𝜕𝑝2
=

𝑘

(1 − 𝑝)2
[𝑟 (

𝜋1
2

𝜋12 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)2 − 𝜋12)
 − 1)

− (𝑥 − 𝑟) (1 −
(1 − 𝜋1

2)

1 − (𝜋12 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)2 − 𝜋12))
 )]

+ 
𝑘

(1 − 𝑝)
[ 𝑟 (

𝜋1
2𝑘(1 − 𝑝)𝑘−1 × ((1 − 𝜋0)

2 − 𝜋1
2))

[ 𝜋12 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)2 − 𝜋12)]2
 )

− 𝑘(𝑥 − 𝑟) (
(1 − 𝜋1

2) × (1 − 𝑝)𝑘−1 × ((1 − 𝜋0)
2 − 𝜋1

2))

[ 1 − (𝜋12 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)2 − 𝜋12)]2 
 )]. 

(61) 

Equation (61) can be simplified to 

 

𝜕2ℓ(𝑝)

𝜕𝑝2
=

𝑘

(1 − 𝑝)2
[−𝑟 (

(1 − 𝑝)𝑘 × ((1 − 𝜋0)
2 − 𝜋1

2)

𝜋12 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)2 − 𝜋12)
 )

+ (𝑥 − 𝑟) (
(1 − 𝑝)𝑘 × ((1 − 𝜋0)

2 − 𝜋1
2)

1 − (𝜋12 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)2 − 𝜋12))
 )]

+ 
𝑘2

(1 − 𝑝)2
[𝑟 (

𝜋1
2 × (1 − 𝑝)𝑘 × ((1 − 𝜋0)

2 − 𝜋1
2)

[ 𝜋12 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)2 − 𝜋12)]2
 )

− (𝑥 − 𝑟) (
(1 − 𝜋1

2) × (1 − 𝑝)𝑘 × ((1 − 𝜋0)
2 − 𝜋1

2))

[ 1 − (𝜋12 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)2 − 𝜋12)]2 
 )]. 

(62) 

Since 𝑥 follows the negative binomial distribution with parameters(𝑟, 𝜋∗(𝑝)), where 

𝜋∗(𝑝) = 𝜋1
2 + (1 − 𝑝)𝑘((1 − 𝜋0)

2 − 𝜋1
2) then 

 𝐸(𝑡) =
𝑟

𝜋∗(𝑝)
  

         𝐸(𝑥 − 𝑟) = 𝑟 (
1 − 𝜋∗(𝑝)

𝜋∗(𝑝) 
 ). (63) 

Substituting the value of 𝜋∗(𝑝) = 𝜋1
2 + (1 − 𝑝)𝑘((1 − 𝜋0)

2 − 𝜋1
2) into equation (63) it 

reduces to 

         𝐸(𝑥 − 𝑟) = 𝑟 (
1 − 𝜋1

2 − (1 − 𝑝)𝑘 × ((1 − 𝜋0)
2 − 𝜋1

2)

𝜋12+(1 − 𝑝)𝑘 × ((1 − 𝜋0)2 − 𝜋12)
 ). (64) 

Substituting equation (64) into equation (62) reduces to 
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−𝐸 (
𝜕2ℓ(𝑝)

𝜕𝑝2
) =

𝑟𝑘2

(1 − 𝑝)2
[(

(1 − 𝑝)𝑘 × ((1 − 𝜋0)
2 − 𝜋1

2)

𝜋12 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)2 − 𝜋12)
 )

− (
1 − 𝜋1

2 − (1 − 𝑝)𝑘 × (𝜋1
2 − (1 − 𝜋0)

2)

𝜋1
2 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)

2 − 𝜋1
2)

 )

× (
(1 − 𝑝)𝑘 × ((1 − 𝜋0)

2 − 𝜋1
2)

[ 1 − (𝜋12 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)2 − 𝜋12))]2 
 )]

+ 
𝑟𝑘2

(1 − 𝑝)2

[
 
 
 
 
 
 
 − (

𝜋1
2 × (1 − 𝑝)𝑘 × ((1 − 𝜋0)

2 − 𝜋1
2)

[ 𝜋12 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)2 − 𝜋12)]2
 ) + 

(
1 − (𝜋1

2 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)
2 − 𝜋1

2))

𝜋12+(1 − 𝑝)𝑘 × ((1 − 𝜋0)2 − 𝜋12)
 ) ×

(
(1 − 𝜋1

2)

[ 1 − (𝜋12 + (1 − 𝑝)𝑘((1 − 𝜋0)2 − 𝜋12))]2 
 )
]
 
 
 
 
 
 
 

 

(65) 

which simplify to 

 

−𝐸 (
𝜕2ℓ(𝑝)

𝜕𝑝2
)

=
𝑟𝑘2(1 − 𝑝)2𝑘

(1 − 𝑝)2
[(

((1 − 𝜋0)
2 − 𝜋1

2)2

1 − (𝜋1
2 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)

2 − 𝜋1
2))
 )]

× (
1

(𝜋12 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)2 − 𝜋12)2
 ). 

(66) 

 
Lim
𝑛→∞

𝑣𝑎𝑟(�̂�) =
1

−𝐸 (
𝜕2ℓ(𝑝)
𝜕𝑝2

)
 

 

which simplifies to 

 

Lim
𝑟→∞

𝑣𝑎𝑟(�̂�)

= (
(1 − 𝑝)2

𝑟𝑘2(1 − 𝑝)2𝑘
) [
1 − (𝜋1

2 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)
2 − 𝜋1

2))

((1 − 𝜋0)2 − 𝜋12)2
] × (𝜋1

2

+ (1 − 𝑝)𝑘 × ((1 − 𝜋0)
2 − 𝜋1

2))2 

(67) 

 
= (

(1 − 𝑝)2−2𝑘

𝑟𝑘2
) [
1 − (𝜋1

2 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)
2 − 𝜋1

2)))

(𝜋12 − (1 − 𝜋0)2)2
] × (𝜋1

2

+ (1 − 𝑝)𝑘 × ((1 − 𝜋0)
2 − 𝜋1

2)))2. 

(68) 

 
Lim
𝑟→∞

𝑣𝑎𝑟(�̂�) = [
1 − (𝜋1

2 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)
2 − 𝜋1

2))

𝑟𝑘2(1 − 𝑝)2𝑘−2 × (𝜋12 − (1 − 𝜋0)2)2
] (𝜋1

2

+ (1 − 𝑝)𝑘 × ((1 − 𝜋0)
2 − 𝜋1

2))2.  

(69) 

Hence, the variance of �̂� becomes 
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𝑣𝑎𝑟(�̂�) = [

1 − (𝜋1
2 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)

2 − 𝜋1
2))

𝑟𝑘2(1 − 𝑝)2𝑘−2 × ((1 − 𝜋0)2 − 𝜋12)2
]

× (𝜋1
2 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)

2 − 𝜋1
2))2. 

 

Thus, The Cramer Rao Lower Bound gives the same asymptotic variance of p and shows that 

the estimator is the Best Asymptotic Normal for large waiting parameter r. That is for fixed k, 

sensitivity and specificity of a test, and 𝑟 → ∞, 

 𝐼(�̂� )−
1
2( �̂� − 𝑝) → 𝑁(0, 𝑣𝑎𝑟(�̂�)). (70) 
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Table 4. 7: variance of (�̂�) against p for various values of p when k = 15, 𝒓 = 𝟏, 𝟑, 𝟓, 𝟏𝟎 

and with sensitivity and specificity = 99%, 98%, 95%, and 90% 

k = 15 

r 

p 1 3 5 10 

Sensitivity = Specificity = 0.99 
0.005 40011.0040 120033.0120 200055.0200 400110.0401 

0.010 10035.8073 30107.4219 50179.0365 100358.0730 

0.050 391.8239 1175.4718 1959.1197 3918.2394 

0.100 84.2147 252.6440 421.0733 842.1466 

0.200 8.5956 25.7869 42.9781 85.9562 

Sensitivity = Specificity = 0.98 
0.005 39617.1518 118851.4553 198085.7589 396171.5178 

0.010 9962.0121 29886.0362 49810.0604 99620.1207 

0.050 382.9342 1148.8025 1914.6709 3829.3418 

0.100 78.6214 235.8642 393.1070 786.2141 

0.200 6.3662 19.0985 31.8309 63.6617 

Sensitivity = Specificity = 0.95 
0.005 37079.1739 111237.5216 185395.8693 370791.7385 

0.010 9565.5124 28696.5373 47827.5622 95655.1244 

0.050 357.3788 1072.1365 1786.8942 3573.7884 

0.100 65.5688 196.7063 327.8440 655.6879 

0.200 3.5959 10.7967 17.9944 35.9889 

Sensitivity = Specificity = 0.90 

0.005 29084.0152 87252.0456 145420.0759 290840.1519 

0.010 8322.2950 24966.8849 41611.4749 83222.9497 

0.050 316.4389 949.3168 1582.1946 3164.3892 

0.100 51.0235 153.0703 255.1172 510.2345 

0.200 2.0887 6.2662 10.4437 20.8873 

Scrutiny of Table (4.7) showed that the variance of the estimator is a monotone decreasing 

function of r and k when the sensitivity and specificity of the test kits are known. It was noted 

that for any fixed value of the predetermined waiting parameter r, the variance of the estimator 

decreased as the proportion p increased. Furthermore, it was also observed that at any fixed 

value of the proportion p, the variance of the estimator increased as the predetermined 

parameter r increased. A striking feature noted was that even when the accuracy of the 

diagnostic test was relatively low, small variances were observed as the proportion p increased. 

Also noted was that small variances are observed in small predetermined waiting parameters 

r. Thus, in practice, the waiting parameter r may not be large enough since countless number 

of pools may need to be tested before one can observe a predetermined number of pools that 

tests positive on a retest. 
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4.7.3 Mean Squared Error of the Estimator (MSE) 

     The Mean squared error of an estimator is the average squared deviation derived from the 

true value of the parameter, which incorporates measures of both the accuracy (bias) and the 

precision (variance) of the estimator. It is used as a measure for the goodness of an estimator 

that is given by: 

 𝑀𝑆𝐸(�̂�) = (𝑏𝑖𝑎𝑠(�̂�))
2
+ 𝑣𝑎𝑟(�̂�).  

The MSE can be expressed as an infinite sum, however, the sums do not reduce to anything 

tractable. Thus, the MSE of an estimator �̂� was suggested by Pritchard and Tebbs (2011b) to 

be approximated as shown in equation (22) given as follows 

 𝑀𝑆𝐸(�̂�) ≈  ∑(�̂� − 𝑝)2 (
𝑥 − 1

𝑟 − 1
)

𝑥∗

𝑥=𝑟

𝜋∗(𝑝)𝑟(1 − 𝜋∗(𝑝))𝑥−𝑟  

where 𝑝𝑟(𝑋 ≤ 𝑥∗) ≥ 1 − 𝑣 for 𝑣 small. The value of 𝑣 = 0.00001 was taken throughout, 

making these approximations very close to the true values of bias and MSE. 

Since the sums do not reduce to anything tractable, Monte Carlo simulations were invoked and 

the R code implementing the simulation study that computes the bias tables is annexed in 

Appendix section. 
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Table 4. 8: MSE of �̂� for various values of p with 𝒓 = 𝟏, 𝟑, 𝟓, 𝟏𝟎, 𝟏𝟓 and 𝒌 =  𝟓, 𝟏𝟎, 𝟑𝟎, 𝟓𝟎 

and with sensitivity and specificity = 99% 

MSE  × 10−4 

r 

p 1 3 5 10 15 

𝑘 = 5 
0.005 248.0600 0.704640 0.144780 0.041657 0.023382 

0.01 482.9300 3.130540 0.571370 0.164670 0.092545 

0.05 2016.7300 123.779720 17.538790 3.936600 2.215701 

0.10 3261.6100 564.307690 121.615100 16.517000 8.731067 

0.20 4247.3500 1857.421800 839.387760 150.740000 49.387109 

0.30 4054.6700 2695.858660 1797.260460 685.060000 289.682941 

0.40 3325.5500 2732.301220 2228.374240 1346.600000 832.097851 

𝑘 = 10 
0.005 478.310000 1.629700 0.147543 0.041564 0.023317 

0.01 923.560000 9.917900 0.647720 0.165220 0.092695 

0.05 3552.640000 561.137100 95.807460 5.135700 2.374300 

0.10 5178.770000 2115.678900 873.769169 107.580000 20.79600 

0.20 5622.070000 4306.743200 3295.318680 1694.70000 881.810000 

0.30 4692.580000 4272.603200 3879.890790 3040.100000 2381.000000 

0.40 3535.480000 3382.286300 3224.232340 2844.800000 2501.200000 

𝑘 = 30 
0.005 1356.100000 25.828000 0.625270 0.042023 0.023457 

0.01 2501.600000 163.923000 11.184170 0.184380 0.095335 

0.05 6949.000000 4117.492000 2440.360710 661.960000 181.220000 

0.10 7606.000000 6702.058000 5904.136630 4299.700000 3131.500000 

0.20 6271.500000 6017.749000 5772.132500 5197.400000 4677.500000 

0.30 4817.600000 4650.590000 4486.036800 4094.100000 3732.900000 

0.40 3556.600000 3462.454000 3366.198140 3129.500000 2905.000000 

𝑘 = 50 
0.005 2152.033000 101.968400 4.951560 0.045301 0.023790 

0.01 3795.008000 569.470800 85.782540 0.930301 0.107290 

0.05 8166.129000 6684.168800 5470.766540 3315.612502 2009.934470 

0.10 7899.744000 7512.479800 7143.493100 6297.265286 5550.580170 

0.20 6279.433000 6042.506400 5813.196300 5275.105616 4785.490050 

0.30 4818.755000 4656.493700 4497.833960 4121.942498 3776.736100 

0.40 3557.990000 3470.234900 3382.076640 3168.059613 2967.003440 

Scrutiny of Table (4.8) showed that when the group size and the waiting parameter r are fixed, 

the MSE of �̂� increased to a maximum value as the optimal value of the prevalence was attained 

and subsequently decreased. It was also noted that for any fixed values of the prevalence and 

group size, the MSE of the estimator decreased as the waiting parameter, r increased. It was 

therefore possible to obtain a combination of r and k which provided the minimum MSE value 

when the tests were 99% accurate. For instance, when 𝑝 = 0.005 the minimum value of MSE 

was obtained at 𝑟 = 15 and 𝑘 = 10.    
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Table 4. 9: MSE of �̂� for various values of p with  𝒓 = 𝟏, 𝟑, 𝟓, 𝟏𝟎, 𝟏𝟓 and k = 5, 10, 30, 50 

and with sensitivity and specificity = 95% 

MSE  × 10−4 

r 

p 1 3 5 10 15 

k=5 
0.005 253.980000 0.857360 0.178530 0.051170 0.028702 

0.01 470.500000 3.373740 0.643590 0.184030 0.103284 

0.05 1879.900000 110.271640 17.963370 4.213000 2.344348 

0.10 3018.780000 471.545300 107.371930 20.338320 9.666764 

0.20 3919.450000 1480.895760 620.064980 269.110180 73.930991 

0.30 3753.850000 2122.574940 1238.619640 1022.769360 407.850012 

0.40 3113.380000 2171.630380 1509.867600 1589.588120 885.358940 

k=10 
0.005 464.030000 1.624700 0.165970 0.046476 0.026033 

0.01 873.100000 8.942400 0.686450 0.176990 0.098977 

0.05 3285.510000 451.303000 72.453480 7.534300 2.642158 

0.10 4776.330000 1667.629100 603.683580 224.190000 35.406000 

0.20 5190.500000 3373.496200 2196.958960 2189.500000 1018.600000 

0.30 4361.120000 3384.466500 2605.707320 2989.800000 1987.200000 

0.40 3339.040000 2774.564400 2265.512850 2591.900000 1910.800000 

k=30 

0.005 1269.400000 21.336000 0.508233 0.044754 0.024797 

0.01 2321.200000 131.450000 7.997270 0.233470 0.101530 

0.05 6403.900000 3222.576000 1624.382680 1139.400000 284.890000 

0.10 7008.900000 5239.424000 3914.380480 4447.800000 2765.300000 

0.20 5799.000000 4745.247000 3875.095560 4549.100000 3396.300000 

0.30 4495.700000 3763.511000 3141.892010 3619.400000 2785.400000 

0.40 3385.900000 2965.426000 2586.401920 2860.900000 2337.000000 

k=50 

0.005 2000.300000 82.018000 3.507400 0.056069 0.025197 

0.01 3508.900000 450.479000 58.327400 2.725400 0.132810 

0.05 7522.200000 5223.102000 3626.523400 3885.200000 2049.800000 

0.10 7280.000000 5875.751000 4739.874600 5584.600000 4084.200000 

0.20 5809.200000 4779.079000 3929.325800 4601.500000 3476.000000 

0.30 4501.300000 3792.030000 3196.577500 3659.800000 2863.100000 

0.40 3393.300000 3004.790000 2663.567700 2917.700000 2449.600000 

When the assay used was 95% accurate, scrutiny of Table (4.9) showed that for any fixed 

values of the group size and the waiting parameter r, the MSE of the estimator increased to a 

maximum as the optimal value of the prevalence was attained before it decreased. Secondly, 

when both the group size and the prevalence rate were fixed, the MSE of the estimator 

decreased to a minimum as the optimal value of the waiting parameter, r was attained and 

afterward increased. Finally, the results showed that one can obtain a combination of r and k 

values that would yield a minimum approximation of the MSE at a given prevalence. For 



50 

 

instance, the minimum value of the MSE was obtained at 𝑝 = 0.005 when 𝑟 = 15 and  𝑘 =

30. 

Table 4. 10: MSE of �̂� for various values of p with 𝒓 = 𝟏, 𝟑, 𝟓, 𝟏𝟎, 𝟏𝟓 and 𝒌 =

 𝟓, 𝟏𝟎, 𝟑𝟎, 𝟓𝟎 and with sensitivity and specificity = 90%  

MSE  × 10−4 

r 

p 1 3 5 10 15 

k=5 
0.005 308.540000 1.611800 0.329340 0.093451 0.052364 

0.01 501.510000 4.807400 0.933170 0.260210 0.145740 

0.05 1752.250000 108.656500 27.553940 4.824100 2.640800 

0.10 2754.610000 413.895500 198.541390 25.665000 11.342000 

0.20 3538.330000 1169.715800 1083.567340 329.850000 130.450000 

0.30 3393.920000 1597.604400 1854.672870 1037.800000 652.190000 

0.40 2850.870000 1612.619500 1992.584970 1450.200000 1146.700000 

k=10 
0.005 491.410000 2.160000 0.251430 0.065823 0.036780 

0.01 854.830000 9.419000 1.051160 0.216630 0.120570 

0.05 2993.080000 359.660000 169.242300 10.426000 3.194290 

0.10 4309.840000 1254.709000 1162.433250 279.540000 81.656590 

0.20 4676.460000 2461.274000 3054.481370 2037.500000 1471.695850 

0.30 3960.790000 2480.735000 3138.887370 2578.800000 2244.231320 

0.40 3096.200000 2113.019000 2596.268890 2244.000000 2031.518110 

k=30 
0.005 1205.700000 18.584000 1.620100 0.052651 0.028810 

0.01 2139.900000 104.117000 24.556500 0.317140 0.114980 

0.05 5763.000000 2351.566000 2687.423700 1200.400000 587.524940 

0.10 6298.100000 3795.734000 4842.426700 3856.700000 3261.408630 

0.20 5234.100000 3473.853000 4401.661600 3843.900000 3519.085690 

0.30 4109.300000 2859.746000 3519.539300 3116.500000 2877.620150 

0.40 3178.700000 2433.942000 2822.791200 2567.700000 2409.781690 

k=50 
0.005 1855.200000 65.734000 11.762000 0.076824 0.028519 

0.01 3195.300000 341.118000 158.306000 4.603300 0.264050 

0.05 6757.600000 3785.824000 4787.254000 3483.900000 2713.000000 

0.10 6541.000000 4256.810000 5439.538000 4704.800000 4276.400000 

0.20 5247.600000 3520.340000 4438.477000 3898.000000 3584.200000 

0.30 4121.100000 2919.170000 3556.268000 3173.000000 2947.000000 

0.40 3194.700000 2517.862000 2873.886000 2647.700000 2509.500000 

The results of Table (4.10) showed that when the assays used for testing were 90% accurate, 

the MSE of �̂� depends on the prevalence rate, the group size, and the waiting parameter r. It 

was generally noted that when the group size and the waiting parameter r are fixed, the MSE 

of the estimator increased to a maximum as the optimal value of the prevalence was attained 

before decreasing. Conversely, when the group size and the prevalence rate were fixed, it was 
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observed that the MSE of the estimator decreased to a minimum as the optimal value of the 

waiting parameter r was reached and afterward increased. Typically, group testing can be used 

to minimize the MSE of an estimator in low-prevalence populations. When the assay used for 

testing has a 90% accuracy of detecting a rare trait, the choice of group size that minimizes the 

MSE of the estimator has to be large.   

The behaviour of the MSE(�̂�) was investigated by plotting MSE(�̂�) against p for different 

group sizes k and waiting parameter r when the tests are 99% accurate as shown in the figures 

below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 8: Plot of 𝑴𝑺𝑬(�̂�) as a function of p for different k = 5, 10, 30, 50 and 𝒓 =

𝟏, 𝟓, 𝟏𝟎, 𝟏𝟓 with sensitivity and specificity fixed at 0.99 

Figure (4.8) shows the MSE of the estimator plotted against the prevalence for different values 

of the waiting parameter r and group size obtained by simulation. It was noted that the optimal 

value of the MSE of the estimator was observed at a low prevalence level.  Besides, the 

maximum value of the MSE was observed when the group sizes were sufficiently large and 
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when the predetermined waiting parameter r was small. When the waiting parameter r was 

increased, the optimal value of the MSE also decreased as the prevalence rate increased.  

Next, the relationship between the MSE(�̂�) and the prevalence was examined for the various 

group sizes and waiting parameter r when the tests used were 95% accurate as presented below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 9: Plot of 𝑴𝑺𝑬(�̂�) as a function of p for different k = 5, 15, 30, 50 and  

𝒓 = 𝟏, 𝟓, 𝟏𝟎, 𝟏𝟓  with sensitivity and specificity fixed at 0.95 

Figure (4.9) shows the relationship between the MSE of the estimator plotted against the 

prevalence for various group sizes when the waiting parameter, r was predetermined. It was 

noted that when the waiting parameter r was fixed, the maximum value of the MSE was 

observed when large group sizes were used. Secondly, the maximum value of the MSE at the 

optimal value of both the group size and the prevalence decreased as the waiting parameter r 
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increased. Moreover, it was observed that when 𝑘 = 5 the level of prevalence at which the 

optimal MSE value was observed increased with an increase in the waiting parameter r. 

4.8 Confidence Intervals of Prevalence 

     When r is large, the MLE is approximately normal with mean p and variance equal 

to [𝐼(𝑝)]−1. A Wald confidence interval for p can be constructed using the estimator for the 

prevalence and its variance multiplied by the appropriate quantile of the standard normal 

distribution as shown below 

 �̂� ± 𝑍𝛼
2⁄
√𝑣𝑎𝑟(�̂�)  

where 𝑍𝛼
2⁄
 denotes the upper 𝛼 2⁄  quantile from the 𝒩(0, 1) distribution and   

 
𝑣𝑎𝑟(�̂�) = [

1 − (𝜋1
2 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)

2 − 𝜋1
2))

𝑟𝑘2(1 − 𝑝)2𝑘−2 × (𝜋12 − (1 − 𝜋0)2)2
]

× (𝜋1
2 + (1 − 𝑝)𝑘 × ((1 − 𝜋0)

2 − 𝜋1
2))2. 

 

Monte Carlo simulations were used to generate the confidence intervals and the R code 

implementing the simulation study is annexed in Appendix C. 

Table 4. 11: The 95% CI for different values of p with 𝒓 = 𝟐, 𝟓, 𝟏𝟎 and 𝒌 = 𝟓 at sensitivity 

= specificity = 0.99 

p Lower limit Upper limit Width 

𝑟 = 2 

0.0025 -0.001818 0.011282 0.013100 
0.005 -0.003549 0.022454 0.026003 

0.01 -0.006866 0.046180 0.053046 

0.05 -0.023997 0.209450 0.233447 

0.07 -0.028817 0.281430 0.310247 

0.10 -0.032835 0.385140 0.417975 

𝑟 = 5 
0.0025 0.000370 0.005838 0.005468 

0.005 0.000768 0.011639 0.010871 

0.01 0.001591 0.023232 0.014239 

0.05 0.008993 0.114970 0.105977 

0.07 0.012822 0.160040 0.147218 

0.10 0.018197 0.229310 0.211113 

𝑟 = 10 
0.0025 0.001046 0.004511 0.003465 

0.005 0.002103 0.008977 0.006874 

0.01 0.004223 0.017861 0.013638 

0.05 0.021732 0.088488 0.066756 

0.07 0.030775 0.123730 0.092955 

0.10 0.044542 0.177060 0.132518 
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The results of Table (4.11) showed that when the tests are 99% accurate, the width of the 

confidence interval increased as the prevalence increased for fixed group sizes and waiting 

parameter r. It was observed that for small values of the waiting parameter r, the Wald 

confidence interval performed poorly.  Negative values were reported at the lower bound of 

the confidence interval, which produce unreliable interval estimates. The width of the 

confidence interval indicated how informative the confidence interval was relative to the 

parameter, and a narrower length of the confidence interval was observed at  

𝑟 = 10 when p=0.0025. In general, it was observed that when the prevalence rate was fixed, 

the width of the confidence interval decreased as the waiting parameter r increased. 

Table 4. 12: The 95% CI for different values of p with 𝒓 = 𝟐, 𝟓, 𝟏𝟎 and 𝒌 = 𝟏𝟓 at 

sensitivity = specificity = 0.99 

p Lower limit Upper limit Width 

𝑟 = 2 

0.0025 -0.001842 0.012351 0.014193 
0.005 -0.003550 0.026084 0.029634 

0.01 -0.006356 0.055199 0.061555 

0.05 -0.014694 0.363470 0.378164 

0.07 -0.013719 0.503160 0.516879 

0.10 -0.010703 0.665730 0.676433 

𝑟 = 5 
0.0025 0.000381 0.005832 0.005451 

0.005 0.000769 0.011624 0.010855 

0.01 0.001545 0.023374 0.021829 

0.05 0.004683 0.146430 0.141747 

0.07 0.003976 0.241400 0.237424 

0.10 0.002348 0.413840 0.411492 

𝑟 = 10 
0.0025 0.001050 0.004485 0.003435 

0.005 0.002111 0.008985 0.006874 

0.01 0.004222 0.017920 0.013698 

0.05 0.020128 0.093936 0.073808 

0.07 0.025358 0.141640 0.116282 

0.10 0.027239 0.247780 0.220541 

The results of Table (4.12) showed that the confidence interval was affected by the group size, 

the prevalence, and the predetermined waiting parameter r when the sensitivity and the 

specificity values of the test are held constant throughout the testing process. The width of the 

confidence interval widened as the proportion p increased at any fixed values of the waiting 

parameter r. Negative lower bounds of the confidence interval were reported, especially at 

small values of the waiting parameter r. This produced unreliable interval estimates confirming 

that the waiting parameter r has to be sufficiently large for the asymptotic properties to take 
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hold. Lastly, at any fixed value of the proportion p, the width of the Wald confidence interval 

decreased as the waiting parameter r increased. 

Next, the behaviour of the Wald confidence interval was examined when the group size was 

increased to 𝑘 = 30. 

Table 4. 13: The 95% CI for different values of p with 𝒓 = 𝟐, 𝟓, 𝟏𝟎 and 𝒌 = 𝟑𝟎 at 

sensitivity = specificity = 0.99 

p Lower limit Upper limit Width 

𝑟 = 2 

0.0025 -0.001809 0.015334 0.017143 

0.005 -0.003280 0.036323 0.039603 

0.01 -0.005603 0.094930 0.100533 

0.05 -0.005862 0.626170 0.632032 

0.07 -0.003818 0.778580 0.782398 

0.10 -0.001948 0.893090 0.895038 

𝑟 = 5 
0.0025 0.000379 0.005826 0.005447 

0.005 0.000749 0.011720 0.010971 

0.01 0.001389 0.024643 0.023254 

0.05 0.000361 0.336260 0.335899 

0.07 -0.000263 0.552140 0.552403 

0.10 -0.000404 0.757310 0.757714 

𝑟 = 10 
0.0025 0.001050 0.004484 0.003434 

0.005 0.002096 0.008952 0.006856 

0.01 0.004185 0.018034 0.013849 

0.05 0.012837 0.157790 0.144953 

0.07 0.010171 0.337310 0.327139 

0.10 0.005767 0.598910 0.593143 

Table (4.13) indicates the confidence interval and the associated width when k=30. The 

findings indicate that the width of the confidence interval increased with an increase in the 

proportion p for a predetermined waiting parameter r. It was observed that the Wald confidence 

interval was associated with wider confidence width and negative lower bound as the 

proportion p increased especially for small r. Also, a narrow confidence width was observed at 

large values of the waiting parameter r when the proportion p is small which allowed the 

parameter p to be estimated more precisely.  

4.9 Coverage Probabilities 

     The performance of the Wald interval was compared with that of the Wilson interval, 

Agresti- Coull interval, and the Exact interval by plotting their coverage probabilities against 

the prevalence as shown in the figures below 
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Figure 4. 10: Plot of coverage probability for 95% Wald, Exact Wilson and Agresti- Coull 

interval when 𝒓 = 𝟐, 𝒌 = 𝟐𝟎, sensitivity = specificity = 0.99 

Figure (4.10) illustrates the 95% coverage probabilities for the four confidence intervals 

when 𝑘 = 20, and 𝑟 = 2, when the assays used are 99% accurate. The values of the prevalence 

ranged from 0.005 to 0.10 by increments of 0.00005. A distinct jagged pattern was observed 

due to the discrete nature of the negative binomial distribution. The results showed that when 

𝑟 = 2 the Wald interval was centered around the 95% nominal level, which was unusual from 

the available literature. The exact interval was observed to be conservative in that the 

confidence interval was wider as the prevalence level increased. Both the Wilson and Agresti-
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Coull interval showed that 95% coverage was obtained at low prevalence. Lastly, the Wilson 

interval converged to zero much faster as the prevalence level increased. 

Next, the relationship between the coverage probabilities and the prevalence was examined 

when the waiting parameter r was increased to 𝑟 = 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 11: Plot of coverage probability for 95% Wald, Exact Wilson and Agresti- Coull 

interval when 𝒓 = 𝟓, 𝒌 = 𝟐𝟎, sensitivity = specificity = 0.99 

Figure (4.11) displays the coverage probabilities for the four different intervals when 𝑟 was 

increased to 20. The 95% coverage of wald intervals to some degree was observed to be 

centered around the nominal level, although their variability increased as p increased. The 

coverage probabilities for the Agresti- Coull interval were close to the nominal level for low 

values of p.  However as the prevalence increased, a drop in the coverage probability was 

observed. A similar pattern was observed for the Exact interval.  For 𝑝 < 0.02, the Wilson 

interval was observed to be conservative, whereas, for 𝑝 > 0.02, a drop in the coverage 

probabilities was observed below the nominal level. 
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Lastly, the waiting parameter r was increased to 50, and the results are shown in figures (4. 12) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 12: Plot of coverage probability for 95% Wald, Exact Wilson and Agresti- Coull 

interval when 𝒓 = 𝟓𝟎 , 𝒌 = 𝟐𝟎, sensitivity = specificity = 0.99 

Figure (4.12) displays the coverage probabilities of the four intervals when the waiting 

parameter 𝑟 = 50.  The coverage probabilities of the Wald, Agresti- Coull, and Exact intervals 

were observed to be chaotic at low values of p and served as a shred of visual evidence that the 

asymptotic properties were taking hold. The coverage probabilities of the Wilson interval were 

observed to be conservative at 𝑝 < 0.02, but as p increased, there was a drop in the coverage 

probabilities below the nominal level. Both the Wald and Agresti-Coull intervals exhibited that 

their coverage probabilities were close to the nominal level, and as the proportion p increased, 

their variability also increased. Lastly, the Exact interval was observed to be conservative as 

the proportion p increased and at 𝑝 > 0.10, a drop in the coverage probabilities was observed 

below the 95% nominal level. 
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Table 4. 14: The estimated coverage probability of the confidence interval by fixing  

𝒌 = 𝟐𝟎 given that the sensitivity and specificity of the tests are set at 0.99 

Sensitivity=Specificity=0.99 

  𝒑 = 𝟎. 𝟎𝟎𝟏 𝒑 = 𝟎. 𝟎𝟐𝟓 𝒑 = 𝟎. 𝟎𝟓 𝒑 = 𝟎. 𝟏𝟎 

 

𝒓 = 𝟐 

Exact 0.953260 0.791570 0.693980 0.784240 
Wald 0.951440 0.946900 0.933250 0.947380 

Wilson 0.997773 0.663099 0.311096 0.052624 

Agresti-Coull 0.997773 0.663099 0.311096 0.052624 

 

𝒓 = 𝟓 

Exact 0.950544 0.939589 0.798446 0.654737 
Wald 0.956110 0.954590 0.963330 0.939100 

Wilson 0.999998 0.659274 0.340133 0.060898 

Agresti-Coull 0.956112 0.918279 0.682613 0.137184 

 

𝒓 = 𝟐𝟎 

Exact 0.950338 0.956098 0.966471 0.646439 
Wald 0.952710 0.951270 0.966080 0.973460 

Wilson 1.000000 0.806100 0.322080 0.23434 

Agresti-Coull 0.952706 0.951275 0.965294 0.784134 

Table (4.14) shows the coverage probabilities for the four methods of confidence estimations 

at various waiting parameters r when 𝑘 = 20. The Wilson’s interval was observed to be very 

conservative at 𝑝 = 0.001 but as p increased, the coverage probabilities were smaller than the 

nominal level. On the other hand, the Wald interval was observed to have coverage 

probabilities that were close to the nominal level or all the values of r. The Agresti- Coull 

interval performed poorly at 𝑝 = 0.001  when at 𝑟 = 2 but as r increased, the coverage 

probabilities were centered around the nominal level. Finally, the Exact interval for large values 

of r showed that their coverage probabilities were very close to the nominal level for 𝑝 ≤ 0.05.   

Table 4. 15: The estimated coverage probability of the confidence interval by fixing 𝒌 =

𝟐𝟎 given that the sensitivity and specificity of the tests is 0.98 

Sensitivity=Specificity=0.98 

  𝒑 = 𝟎. 𝟎𝟎𝟏 𝒑 = 𝟎. 𝟎𝟐𝟓 𝒑 = 𝟎. 𝟎𝟓 𝒑 = 𝟎. 𝟏𝟎 

 

𝒓 = 𝟐 

Exact 0.956389 0.742640 0.741829 0.843686 

Wald 0.951270 0.941510 0.966040 0.934340 

Wilson 0.997773 0.663099 0.311096 0.052624 

Agresti-Coull 0.909776 0.326340 0.090750 0.000000 

 

𝒓 = 𝟓 

Exact 0.951122 0.946001 0.805348 0.641284 

Wald 0.955980 0.961160 0.955190 0.918240 

Wilson 0.999998 0.659274 0.340133 0.060898 

Agresti-Coull 0.955983 0.927962 0.695779 0.156672 

 

𝒓 = 𝟐𝟎 

Exact 0.950267 0.958160 0.957398 0.505123 

Wald 0.952790 0.952800 0.965000 0.950810 

Wilson 1.000000 0.806100 0.322080 0.234340 

Agresti-Coull 0.952790 0.952790 0.965958 0.813037 
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Table (4.15) shows the estimated coverage probabilities for the four methods of confidence 

estimation at various waiting parameters r when the assays used for testing are 98%. Scrutiny 

of the table showed that when 𝑝 = 0.001, both the Wald interval and the Exact interval have 

their coverage probabilities that are close to the nominal level for all the values of r. Also, the 

two confidence intervals outperformed the other methods of confidence interval at large values 

of r as p increased. It was noted that the Wilson’s interval was very conservative when 𝑝 =

0.001 but a drop in their coverage probabilities was observed as p increased. Lastly, it was 

observed that the coverage probabilities for the Agresti-Coull interval were close to the nominal 

level at large values of r which indicated that the asymptotic properties were taking hold.   

Table 4. 16: The estimated coverage probability of the confidence interval by fixing k=20 

given that the sensitivity and specificity of the tests are 0.95 

Sensitivity=Specificity=0.95 

  𝒑 = 𝟎. 𝟎𝟎𝟏 𝒑 = 𝟎. 𝟎𝟐𝟓 𝒑 = 𝟎. 𝟎𝟓 𝒑 = 𝟎. 𝟏𝟎 

 

𝒓 = 𝟐 

Exact 0.955288 0.751583 0.743288 0.827037 
Wald 0.951290 0.947020 0.948960 0.889270 

Wilson 0.997590 0.704400 0.381220 0.110730 

Agresti-Coull 0.907815 0.365555 0.102355 0.000000 

 

𝒓 = 𝟓 

Exact 0.950191 0.918453 0.674412 0.451302 
Wald 0.956380 0.954930 0.955340 0.937150 

Wilson 1.000000 0.728970 0.310000 0.160140 

Agresti-Coull 0.956377 0.929504 0.752070 0.298790 

 

𝒓 = 𝟐𝟎 

Exact 0.950307 0.958069 0.939747 0.275743 
Wald 0.952920 0.952050 0.966080 0.930740 

Wilson 0.999999 0.999974 0.997031 0.863075 

Agresti-Coull 1.000000 0.846940 0.389650 0.282620 

Table (4.16) shows the estimated coverage probabilities for the four methods of confidence 

estimation at various waiting parameters r when the assays used for testing are 95%. The 

coverage probabilities for both Wilson and Agresti-Coull intervals decreased as the proportion 

p increased. Secondly, for small values of r, the coverage probabilities of the Agresti-Coull 

interval were below the 95% nominal levels and converged to zero much faster as the 

proportion p was increased. In general, when 𝑟 = 20, Wilson's interval was observed to be 

conservative for 𝑝 < 0.10. Thirdly, when r was large, the Wald interval generally 

outperformed the other confidence interval since most of its coverage probabilities were close 

to the nominal level. The exact interval for large values of r was centered around the nominal 

level, but as p increased, their coverage probabilities decreased.  
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4.10 Model Comparison 

     In this section, the computed results were compared with the negative binomial group 

testing model when imperfect tests are used without retesting. This was accomplished by 

computing ARE and the RMSE. 

4.10.1 Asymptotic Relative Error (ARE) 

     The sample size based on the one-stage negative binomial group testing scheme that has 

considered misclassification was examined by Xiong (2016). The variance of the estimator was 

computed as follows:  

 

𝑣𝑎𝑟(�̂�)

= {
[𝜋1 − (𝜋0 + 𝜋1 − 1)(1 − 𝑝)

𝑘]2[1 − 𝜋1 + (𝜋0 + 𝜋1 − 1)(1 − 𝑝)
𝑘]

𝑟𝑘2(𝜋0 + 𝜋1 − 1)2(1 − 𝑝)2𝑘−2
}. 

 

If the estimator of the One-Stage negative binomial group testing scheme with misclassification 

is denoted by �̂�𝑑 , and the computed estimator is denoted 𝑝𝑖 then 

 𝐴𝑅𝐸 =  
𝑣𝑎𝑟(�̂�𝑑)

𝑣𝑎𝑟(𝑝𝑖)
  

Therefore, 𝐴𝑅𝐸 > 1 implies that the proposed model is more efficient than Xiong (2016) 

model with inspection errors.  
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Table 4. 17: ARE of the proposed model relative to Xiong's (2016) model with errors in 

inspection for 𝒌 = 𝟓, 𝟏𝟎, 𝟏𝟓, 𝟑𝟎, 𝟓𝟎 with sensitivity and specificity = 99%, 98%, 95%, and 

90% 

r = 2 

k 

p 5 10 15 30 50 

Sensitivity=Specificity=0.99 

0.005 0.510710 0.694550 0.778750 0.879780 0.926490 
0.01 0.695130 0.827230 0.880060 0.939190 0.966370 

0.05 0.928180 0.967290 0.983950 1.018560 1.091890 

0.10 0.968460 0.996990 1.020620 1.167320 1.624620 

0.20 0.999640 1.061750 1.197370 1.845370 1.949040 

0.30 1.031470 1.236870 1.642150 1.948260 1.950400 

0.40 1.090820 1.589170 1.907640 1.950380 1.950400 

Sensitivity=Specificity=0.98 
0.005 0.311080 0.510600 0.623230 0.779350 0.860140 

0.01 0.511330 0.695100 0.779810 0.883120 0.933710 

0.05 0.863170 0.935440 0.967240 1.032360 1.157080 

0.10 0.937670 0.992120 1.036120 1.268290 1.714580 

0.20 0.997140 1.108010 1.308530 1.848710 1.900950 

0.30 1.055660 1.358330 1.726590 1.900570 1.901590 

0.40 1.155380 1.689460 1.880780 1.901580 1.901590 

Sensitivity=Specificity=0.95 
0.005 0.123530 0.257540 0.363850 0.562960 0.697000 

0.01 0.258150 0.446940 0.563670 0.739770 0.841720 

0.05 0.702500 0.845380 0.914120 1.050000 1.251560 

0.10 0.850110 0.968040 1.057190 1.382690 1.686220 

0.20 0.978710 1.180650 1.422250 1.740970 1.759650 

0.30 1.093370 1.466630 1.691570 1.759520 1.759870 

0.40 1.249260 1.674700 1.752600 1.759870 1.759870 

Sensitivity=Specificity=0.90 
0.005 0.068206 0.137670 0.204830 0.368190 0.513130 

0.01 0.138016 0.266410 0.368870 0.566510 0.708750 

0.05 0.519800 0.714240 0.820610 1.022540 1.240740 

0.10 0.721365 0.904830 1.032030 1.342620 1.508590 

0.20 0.921050 1.174130 1.369000 1.531480 1.538910 

0.30 1.077610 1.396600 1.510900 1.538860 1.539000 

0.40 1.238728 1.503560 1.536130 1.539000 1.539000 

Table (4.17) shows ARE values at different group sizes, prevalence levels, and waiting 

parameter r when the accuracies of tests used are known. Scrutiny of the table showed that 

retesting a pool that tested positive in the initial test made the proposed model more efficient, 

as the proportion p increased. This was indicated by 𝐴𝑅𝐸 > 1. It was observed that for a given 

prevalence of a rare trait, the efficiency of the proposed model increased as the size of the 

groups was increased. Similarly, for a fixed group size, the efficiency of the model increased 
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as p increased. It was observed that even when the sensitivity and specificity of the test were 

relatively low, retesting improved the efficiency of the model as the proportion p increased. 

From the table, it was possible to get the combination of p and k where the model was more 

efficient. Thus, in cases where group testing is used to screen for a rare trait, retesting of pools 

is more desirable as it yields more accurate results, and the retesting model outperforms the 

one-stage negative binomial group testing design as p increases. 

4.10.2 Relative Mean Squared Error (RMSE)  

     To compare the efficiency of a model, a convenient way was to compare the MSE of 

estimates of the same p with other existing models obtained using different experimental 

procedures. The MSE of the proposed model was compared with the MSE of the one-stage 

negative binomial group testing model with misclassification denoted by �̂�𝑑. The RMSE was 

calculated as follows: 

 𝑅𝑀𝑆𝐸 =  
𝑀𝑆𝐸(�̂�𝑑)

𝑀𝑆𝐸(𝑝𝑖)
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Table 4. 18: Relative Mean Squared Error of the Estimator (RMSE) with sensitivity and 

specificity value set at 99% 

r 

p 1 3 5 

𝑘 = 5 

0.005 38.565142 12733.370308 58400.557061 

0.01 19.133470 2643.906573 13086.300135 

0.05 3.443933 34.238002 154.682671 

0.10 1.463359 3.042883 5.576623 

0.20 0.525123 0.194483 0.192145 

0.30 0.337283 0.241976 0.365225 

𝑘 = 15 
0.005 12.899748 1896.419895 39821.816914 

0.01 6.205910 226.377645 4210.861195 

0.05 0.882280 0.687266 0.538078 

0.10 0.279830 0.036577 0.030166 

0.20 0.105515 0.070938 0.079776 

0.30 0.196267 0.195440 0.205301 

𝑘 = 30 
0.005 6.228922 238.248501 7177.123081 

0.01 2.879419 23.761346 188.761043 

0.05 0.287960 0.027176 0.008577 

0.10 0.066378 0.014407 0.016307 

0.20 0.073766 0.066298 0.069187 

0.30 0.193811 0.193251 0.200459 

𝑘 = 50 
0.005 3.555019 44.820292 551.766813 

0.01 1.557081 3.773527 9.121756 

0.05 0.096818 0.004225 0.004213 

0.10 0.027673 0.013245 0.013947 

0.20 0.072861 0.066115 0.068759 

0.30 0.194272 0.193116 0.199999 

Scrutiny of Table (4.18) showed that for small group size, the proposed model performed well 

when the prevalence was low. This was indicated by the value of 𝑅𝑀𝑆𝐸 > 1. For instance, 

when 𝑟 = 1, and 𝑘 = 5, the model was observed to be 38.6 times more efficient than the one-

stage negative binomial group testing model with misclassification at 𝑝 = 0.05. In general, the 

proposed model was examined to be more efficient, especially in a low prevalent population 

when the group sizes are fairly small. Lastly, large values of the waiting parameter r, when the 

prevalence was low, yielded a more efficient model. 
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Table 4. 19: Relative Mean Squared Error of the Estimator (RMSE) at 95% sensitivity 

and specificity value 

r 

p 1 3 5 

𝑘 = 5 
0.005 36.204290 9359.937964 39805.251986 

0.01 18.897137 2201.840151 9836.147127 

0.05 3.589811 35.559549 135.836994 

0.10 1.561931 3.537761 6.190444 

0.20 0.592202 0.265764 0.272134 

0.30 0.395585 0.308493 0.524353 

𝑘 = 15 
0.005 13.034037 1879.883663 30942.258974 

0.01 6.403645 242.737094 3812.958260 

0.05 0.961991 0.887832 0.810215 

0.10 0.336188 0.055905 0.046155 

0.20 0.153077 0.089761 0.118998 

0.30 0.242057 0.241927 0.299192 

𝑘 = 30 
0.005 6.429417 260.242107 7446.285644 

0.01 3.022253 27.380735 231.694665 

0.05 0.344612 0.044954 0.014607 

0.10 0.113660 0.019012 0.024423 

0.20 0.119842 0.083489 0.102518 

0.30 0.240808 0.237495 0.285215 

𝑘 = 50 
0.005 3.714542 51.049440 673.427405 

0.01 1.660597 4.574145 12.515071 

0.05 0.145590 0.007191 0.006349 

0.10 0.073270 0.016973 0.020894 

0.20 0.119303 0.083294 0.101403 

0.30 0.242020 0.236409 0.280821 

Table (4.19) shows that when the assays used are 95% accurate, the proposed model that 

incorporated the sequential testing of positive pools performed well compared to the one-stage 

negative binomial group testing model that has considered misclassifications, especially at low 

prevalence. As r increased, the proposed model was observed to be more efficient, especially 

at low prevalence. This indicated that the asymptotic properties of the model were taking hold. 

Thus, it was possible to get a combination of k and r values where the model would be more 

efficient for a given prevalence. For instance, when 𝑘 = 30 and 𝑟 = 5, the model was reported 

to be approximately 7446 more efficient for 𝑝 = 0.005 . Lastly, the prevalence at which the 

proposed model was more efficient reduced as the size of the group increased.  
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4.11 Application of the Model to Real Data 

     Surveillance is an important aspect of public health for the prevention and early detection 

of infectious diseases that would otherwise cause an outbreak. A public health study that 

involved the surveillance of West Nile Virus was conducted in Jefferson County, Florida 

following the 2001 outbreak of WNV transmitted by the North American mosquito, Culex 

nigripalpus (Rutledge et al., 2003). In North America, many mosquito species were infected 

with WNV. However, in this study, the primary focus was on the Culex species as the primary 

West Nile vector.  To access transmission of WNV, a total of 11,948 mosquitos were captured 

and tested in various pool sizes using reverse-transcription polymerase chain reaction assays. 

A total of 14 mosquito pools contained WNV after testing. The authors documented the first 

field study on the mosquito transmission rate of WNV. By the end of the outbreak, 12 human 

cases were reported to have West Nile Meningoencephalitis, and 483 cases among the horses 

were documented. 

     Rutledge et al. (2003) did not consider inverse sampling design when imperfect tests are 

used. However, this investigation was used as a basis to illustrate the proposed group testing 

design by considering imperfect assays and sequentially retesting a pool that tests positive in 

the initial stage. The authors were only interested in the pools that tested positive. Based on the 

field study, the estimated prevalence was reported to be approximately 0.005. Hence it was 

presumed that 0.005 was the true value of the prevalence. R programming language was used 

to simulate 10,000 Monte Carlo data sets for the waiting parameters r= 1, 5, 10, and 15 at equal 

group sizes k= 5, 15, 30, and 50 similar to the public study conducted by Rutledge et al. (2003). 

The values of the sensitivity and specificity of the tests were held constant throughout the 

testing procedure, and the simulated data contained assays used for testing which were 99%, 

98%, 95%, and 90% accurate. 

     Based on 10,000 Monte Carlo data sets, simulated results of the MLE of the proposed 

estimator for the waiting parameters 𝑟 = 1, 5, 10, and 15 have been presented. For a low 

prevalent population, it was observed that the MLE of the proposed model was consistent with 

Rutledge et al. (2003). When the waiting parameter was small say 𝑟 = 1, the MLE was 

observed to be exorbitantly positively biased as the prevalence level increased. The results 

further reaffirm our discovery that group testing is useful in a low prevalent population and 

that retesting increased the precision of the estimates.  

     The confidence interval of the prevalence was generated from 10,000 Monte Carlo data and 

the results are presented in Tables (4.11), (4.12), and (4.13) respectively. It was observed that 

the Wald confidence interval was associated with wider confidence width and negative lower 
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bound as the proportion p increased especially for small r. As the waiting parameter r increased, 

the Wald interval and Exact interval provided good coverage probabilities that were close to 

the nominal level. Both Wilson and Agresti-Coull intervals were observed to be conservative 

in that the confidence intervals were likely to be wider as r increased. The results are presented 

in section (4.9). Notably, the coverage probabilities for the Wald interval were observed to be 

centered around the 95% nominal level when 𝑟 = 2. This was somewhat unusual from the 

available literature. However, its variability increased with an increase in prevalence as 

illustrated in Figures (4.10), Figures (4.11), and Figures (4.12). 

4.12 Discussions 

     A two-stage negative binomial group testing procedure for estimating the prevalence of a 

rare trait has been constructed and analysed. The testing procedure differs from the formal pool 

testing procedure suggested by Dorfman (1943) in that a pool that tested positive was 

sequentially retested as illustrated in Figure (4.1). The probability of declaring a pool as 

positive on a retest was obtained, and the results suggest that 𝜋∗(𝑝) increases with an increase 

in prevalence. Further, it was observed that 𝜋∗(𝑝) remained invariant at high prevalence as 

observed in Figure (4.2) and Figure (4.3) respectively. In special cases 𝜋∗(𝑝) converged to the 

sensitivity and specificity of the test kits which were held constant throughout the testing 

process. The results coincide with observations made when batch testing has been applied in a 

quality control process (Wanyonyi et al., 2015a), and in multiple test pool testing strategies 

when estimating HIV/ AIDS prevalence (Nyongesa, 2018). 

     The MLE of the prevalence has also been derived and its properties investigated. It sufficed 

to note that the MLE was observed to be positively biased as seen in Tables (4.1), (4.2), and 

(4.3) respectively. The MLE was observed to be a monotone-increasing function of r, k, and p. 

When both r and k are large, a close approximation of the prevalence was observed at 𝑝 =

0.005. This result agrees with the estimated prevalence level reported in a public health study 

that involved the surveillance of WNV (Rutledge et al., 2003). Alternative estimators have 

been developed by different scholars to reduce the bias when the waiting parameter r is small 

(Hepworth, 2013; Pritchard & Tebbs, 2011b).  Gart’s bias correction to the MLE has been 

recommended as an effective estimator in reducing the bias (Hepworth & Watson, 2009).  

     The Wald confidence interval was examined, and it was noted that the interval performed 

poorly for small values of the waiting parameter r. Subsequently, a negative lower limit of the 

confidence interval was observed, and the width of the confidence interval increased as the 

prevalence increased. It was established that the Wald interval had complications when all 
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pools tested positive that is �̂� = 1 under the negative binomial group testing model (Pritchard 

& Tebbs, 2011b). If this happens, the Wald interval was set to be equivocal (0, 1), since 𝐼(�̂� ) 

is undefined, and the upper limit of the interval cannot be computed.  

     The confidence intervals for the binomial proportion have been explored extensively by 

Orawo (2021). The standard Wald confidence interval has been compared with other 

alternative confidence intervals namely, Wilson confidence intervals, Clopper-Pearson 

intervals, and Likelihood intervals in terms of coverage probabilities and expected mean length. 

In this study, the coverage probabilities of the Wald interval relative to that of the Wilson 

interval, Agresti- Coull interval, and the exact interval were examined based on the coverage 

probabilities through simulation. At small values of the waiting parameter r, the coverage 

probabilities of the Wald interval showed an unusual pattern that was somewhat different from 

the literature. This is because the coverage probabilities were centered around the 95% nominal 

level.  

     The behaviour of the coverage probabilities for the Wald Interval and Agresti-Coull interval 

is quite Chaotic for large values of r as observed in Figure (4.12). This confirmed that the 

asymptotic properties were taking hold as most of the coverage probabilities were close to the 

nominal level. Both the Wilson and Exact intervals were observed to be conservative as the 

prevalence increased. It can be deduced that the Wilson interval showed a substantial departure 

from the nominal level implying it has a longer expected length.  

     The performance of the estimator was compared with other estimators to determine its 

efficiency by computing the ARE values. The results showed that the proposed estimator was 

superior to the one-stage negative binomial group testing model with misclassification as 

suggested by Xiong (2016). This can be observed in Table (4.17) where 𝐴𝑅𝐸 > 1 indicates 

that the estimator has a smaller variance than the Xiong (2016) estimator as the proportion p 

increases. Moreover, the proposed estimator in this study was established to be more efficient 

in situations where the sensitivity and specificity of the test kits are low. Thus, retesting of 

positive pools improves the efficiency of an estimator which confirms what other authors have 

established (Nyongesa, 2011; 2018; Wanyonyi et al., 2021). 
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CHAPTER FIVE 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

5.1 Summary 

     The results of the study show that group testing is generally feasible in a low-prevalent 

population. When estimating the prevalence of a rare trait, quick responses and immediate 

intervention could curb the spread of an outbreak. A special factor to consider when group 

testing is applied is the size of the groups and the sensitivity and specificity of the assays used 

for testing. This thesis focused on a combination of negative binomial model and group testing 

to estimate the prevalence of a rare trait by incorporating the retesting of positive pools. The 

testing procedure involved the sequential testing and retesting of a pool that tested positive 

until a predetermined number of pools that tested positive on retesting was observed. This was 

performed to increase the precision of a test during estimation. Throughout the testing 

procedure, the sensitivity and specificity of the tests were held constant.  

     The general objective of this research which was to construct and analyse a two-stage 

negative binomial group testing procedure for estimating the prevalence of a rare trait has been 

achieved. The indicator function was utilized to formulate the probability that a pool tests 

positive for a rare trait on retesting using the negative binomial group testing model. The 

finding showed that since the probability is a monotone-increasing function of the prevalence, 

it ranged between 0 and 1.  

     The study also utilized the Method of Maximum Likelihood Estimation to obtain the MLE 

of p and the performance of the constructed estimator was assessed. The results showed that 

the MLE of the proportion p under the negative binomial group testing model is positively 

biased. Furthermore, the MSE and the variance of the constructed estimator were examined to 

measure the goodness and the accuracy of the estimator respectively. The results showed that 

the MSE increased with an increase in the prevalence.  

     A comparison of the constructed estimator relative to the one-stage negative binomial group 

testing model with misclassification was performed by computing the ARE and RMSE. The 

results showed that the constructed estimator had a smaller variance, and the proposed model 

was observed to be more efficient in situations where the sensitivity and specificity of the test 

kits were low. This result agrees with what other authors have established that retesting of pools 

improves the efficiency as highlighted in the discussion. Lastly, the proposed model was 

applied to West Nile Virus.  
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5.1 Conclusions 

     This research has constructed and analysed a two-stage negative binomial group testing 

procedure for estimating the prevalence of a rare trait. The study was able to obtain the point 

estimator for the prevalence using the negative binomial group testing model with the retesting 

of positive pools. The interval estimates and coverage probabilities of the constructed estimator 

were also examined. The following conclusions are made: 

i. The estimator obtained using the Maximum Likelihood Estimation method was 

observed to be positively biased under the negative binomial group testing model. 

ii. The properties of the constructed estimator such as the bias and the Mean Squared Error 

both increased as the prevalence of a rare trait increased. Alternative estimators that 

reduce the bias and the MSE, when the predetermined number of positive pools to be 

observed, is small can be considered. 

iii. The proposed model was observed to be more efficient than the one-stage negative 

binomial group testing model with misclassification. The constructed estimator had a 

smaller variance, and retesting of pools suggested that the model performed well even 

in situations where the efficient of the test kits was low. 

iv. Data from a public health study that involved the surveillance of the West Nile virus 

was used as a foundation to illustrate the proposed negative binomial group testing 

model with retesting. The results show the applicability of the proposed model in the 

surveillance and monitoring of infectious diseases. 

5.3 Recommendations 

     The study has presented a new way of estimating the prevalence of a rare trait using the 

negative binomial group testing model with retesting. The proposed design is appealing in 

situations that require action to be taken early in the screening process when reporting estimates 

of rare traits in a population. Early interventions and accurate assessment of the prevalence 

level of a rare trait (e.g., infectious diseases) can lower disease mortality and the severity of an 

outbreak. Researchers in public health may use the findings of the study for the continuous 

testing and surveillance of pathogens and other infectious diseases. Future research can extend 

the negative binomial group testing model to a multi-stage pool testing scheme. The Bayesian 

approach in estimation remains an open area to be explored when imperfect tests are used under 

the negative binomial group testing model with retesting.  
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Appendix C: Key R codes  

 

Notation in the R-code       

ci  Confidence Interval 

k   pool size  

n  waiting parameter (the predetermined number of pools that tested positive on a 

retest)    

N  Number of simulations       

p   individual prevalence    

Sens  The sensitivity of a test 

Spec   The specificity of a test 

t  Total number of pools tested until n positive pools that tested positive on a retest 

was observed after a retest. 

Toler  Tolerance 

Key R codes for MLE 

P.estimate=function(n, k, p, sens, spec){ 

  pro= (((1-sens)^2)*(1-p)^k) + (spec^2)*(1-(1-p)^k) 

  t=c() 

  MLE= c(); g=c(); th=c(); out=c() 

  N=10000 

  for (i in 1:N) { 

    t[i] = rnbinom(1, n, pro)+n 

    th[i]=(((spec^2)-n/t[i])/((spec^2)-(1-sens)^2))^(1/k) 

    g[i]=n/t[i] 

    if(t[i]==n){ 

      MLE[i]= 1 

    } 

    else if((spec^2)<=g[i]){ 

      MLE[i]=1 

    } 

    else if(th[i]>1){ 

      MLE[i]=0 

    } 

    else{ 
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    MLE[i] = 1-(((spec^2)-n/t[i])/((spec^2)-(1-sens)^2))^(1/k) 

     } 

  } 

  return(mean(MLE)) } 

Key R codes for Bias and MSE 

MSE. Bias = function (toler, n, k, p, sens, spec){ 

  tstar=c();g=c();Bias.p=c();mse.p=c(); t=c();pmft=c();MLE=c() 

  r= (spec^2)-(1-sens)^2 

  prob= (((1-sens)^2)*(1-p)^k) + (spec^2)*(1-(1-p)^k) 

  tolcheck =1-toler 

  tstar= qnbinom(tolcheck,n, prob=prob) 

  th= c();bias.p=c();mse.p=c(); diffl=c() 

  t=seq(n, tstar+n, by=1) 

  for (i in seq_along(t)) { 

    pmft[i]=dnbinom((t[i]-n), n, prob=prob) 

    th[i]=(((spec^2)-n/t[i])/((spec^2)-(1-sens)^2))^(1/k) 

    g[i]=n/t[i] 

    if(t[i]==n){ 

      MLE[i]= 1 

    } 

    else if((spec^2)<=g[i]){ 

      MLE[i]=1 

    } 

    else if(th[i]>1){ 

      MLE[i]=0 

    } 

    else{ 

      MLE[i] = 1-(((spec^2)-n/t[i])/((spec^2)-(1-sens)^2))^(1/k) 

    } 

    diffl[i]=abs(MLE[i]-p) 

    Bias.p[i]=diffl[i]*pmft[i] 

    mse.p[i]=(MLE[i]-p)^2 *(pmft[i]) 

    BIAS=sum(Bias.p)*10^4 
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    MSE=sum(mse.p)*10^4 

    Output= as.data.frame (cbind(BIAS, MSE=MSE)) 

  } 

  return(Output) 

} 

Key R codes for the Confidence Interval of the Estimator 

confidence.Ret=function(n, k, p, sens, spec, gamma=0.05){ 

  pro= (((1-sens)^2)*(1-p)^k) + (spec^2)*(1-(1-p)^k) 

  con = 1-gamma/2 

  zalph = qnorm(con,0,1) 

  t=c() 

  p.hat= c() 

  g=c() 

  N=10000 

  var.phat=c();  FisherInfo=c(); ul=c();ll=c();th=c() 

  for (i in 1:N) { 

    t[i] = rnbinom(1, n, pro)+n 

    th[i]=(((spec^2)-n/t[i])/((spec^2)-(1-sens)^2))^(1/k) 

    g[i]=n/t[i] 

    if (t[i]==n){ 

      p.hat[i]= 1 

      ul[i]=1 

      ll[i]=0 

      var.phat[i]=0 

    } 

    else if((spec^2)<=g[i]){ 

      p.hat[i]=1 

      ul[i]=1 

      ll[i]=0 

      var.phat[i]=0 

    } 

    else if(th[i]>=1){ 

      MLE[i]=0 
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      FisherInfo[i]=n*(k^2)*(1-p.hat[i])^(2*k-2)*((spec^2)-(1-sens)^2)^2 * 1/((1-((1-sens)^2) 

*(1-p.hat[i])^k)-(spec^2)*(1-(1-p.hat[i])^k))*1/((((1-spec)^2) *(1-p.hat[i])^k)+ (spec^2)*(1-

(1-p.hat[i])^k))^2 

      var.phat[i]=(FisherInfo[i])^-1 

      ul[i]=p.hat[i] + zalph*sqrt(var.phat[i]) 

         ll[i]= p.hat[i] - zalph*sqrt(var.phat[i]) 

    } 

    else { 

      p.hat[i] = 1-(((spec^2)-n/t[i])/((spec^2)-(1-sens)^2))^(1/k) 

      FisherInfo[i]=n*(k^2)*(1-p.hat[i])^(2*k-2)*((spec^2)-(1-sens)^2)^2 * 1/((1-((1-sens)^2) 

*(1-p.hat[i])^k)-(spec^2)*(1-(1-p.hat[i])^k))*1/((((1-spec)^2) *(1-p.hat[i])^k)+ (spec^2)*(1-

(1-p.hat[i])^k))^2 

      var.phat[i]=(FisherInfo[i])^-1 

      ul[i]=p.hat[i] + zalph*sqrt(var.phat[i]) 

      ll[i]= p.hat[i] - zalph*sqrt(var.phat[i]) 

    } 

  } 

  out=as.data.frame(cbind(T=t, MLE=p.hat, ll=ll, ul=ul, zalph, var.phat)) 

  ll.conf=mean(out$ll) 

  ul.conf=mean(out$ul) 

  ci=cbind(LL=ll.conf, UL=ul.conf, length.dif=ul.conf-ll.conf) 

  ci 

} 


